english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47773 Cómo citar
Título: Finite element discretizations of nonlocal minimal graphs : Convergence.
Autor: Borthagaray, Juan Pablo
Li, Wenbo
Nochetto, Ricardo H.
Tipo: Preprint
Palabras clave: Nonlocal minimal surfaces, Finite elements, Fractional diffusion
Fecha de publicación: 2020
Resumen: In this paper, we propose and analyze a finite element discretization for the computation of fractional minimal graphs of order~s∈(0,1/2) on a bounded domain Ω. Such a Plateau problem of order s can be reinterpreted as a Dirichlet problem for a nonlocal, nonlinear, degenerate operator of order s+1/2. We prove that our numerical scheme converges in W2r1(Ω) for all r<s, where W2s1(Ω) is closely related to the natural energy space. Moreover, we introduce a geometric notion of error that, for any pair of H1 functions, in the limit s→1/2 recovers a weighted L2-discrepancy between the normal vectors to their graphs. We derive error bounds with respect to this novel geometric quantity as well. In spite of performing approximations with continuous, piecewise linear, Lagrangian finite elements, the so-called {\em stickiness} phenomenon becomes apparent in the numerical experiments we present.
Descripción: También publicado en Nonlinear Analysis, vol. 189, dec. 2019, 111566. DOI : 10.1016/j.na.2019.06.025.
Editorial: arXiv
EN: Mathematics. Numerical Analysis (math.NA), arXiv:1905.06395v2, mar. 2020, pp. 1-29.
Financiadores: Juan Pablo Borthagaray ha sido financiado en parte por la beca DMS-1411808 de la NSF.
Citación: Borthagaray, J., Li, W. y Nochetto, R. Finite element discretizations of nonlocal minimal graphs : Convergence. [Preprint]. Publicado en: Mathematics. Numerical Analysis (math.NA), 2020, pp. 1-29. arXiv:1905.06395v2.
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
BLN20.pdfPreprint1,08 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons