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Abstract. In this paper, we propose and analyze a finite element discretization for the compu-

tation of fractional minimal graphs of order s ∈ (0, 1/2) on a bounded domain Ω. Such a Plateau
problem of order s can be reinterpreted as a Dirichlet problem for a nonlocal, nonlinear, degen-

erate operator of order s + 1/2. We prove that our numerical scheme converges in W 2r
1 (Ω) for

all r < s, where W 2s
1 (Ω) is closely related to the natural energy space. Moreover, we introduce

a geometric notion of error that, for any pair of H1 functions, in the limit s → 1/2 recovers a
weighted L2-discrepancy between the normal vectors to their graphs. We derive error bounds with

respect to this novel geometric quantity as well. In spite of performing approximations with con-

tinuous, piecewise linear, Lagrangian finite elements, the so-called stickiness phenomenon becomes
apparent in the numerical experiments we present.

1. Introduction

Several complex phenomena, such as those involving surface tension, can be interpreted in terms
of perimeters. In general, perimeters provide a good local description of these intrinsically nonlocal
phenomena. The study of fractional minimal surfaces, which can be interpreted as a non-infinitesimal
version of classical minimal surfaces, began with the seminal works by Imbert [40] and Caffarelli,
Roquejoffre and Savin [19].

As a motivation for the notion of fractional minimal sets let us show how it arises in the study
of a nonlocal version of the Ginzburg-Landau energy, extending a well-known result for classical
minimal sets [44, 45]. Let Ω ⊂ Rd be a bounded set with Lipschitz boundary, ε > 0 and define the
energy

Jε[u; Ω] =
ε2

2

∫
Ω

|∇u(x)|2 dx+

∫
Ω

W (u(x)) dx,

where W (t) = 1
4 (1 − t2)2 is a double-well potential. Then, for every sequence {uε} of minimizers

of the rescaled functional Fε[u; Ω] = ε−1Jε[u; Ω] with uniformly bounded energies there exists a
subsequence {uεk} such that

uεk → χE − χEc in L1(Ω),

where E is a set with minimal perimeter in Ω. Analogously, given s ∈ (0, 1), consider the energy

J sε [u; Ω] =
ε2s

2

∫∫
QΩ

|u(x)− u(y)|2

|x− y|n+2s
dxdy +

∫
Ω

W (u(x)) dx,

where QΩ =
(
Rd × Rd

)
\ (Ωc × Ωc), and rescale it as

Fsε [u; Ω] =

 ε−2sJ sε [u; Ω] if s ∈ (0, 1/2);
ε−1| log ε|−1J sε [u; Ω] if s = 1/2;
ε−1J sε [u; Ω] if s ∈ (1/2, 1).

2000 Mathematics Subject Classification. 49Q05, 35R11, 65N12, 65N30.
Key words and phrases. nonlocal minimal surfaces, finite elements, fractional diffusion.
JPB has been supported in part by NSF grant DMS-1411808.

WL has been supported in part by NSF grant DMS-1411808 and the Patrick and Marguerite Sung Fellowship in
Mathematics.

RHN has been supported in part by NSF grant DMS-1411808.

1



2 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

Note that the first term in the definition of J sε involves the Hs(Rd)-norm of u, except that the
interactions over Ωc ×Ωc are removed; for a minimization problem in Ω, these are indeed fixed. As
proved in [47], for every sequence {uε} of minimizers of Fsε with uniformly bounded energies there
exists a subsequence {uεk} such that

uεk → χE − χEc in L1(Ω) as εk → 0+.

If s ∈ [1/2, 1), then E has minimal classical perimeter in Ω, whereas if s ∈ (0, 1/2), then E minimizes
the nonlocal s-perimeter functional given by Definition A.1.

Other applications of nonlocal perimeter functionals include motions of fronts by nonlocal mean
curvature [21, 22, 23] and nonlocal free boundary problems [20, 30, 34]. We also refer the reader to
[16, Chapter 6] and [25] for nice introductory expositions to the topic.

The goal of this work is to design and analyze finite element schemes in order to compute fractional
minimal sets over cylinders Ω×Rd in Rd+1, provided the external data is a subgraph. In such a case,
minimal sets turn out to be subgraphs in the interior of the domain Ω as well, and the minimization
problem for minimal sets can be equivalently stated as a minimization problem for a functional
acting on functions u : Rd → R, given by

(1.1) Is[u] =

∫∫
QΩ

Fs

(
u(x)− u(y)

|x− y|

)
1

|x− y|d+2s−1
dxdy,

where QΩ = (Rd × Rd) \ (Ωc × Ωc), Ωc = Rd \ Ω is the complement of Ω in Rd and Fs : R → R is
a suitable convex nonnegative function. This is the s-fractional version of the classical graph area
functional

I[u] =

∫
Ω

√
1 + |∇u(x)|2 dx

among suitable functions u : Ω → R satisfying the Dirichlet condition u = g on ∂Ω. A crucial
difference between the two problems is that the Dirichlet condition for Is[u] must be imposed in Ωc,
namely

u = g in Ωc.

We propose a discrete counterpart of Is[u] based on piecewise linear Lagrange finite elements on
shape-regular meshes, and prove a few properties of the discrete solution uh, including convergence
in W 2r

1 (Ω) for any 0 < r < s as the meshsize h tends to 0. We point out that u ∈ W 2s
1 (Ω) is the

minimal regularity needed to guarantee that Is[u] is finite. We also derive error estimates for a novel
geometric quantity related to the concept of fractional normal.

A minimizer of Is[u] satisfies the variational equation

(1.2)

∫∫
QΩ

G̃s

(
u(x)− u(y)

|x− y|

) (
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|d+2s+1

dxdy = 0

for all functions v ∈ W 2s
1 (Ω) such that v = 0 in Ωc. Hereafter, G̃s(ρ) := ρ−1F ′s(ρ) has the property

that G̃s(ρ) → 0 as |ρ| → ∞, which makes the equation for u both nonlinear and degenerate. This
extends to 0 < s < 1 the equation

(1.3)

∫
Ω

∇u(x) · ∇v(x)√
1 + |∇u(x)|2

dx = 0

for minimal graphs. Moreover, this extends the quadratic case Fs(ρ) = Csρ
2, which leads to the

equation for the integral fractional Laplacian (−∆)s+1/2 of order s+ 1/2 < 1,

〈(−∆)s+1/2u, v〉 = 2Cs

∫∫
QΩ

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|d+2s+1

dxdy = 0.

Our nonlinear solver hinges on the linear solver for (−∆)su of [1]. In fact, we develop a discrete
gradient flow and a Newton method, which are further discussed in [12] along with several numerical
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experiments that illustrate and explore the boundary behavior of u. In this paper we present simple
numerical experiments.

Let us briefly review the literature on finite element discretizations of (−∆)s on bounded domains
Ω in Rd. We refer to [1, 2, 4, 10, 28] for homogeneous Dirichlet conditions g = 0 in Ωc as well as
details on convergence of the schemes and their implementation. On the other hand, methods have
been proposed to deal with arbitrary nonhomogeneous Dirichlet conditions g 6= 0 in Ωc, either based
on weak imposition of the datum by using Lagrange multipliers [3] or on the approximation of the
Dirichlet problem by Robin exterior value problems [6]. We refer to the survey [9] for additional
discussion, comparison of methods, and references. Moreover, the fractional obstacle problem for
(−∆)s has been studied in [11, 13, 17], where regularity estimates and convergence rates are derived.

This paper seems to be the first to treat numerically fractional minimal graphs. We now outline
its contents and organization. Section 2 deals directly with the functional Is, thereby avoiding a
lengthly discussion of fractional perimeters, which is included in Appendix A. Section 2 studies
some properties of Is and introduces the variational formulation (1.2). The discrete formulation
and the necessary tools for its analysis, such as localization of fractional order seminorms, quasi-
interpolation operators and interpolation estimates are described in Section 3. In Section 4 we show
that our discrete energy is consistent. This leads to convergence of discrete solutions uh to s-minimal
graphs in W 2r

1 (Ω) for every 0 < r < s as the largest element size h tends to 0 without any additional
regularity of u beyond u ∈W 2s

1 (Ω).
A more intrinsic error measure than the Sobolev norm in W 2r

1 (Ω) exploits the geometric structure

of Is. For the classical case s = 1, set ν̂(aaa) = (aaa,−1)
Q(aaa) with Q(aaa) =

√
1 + |aaa|2 and consider the

geometric error between two functions u, v : Ω→ R

e(u, v) =

(∫
Ω

∣∣∣ν̂(∇u)− ν̂(∇v)
∣∣∣2 Q(∇u) +Q(∇uh)

2
dx

) 1
2

.

This quantity e(u, v) gives a weighted L2-estimate of the discrepancy between the unit normals to
the graphs of u and v [37]. Section 5 deals with a novel nonlocal geometric quantity es(u, v) that
mimics e(u, v). We first derive an upper bound for es(u, uh), where u is the s-minimal graph and uh
is its discrete counterpart, without regularity of u as well as error estimates under realistic regularity
assumptions on u. We next prove that the nonlocal quantity es(u, v) recovers its local counterpart

e(u, v) as s→ 1
2

−
. In doing so, we also prove convergence of the forms (1.2) to (1.3) as s→ 1

2

−
.

Section 6 presents experiments that illustrate the performance of the proposed numerical methods
and the behavior of s-minimal graphs. We conclude with some technical material in appendices. We
collect definitions of and results for fractional perimeters in Appendix A and exploit them to derive
the energy Is in Appendix B.

2. Formulation of the problem

As a motivation for the formulation of the problem we are concerned with in this work, we first
visit the classical minimal graph problem. Let Ω ⊂ Rd be an open set with sufficiently smooth
boundary, and let g : ∂Ω→ Rd be given. Then, the Plateau problem consists in finding u : Ω→ Rd
that minimizes the graph surface area functional

(2.1) I[u] =

∫
Ω

√
1 + |∇u(x)|2 dx

among a suitable class of functions satisfying u = g on ∂Ω. For simplicity, let us assume that such
a class is a subset of H1(Ω). By taking first variation of I, it follows that the minimizer u satisfies

(2.2)

∫
Ω

∇u(x) · ∇v(x)√
1 + |∇u(x)|2

dx = 0, ∀ v ∈ H1
0 (Ω).
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The integral on the left above can be understood as a weighted form, where the weight depends
on the solution u. Identity (2.2) is the starting point for classical approaches to discretize the graph
Plateau problem [24, 41, 46].

We now fix s ∈ (0, 1/2) and consider the s-perimeter operator Ps given by Definition A.1. Like for
the classical minimal surface problem, one may study the nonlocal minimal surface problem under
the restriction of the domain being a cylinder. A difference between the problem we consider in
this paper and its classical counterpart is that here imposition of Dirichlet data on the boundary
of the domain becomes meaningless and thus we require that the exterior data can be written as
a subgraph with respect to a fixed direction. Concretely, from now on we consider Ω′ = Ω × R
with Ω ⊂ Rd bounded. We assume that the exterior datum is the subgraph of some given function
g : Rd \ Ω→ R,

(2.3) E0 =
{

(x′, xd+1) : xd+1 < g(x′), x′ ∈ Rd \ Ω
}
.

Remark 2.1 (assumptions on data). Many of the results we describe in this paper are not optimal,
in the sense that the assumptions can be weakened. In particular, this applies to the domain Ω and
the Dirichlet datum g. About the latter, most of the theory can be carried out by assuming g to
be locally bounded and with some growth condition at infinity. However, in view of the proposed
numerical method, we consider this exterior data function to be uniformly bounded and with bounded
support. More precisely, unless otherwise stated, from now on we assume that

(2.4)
Ω is a bounded Lipschitz domain;

g ∈ L∞(Rd) with compact support.

We leave all the technical discussion about the well-posedness of the nonlocal minimal graph
problem to Appendix A, but here we only mention two important features to take into account.
The first one is that, in this setting, the notion of s-minimal set becomes meaningless, as every set
E that coincides with E0 in Ω′ satisfies Ps(E,Ω

′) =∞; the correct notion to consider is the one of
locally s-minimal set. The second important feature is the existence of a locally s-minimal set in
Ω′ that coincides with the exterior datum (2.3), and that actually corresponds to the subgraph of a
function u in Ω, that is,

(2.5) E ∩ Ω′ = {(x′, xd+1) : xd+1 < u(x′), x′ ∈ Ω} .

Remark 2.2 (solving the graph nonlocal Plateau problem). Appendix A explains that, in order
to to find the locally s-minimal graph in Ω′, it suffices to take M large enough, consider ΩM =
Ω× [−M,M ], and then seek a function u in the class{

u : Rd → R : ‖u‖L∞(Ω) ≤M, u = g in Ωc
}

such that the set E := {(x′, xd+1) : xd+1 < u(x′)} satisfies

Ps(E,ΩM ) ≤ Ps(F,ΩM )

for every set F that coincides with E outside ΩM .

2.1. An energy functional. According to (A.3), the s-minimal sets we aim to approximate in this
work are subgraphs. When restricting the fractional perimeter functional Ps(·,ΩM ) to subgraphs of
functions that coincide with some given g in Ωc, it is convenient to work with an operator acting on
the function u rather than on the set E. More precisely, consider the set QΩ =

(
Rd × Rd

)
\(Ωc × Ωc)

and the function Fs : R→ R,

(2.6) Fs(ρ) :=

∫ ρ

0

ρ− r
(1 + r2)

(d+1+2s)/2
dr.

In order to study the Plateau problem for nonlocal minimal graphs, we introduce the energy

(2.7) Is[u] =

∫∫
QΩ

Fs

(
u(x)− u(y)

|x− y|

)
1

|x− y|d+2s−1
dxdy.
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This functional is the nonlocal analogue of (2.1). Indeed, there exists a direct relation between the
operator Is and the s-perimeter. As pointed out in Remark 2.2, in order to find nonlocal minimal
graphs on Ω it suffices to find minimizers of the fractional s-perimeter Ps(E,ΩM ) for M sufficiently
large. The next proposition shows that, in the graph setting, if M is large enough then the s-
perimeter Ps(E,ΩM ) can be written as the sum of a term depending only on u plus a term that
is independent of u, albeit it blows up as M → ∞. For completeness, we include a proof of this
proposition in Appendix B; we refer also to [43, Proposition 4.2.8].

Proposition 2.3 (relation between Ps and Is). Let Ω ⊂ Rd be a bounded Lipschitz domain, g ∈
L∞(Ωc), M ≥ ‖g‖L∞(Ωc), Ω′ = Ω × R and ΩM = Ω × [−M,M ]. Then, for every set E of the type
of (A.3) with ‖u‖L∞(Ω) ≤M , it holds that

Ps(E,ΩM ) = Is[u] + C(M,d, s,Ω, g),

where Is[u] is given according to (2.7).

An immediate consequence of this decomposition is that, if M ≥ ‖g‖L∞(Ωc), then the minimizer
u is independent of the truncation parameter M . Even though in the limit M → ∞ the fractional
perimeter is trivially equal to infinity, the function u we compute has the ‘good credentials’ to be
regarded as a fractional minimal surface in the cylinder Ω′. We recall that there cannot exist an
s-minimal set on Ω′ that coincides with the subgraph of a bounded function in Ω′c.

Remark 2.4 (growth of exterior data). The functional Is may not be well-defined for functions that
coincide with g on Ωc unless g does not grow too fast at infinity. Nevertheless we point out that, as
described in (2.4), in this work we assume that g is bounded and with bounded support in Rd.

Our next goal is to define the correct space in which to look for minimizers of the energy functional
Is. We start with an auxiliary result.

Lemma 2.5 (energy bounds). Let Ω ⊂ Rd be bounded. Then, there exist constants C1(d,Ω, s),
C2(d, s) and C3(d, s) such that, for every function v : Rd → R it holds that

(2.8)

|v|W 2s
1 (Ω) ≤ C1 + C2Is[v],

Is[v] ≤ C3

∫∫
QΩ

|v(x)− v(y)|
|x− y|d+2s

dxdy.

Proof. From definition (2.6), it follows immediately that Fs(0) = 0 and that

F ′s(ρ) =

∫ ρ

0

1

(1 + r2)
(d+1+2s)/2

dr, ∀ρ > 0.

Thus, if we set the constant C3 =
∫∞

0
1

(1+r2)(d+1+2s)/2 dr, we deduce that

Fs(ρ) ≤ C3ρ ∀ρ ≥ 0.

This implies the second inequality in (2.8).

On the other hand, the first estimate in (2.8), with constant C1 =
∫∫

Ω×Ω
dxdy

|x−y|d+2s−1 <∞ because

Ω ⊂ Rd is bounded, is a consequence of the bound

(2.9) ρ ≤ 1 + C2Fs(ρ) ∀ρ ≥ 0.

It is obvious that such a bound holds for 0 ≤ ρ ≤ 1, whereas if ρ > 1, we have F ′s(ρ) ≥ F ′s(1) and
therefore, Fs(ρ) > F ′s(1)(ρ− 1). The desired inequality follows with constant C2 = 1/F ′s(1). �

Taking into account the lemma we have just proved, we introduce the natural spaces in which to
look for nonlocal minimal graphs.
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Definition 2.6 (space Vg). Given g : Ωc → R, we consider

Vg = {v : Rd → R : v
∣∣
Ω
∈W 2s

1 (Ω), v = g in Ωc, |v|Vg <∞},

equipped with the norm

‖v‖Vg = ‖v‖L1(Ω) + |v|Vg ,
where

|v|Vg :=

∫∫
QΩ

|v(x)− v(y)|
|x− y|d+2s

dxdy.

In the specific case where g is the zero function, we denote the resulting space Vg by V0. The set
Vg can also be understood as that of functions in W 2s

1 (Ω) with ‘boundary value’ g. Indeed, we point
out that in Definition 2.6 we do not require g to be a function in W 2s

1 (Ωc) (in particular, g may
not decay at infinity). The seminorm | · |Vg does not take into account interactions over Ωc × Ωc,
because these are fixed for the applications we consider.

As stated in the next Proposition, given a Dirichlet datum g, the space Vg is the natural domain
of the energy Is.

Proposition 2.7 (energy domain). Let s ∈ (0, 1/2) and Ω, g be given according to (2.4). Let
v : Rd → R be such that v = g in Ωc. Then, v ∈ Vg if and only if Is[v] <∞.

Proof. The claim follows easily from Lemma 2.5. Let v be a function that coincides with g in Ωc.
Then, if v ∈ Vg, the second estimate in (2.8) gives Is[v] <∞, because |v|Vg <∞.

Reciprocally, if Is[v] < ∞, the first inequality in (2.8) implies that |v
∣∣
Ω
|W 2s

1 (Ω) < ∞. Fix R > 0

such that Ω ⊂ BR/2; because of (2.9) and the Lipschitz continuity of Fs, integrating over Ω×(BR\Ω),
we obtain

‖v‖L1(Ω)

R2s
.
∫∫

Ω×(BR\Ω)

(
1 + Fs

(
|v(x)|
|x− y|

))
dxdy

|x− y|d+2s−1

. Is[v] +

∫∫
Ω×(BR\Ω)

1 + |g(y)|
|x− y|d+2s

dxdy.

The last integral in the right hand side above is finite because ‖g‖L∞ < ∞. Therefore, v ∈ L1(Ω).
To deduce that |v|Vg < ∞, we split the integral, use the triangle inequality, integrate in polar
coordinates and apply Hardy’s inequality [39, Theorem 1.4.4.4] to derive

|v|Vg ≤ |v
∣∣
Ω
|W 2s

1 (Ω) + 2

∫∫
Ω×Ωc

|v(x)|
|x− y|d+2s

dxdy + 2

∫∫
Ω×Ωc

|g(y)|
|x− y|d+2s

dxdy

. |v
∣∣
Ω
|W 2s

1 (Ω) +

∫
Ω

|v(x)|
dist(x, ∂Ω)2s

dx+ ‖g‖L∞(Ωc) . ‖v
∣∣
Ω
‖W 2s

1 (Ω) + ‖g‖L∞(Ωc).

This proves that v ∈ Vg and concludes the proof. �

Taking into account Proposition 2.3 and Proposition 2.7, we obtain a characterization of nonlocal
minimal graphs (see also [43, Theorem 4.1.11]).

Corollary 2.8 (relation between minimization problems). Let s ∈ (0, 1/2) and Ω, g satisfy (2.4).
Given a function u : Rd → R that coincides with g in Ωc, consider the set E given by (A.3). Then,
E is locally s-minimal in Ω′ = Ω× R if and only if u minimizes the energy Is in the space Vg.

The functional Is is strictly convex, because the weight Fs appearing in its definition (cf. (2.6))
is strictly convex as well. Therefore, we straightforwardly deduce the next result.

Corollary 2.9 (uniqueness). Under the same hypothesis as in Corollary 2.8, there exists a unique
locally s-minimal set.
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We conclude this section with a result about the regularity of the minimizers of Is. In spite of
being prone to be discontinuous across the boundary, minimal graphs are smooth in the interior
of the domain. The following theorem is stated in [18, Theorem 1.1], where an estimate for the
gradient of the minimal function is derived. Once such an estimate is obtained, the claim follows by
the arguments from [8] and [38].

Theorem 2.10 (interior smoothness of nonlocal minimal graphs). Assume E ⊂ Rd+1 is an s-
minimal surface in Ω′ = Ω×R, given by the subgraph of a measurable function u that is bounded in
an open set Λ ⊃ Ω. Then, u ∈ C∞(Ω).

2.2. Weak formulation. In order to define the proper variational setting to study the nonlocal
minimal graph problem, we introduce the function Gs : R→ R,

(2.10) Gs(ρ) =

∫ ρ

0

(1 + r2)−(d+1+2s)/2dr = F ′s(ρ).

We recall that s ∈ (0, 1/2). Clearly, Gs is an odd and uniformly bounded function:

(2.11) |Gs(ρ)| ≤ K :=

∫ ∞
0

(1 + r2)−(d+1+2s)/2dr =
Γ
(
d+2s

2

)√
π

2Γ
(
d+1+2s

2

) .
The constant K has already appeared in the proof of Lemma 2.5, under the label C3(d, s). The last
equality above follows from the substitution t = (1 + r2)−1 and the basic relation between the beta

and gamma functions, B(x, y) = Γ(x)Γ(y)
Γ(x+y) .

Given a function u ∈ Vg, we take the bilinear form au : Vg × V0 → R,

(2.12) au(w, v) :=

∫∫
QΩ

G̃s

(
u(x)− u(y)

|x− y|

)
(w(x)− w(y))(v(x)− v(y))

|x− y|d+1+2s
dxdy,

where G̃s(ρ) =
∫ 1

0
(1 + ρ2r2)−(d+1+2s)/2dr and hence it satisfies ρG̃s(ρ) = Gs(ρ).

To obtain a weak formulation of our problem, we compute the first variation of (2.7), that yields

δIs[u](v) = au(u, v) for all v ∈ V0.

Thus, we seek a function u ∈ Vg such that

(2.13) au(u, v) = 0 for all v ∈ V0.

Another approach –at least formal– to derive problem (2.13) is to write it as the weak form of
a suitable Euler-Lagrange equation. More precisely, assuming that the set E is the subgraph of a
function u, this can be written as the following nonlocal and nonlinear equation [8]

(2.14) Hs[E](x) = P.V.

∫
Rd
Gs

(
u(x)− u(y)

|x− y|

)
1

|x− y|d+2s
dy = 0,

in a viscosity sense, for every x ∈ Ω. With some abuse of notation, we let Hs[u] represent Hs[E]
when E is the subgraph of u. Therefore, u solves the Dirichlet problem

(2.15)

{
Hs[u](x) = 0 x ∈ Ω,

u(x) = g(x) x ∈ Rd \ Ω.

In this regard, the weak formulation of (2.15) is set by multiplying it by a test function, integrating
and taking advantage of the fact that Gs is an odd function. This corresponds to (2.13).

We finally point out that (2.13) can be interpreted as a fractional diffusion problem of order
s+ 1/2 with weights depending on the solution u and fixed nonhomogeneous boundary data; this is
in agreement with the local case (2.2). Like for the classical minimal graph problem, the nonlinearity
degenerates wherever the Lipschitz modulus of continuity of u blows up. We expect this to be the
case as dist(x, ∂Ω) → 0, as this has been shown to be the generic behavior in one-dimensional
problems [33].
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3. Numerical Method

This section introduces the framework for the discrete nonlocal minimal graph problems under
consideration. We set the notation regarding discrete spaces and analyze their approximation prop-
erties by resorting to a quasi-interpolation operator of Clément type. We include a brief discussion
on the solution of the resulting nonlinear discrete problems.

3.1. Finite element discretization. As discussed in Remark 2.1, in this work we assume that g
is a function with bounded support. Concretely, we assume that

(3.1) supp(g) ⊂ Λ for some bounded set Λ.

Approximations for unboundedly supported data are discussed in a forthcoming paper by the authors
[12]. Without loss of generality, we may assume that Λ = BR(0) is a ball of radius R centered at
the origin.

We consider a family {Th}h>0 of conforming and simplicial meshes of Λ, that we additionally
require to exactly mesh Ω. Moreover, we assume this family to be shape-regular, namely:

σ = sup
h>0

max
T∈Th

hT
ρT

<∞,

where hT = diam(T ) and ρT is the diameter of the largest ball contained in T . As usual, the
subindex h denotes the mesh size, h = maxT∈Th hT . The set of vertices of Th will be denoted by Nh,
and ϕi will denote the standard piecewise linear Lagrangian basis function associated to the node
xi ∈ Nh. In this work we assume that the elements are closed sets. Thus, the star or first ring of an
element T ∈ Th is given by

S1
T =

⋃
{T ′ ∈ Th : T ∩ T ′ 6= ∅} .

We also introduce the star or second ring of S1
T ,

S2
T =

⋃{
T ′ ∈ Th : S1

T ∩ T ′ 6= ∅
}
,

and the star of the node xi ∈ Nh, Si = supp(ϕi). We split the mesh nodes into two disjoint sets,
consisting of either vertices in Ω and in Ωc,

N ◦h = {xi : xi ∈ Ω} , N c
h = {xi : xi ∈ Ωc} .

We emphasize that, because Ω is an open set, nodes on ∂Ω belong to N c
h .

The discrete spaces we consider consist of continuous piecewise linear functions in Λ. Indeed, we
set

Vh = {v ∈ C(Λ): v|T ∈ P1 ∀T ∈ Th}.
For this work, we make use of certain Clément-type interpolation operators on Vh. To account for
boundary data, given an integrable function g : Λ \ Ω→ R, we define

Vgh = {v ∈ Vh : v|Λ\Ω = Πc
hg}.

Here, Πc
h denotes the exterior Clément interpolation operator in Ωc, defined as

Πc
hg :=

∑
xi∈N ch

(Πxi
h g)(xi) ϕi,

where Πxi
h g is the L2-projection of g

∣∣
Si∩Ωc

onto P1(Si ∩ Ωc). Thus, Πc
hg(xi) coincides with the

standard Clément interpolation of g on xi for all nodes xi such that Si ⊂ Rd \Ω. On the other hand,
for nodes on the boundary of Ω, Πc

h only averages over the elements in Si that lie in Ωc. Although
Πc
hg only takes into account values of g in Ωc, the support of Πc

hg is not contained in Ωc, because
ϕi attains nonzero values in Ω for xi ∈ ∂Ω.
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Using the same convention as before, in case g is the zero function, we write the corresponding
space as V0

h. Also, we define the interior Clément interpolation operator Π◦h : L1(Ω)→ V0
h,

Π◦hv :=
∑

xi∈N◦h

(Πxi
h v)(xi) ϕi,

where Πxi
h v is the L2-projection of v

∣∣
Ω

onto P1(Si).

Remark 3.1 (discrete functions are continuous). Even though nonlocal minimal surfaces can develop
discontinuities across ∂Ω –recall the sticky behavior commented in Remark A.3– the discrete spaces
we consider consist of continuous functions. This does not preclude the convergence of the numerical
scheme we propose in ‘trace blind’ fractional Sobolev spaces. Furthermore, the strong imposition of
the Dirichlet data simplifies both the method and its analysis. The use of discrete spaces that capture
discontinuities across the boundary of the domain is subject of ongoing work by the authors.

With the notation introduced above, the discrete counterpart of (2.13) reads: find uh ∈ Vgh such
that

(3.2) auh(uh, vh) = 0 for all vh ∈ V0
h.

Due to our assumption (2.4) on the datum g, it follows immediately that uh is a solution of (3.2)
if and only if uh minimizes the strictly convex energy Is[uh] over the discrete space Vgh. This leads
to the existence and uniqueness of solutions to the discrete problem (3.2).

3.2. Localization. An obvious difficulty when trying to prove interpolation estimates in fractional
Sobolev spaces is that their seminorms are non-additive with respect to disjoint domain partitions.
Here we state a localization result, proved by Faermann [35, 36] in the case p = 2. For brevity, since
the proof for p 6= 2 follows by the same arguments as in those references, we omit it.

Proposition 3.2 (localization of fractional-order seminorms). Let s ∈ (0, 1), p ∈ [1,∞), and Ω be
a bounded Lipschitz domain. Let Th denote a mesh as above. Then, for any v ∈W s

p (Ω) there holds

(3.3) |v|W s
p (Ω) ≤

 ∑
T : T⊂Ω

∫∫
T×(S1

T∩Ω)

|v(x)− v(y)|p

|x− y|d+sp
dydx+ C(σ)

2pωd−1

sphspT
‖v‖pLp(T )

1/p

.

Above, ωd−1 denotes the measure of the (d− 1)-dimensional unit sphere.

This localization of fractional-order seminorms is instrumental for our error analysis. It implies
that, in order to prove approximability estimates in W s

p (Ω), it suffices to produce local estimates in

patches of the form T × S1
T and scaled local Lp(T ) estimates for every T ∈ Th.

3.3. Interpolation operator. Here we define a quasi-interpolation operator that plays an impor-
tant role in the analysis of the discrete scheme proposed in this paper. Such an operator combines
the two Clément-type interpolation operators introduced in the previous subsection. More precisely,
we set Ih : L1(Rd)→ Vgh,

(3.4) Ihv = Π◦h
(
v
∣∣
Ω

)
+ Πc

hg.

Using standard arguments for Clément interpolation, we obtain local approximation estimates in
the interior of Ω.

Proposition 3.3 (local interpolation error). Let s ∈ (0, 1), p ≥ 1, s < t ≤ 2. Then, for all T ∈ Th
it holds

‖v − Ihv‖Lp(T ) . h
t|v|W t

p(S1
T ),

and (∫∫
T×S1

T

|(v − Ihv(x))− (v − Ihv(y))|p

|x− y|d+sp
dydx

) 1
p

. ht−s|v|W t
p(S2

T ).
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From Corollary 2.8 and Theorem 2.10 we know that, under suitable assumptions, minimal graphs
are W 2s

1 -functions that are locally smooth in Ω. These conditions are sufficient to prove the conver-
gence of the interpolation operator Ih.

Proposition 3.4 (interpolation error). Let s ∈ (0, 1), and p ≥ 1 be such that sp < 1. Assume that
Ω and g satisfy (2.4) and (3.1). Then, for all v : Rd → R satisfying v

∣∣
Ω
∈W s

p (Ω) and v = g in Ωc,∫∫
QΩ

|(Ihv − v)(x)− (Ihv − v)(y)|p

|x− y|d+sp
dxdy → 0 as h→ 0.

Proof. In first place, we split∫∫
Ω×Ωc

|(Ihv − v)(x)− (Ihv − v)(y)|p

|x− y|d+sp
dxdy .

∫∫
Ω×Ωc

|Ihv(x)− v(x)|p

|x− y|d+sp
dxdy

+

∫∫
Ω×Ωc

|Πc
hg(y)− g(y)|p

|x− y|d+sp
dxdy.

Given x ∈ Ω, we have
∫

Ωc
1

|x−y|d+sp dy . d(x, ∂Ω)−sp, and since Ihv − v ∈ W s
p (Ω), we invoke the

Hardy inequality [39, Theorem 1.4.4.4] to deduce that∫∫
Ω×Ωc

|(Ihv − v)(x)|p

|x− y|d+sp
dxdy .

∫
Ω

|(Ihv − v)(x)|p

d(x, ∂Ω)sp
dx . ‖Ihv − v‖pW s

p (Ω).

Since g is uniformly bounded, we first claim that Πc
hg → g a.e. in Ωc as h → 0. Indeed, for every

y ∈ T ⊂ Ωc, we express Πc
hg(y) as a linear combination of Πc

hg(xi), where {xi} are the vertices of
T , and deduce that

Πc
hg(y) =

∫
S1
T

ϕ∗y(x)g(x)dx,

for some function ϕ∗y satisfying
∫
S1
T
ϕ∗y(x)dx = 1 and‖ϕ∗y‖L∞(S1

T ) ≤ C(d, σ)h−d. Since S1
T ⊂ B2h(y),

for every Lebesgue point y of g we have∣∣(Πc
hg)(y)− g(y)

∣∣ =

∣∣∣∣∣
∫
S1
T

ϕ∗y(x)
(
g(x)− g(y)

)
dx

∣∣∣∣∣ ≤ ‖ϕ∗y‖L∞(S1
T )

∫
B2h(y)

|g(x)− g(y)|dx

.
1

|B2h(y)|

∫
B2h(y)

|g(x)− g(y)|dx→ 0 as h→ 0.

By the Lebesgue differentiation theorem, almost every y ∈ Ωc is a Lebesgue point of g, and therefore

(3.5) Πc
hg → g a.e. in Ωc as h→ 0.

In addition, it follows from ‖ϕ∗y‖L∞(S1
T ) ≤ C(d, σ)h−d that ‖Πc

hg‖L∞(Rd) . ‖g‖L∞(Ωc), and hence∫∫
Ω×Ωc

|Πc
hg(y)− g(y)|p

|x− y|d+sp
dxdy .

∫∫
Ω×Ωc

‖g‖pL∞(Ωc)

|x− y|d+sp
<∞.

Applying the Lebesgue Dominated convergence theorem, we obtain∫∫
Ω×Ωc

|Πc
hg(y)− g(y)|p

|x− y|d+sp
dxdy → 0 as h→ 0.

Therefore, we have shown that∫∫
Ω×Ωc

|(Ihv − v)(x)− (Ihv − v)(y)|p

|x− y|d+sp
dxdy . ‖Ihv − v‖pW s

p (Ω) + o(1),

and thus we just need to bound the interpolation error in W s
p (Ω).

We write Ihv − v =
(

Π◦h
(
v
∣∣
Ω

)
− v
)

+ Πc
hg, and split∥∥Ihv − v∥∥pW s

p (Ω)
.
∥∥Π◦h

(
v
∣∣
Ω

)
− v
∥∥p
W s
p (Ω)

+
∥∥Πc

hg
∥∥p
W s
p (Ω)

.
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Using the localization estimate (3.3), we bound
∥∥Πc

hg
∥∥p
W s
p (Ω)

by

∥∥Πc
hg
∥∥p
W s
p (Ω)

≤
∑

T : T⊂Ω

[ ∫∫
T×(S1

T∩Ω)

|Πc
hg(x)−Πc

hg(y)|p

|x− y|d+sp
dydx

+

(
1 + C(σ)

2pωd−1

sphspT

)
‖Πc

hg‖
p
Lp(T )

]
Recalling ‖Πc

hg‖L∞(Rd) . ‖g‖L∞(Ωc) and using an inverse inequality, we have∥∥Πc
hg
∥∥p
W s
p (Ω)

.
∑

T⊂Ω: S1
T∩Ωc 6=∅

[
h−sp+dT ‖Πc

hg‖
p
L∞(Rd)

]
. ‖g‖L∞(Ωc)

∑
T⊂Ω: S1

T∩Ωc 6=∅

h−sp+dT ,

for h small enough. The sum in the right hand side above can be straightforwardly estimated by∑
T⊂Ω: S1

T∩Ωc 6=∅

h−sp+dT .
∑

T⊂Ω: T∩Ωc 6=∅

h−sp+dT ≤ h1−sp
∑

T⊂Ω: T∩Ωc 6=∅

hd−1
T

. h1−sp Hd−1(∂Ω),

where Hd−1 is the (d − 1)-dimensional Hausdorff measure. This establishes that
∥∥Πc

hg
∥∥p
W s
p (Ω)

→ 0

as h→ 0.
It only remains to show that

∥∥Π◦h
(
v
∣∣
Ω

)
− v
∥∥p
W s
p (Ω)

→ 0 as h → 0. For simplicity, we write Π◦hv

instead of Π◦h
(
v
∣∣
Ω

)
. Since Π◦hv is a continuous linear operator from W s

p (Ω) to W s
p (Ω) with

‖Π◦hv‖W s
p (Ω) ≤ C(d, s, p, σ,Ω)‖v‖W s

p (Ω),

it suffices to prove the convergence for v ∈ C∞(Ω). We use the localization estimate (3.3) for∥∥Π◦hv − v
∥∥p
W s
p (Ω)

and write

∥∥Π◦hv − v
∥∥p
W s
p (Ω)

≤
∑

T : T⊂Ω

[ ∫∫
T×(S1

T∩Ω)

|(Π◦hv − v)(x)− (Π◦hv − v)(y)|p

|x− y|d+sp
dydx

+

(
1 + C(σ)

2pωd−1

sphspT

)
‖Π◦hv − v‖

p
Lp(T )

]
=:

∑
T : S2

T⊂Ω

IT (v) +
∑

T⊂Ω: S2
T∩Ωc 6=∅

IT (v).

On the one hand, we point out that, because∣∣∣∣∣∣
⋃

T⊂Ω: S2
T∩Ωc 6=∅

T

∣∣∣∣∣∣ ≈ h,
and v ∈W s

p (Ω), we have∑
T⊂Ω: S2

T∩Ω̃c 6=∅

IT (v) ≤ C(d, s, p, σ)
∑

T⊂Ω: S2
T∩Ω̃c 6=∅

‖v‖p
W s
p (S2

T∩Ω)
→ 0, as h→ 0.

On the other hand, over the elements T such that S2
T ⊂ Ω, Proposition 3.3 gives∑

T : S2
T⊂Ω̃

IT (v) . hp(t−s)
∑

T : S2
T⊂Ω̃

|v|p
W t
p(S2

T )
. hp(t−s)|v|pW t

p(Ω),

for every v smooth in Ω. This finishes the proof. �

If, under the same conditions as in Proposition 3.4, we add the hypothesis that v is smoother
than W s

p (Ω), then it is possible to derive interpolation rates.
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Proposition 3.5 (interpolation rate). Assume that v ∈W t
p(Λ) for some t ∈ (s, 2]. Then,∫∫

QΩ

|(Ihv − v)(x)− (Ihv − v)(y)|p

|x− y|d+sp
dxdy . hp(t−s)|v|pW t

p(Λ).

Proof. We split QΩ into the sets

QΩ ⊂
(
Λ× Λ

)
∪
((

Ωc \ Λ
)
× Ω

)
∪
(

Ω×
(
Ωc \ Λ

))
.

The estimate in Λ×Λ is standard and follows along the lines of the estimates for ‖Ihv− v‖W s
p (Ω) in

Proposition 3.4. The estimate in
(
Ωc \Λ

)
×Ω reduces to ‖Ihv− v‖Lp(Ω) because dist(Ωc \Λ,Ω) > 0

and v is zero in Ωc \ Λ. �

3.4. Numerical schemes. We briefly include some details about the implementation and solution
of the discrete problem (3.2). In first place we point out that we can compute auh(uh, vh) for any
given uh ∈ Vgh, vh ∈ V0

h by following the implementation techniques from [1, 2]. Further details on
the quadrature rules employed and the treatment of the discrete form auh(uh, vh) can be found in
[12].

In order to solve the nonlinear discrete problem we resort to two different approaches: a semi-
implicit Hα-gradient flow and a damped Newton algorithm. For the former, we consider α ∈ [0, 1)
(with the convention that H0(Ω) = L2(Ω)), fix a step size τ > 0 and, given an initial guess u0

h, we
solve the following equation in every step,

(3.6)
1

τ
〈uk+1
h − ukh , vh〉Hα(Ω) = −aukh(uk+1

h , vh), ∀vh ∈ V0
h.

For the damped Newton method, we take the first variation of auh(uh, vh),
δauh (uh,vh)

δuh
(wh), which

is well-defined for all uh ∈ Vgh, vh, wh ∈ V0
h. We point out that the analogue of this variation at the

continuous level is not well-defined. The resulting step is obtained by solving for wkh the equation

(3.7)
δauh(ukh, vh)

δukh
(wkh) = −aukh(ukh, vh), ∀vh ∈ V0

h

and performing a line search to determine the step size. We refer the reader to [12] for full details
on these algorithms and further discussion on their performance.

4. Convergence

In this section, we prove the convergence of the discrete solution uh without assumptions on
the regularity of the nonlocal minimal graphs. We first prove that the discrete approximations are
uniformly bounded with respect to the L∞(Ω) norm.

Lemma 4.1 (uniform boundedness of ‖uh‖L∞(Ω)). Let s ∈ (0, 1/2) and Ω and g satisfy (2.4) and
(3.1). Let uh be the solution to (3.2). Then,

inf
y∈Ωc

g(y) := m ≤ uh(x) ≤ sup
y∈Ωc

g(y) := M, ∀x ∈ Ω.

Proof. Consider the following truncation of uh,

ũh(x) =

 uh(x), if m ≤ uh(x) ≤M,
m, if uh(x) < m,
M, if uh(x) > M.

It suffices to prove ũh = uh for our purpose. Clearly, for a.e. x, y it holds that |ũh(x) − ũh(y)| ≤
|uh(x)−uh(y)|. Taking into account the definition (2.7) and the fact that Fs is increasing in [0,∞),
this implies Is[ũh] ≤ Is[uh]. Since ũh ∈ Vgh, this leads to ũh = uh and thus finishes the proof. �
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Next, we show that the discretization proposed in Section 3.1 is energy-consistent. Due to our
assumption that g ∈ Cc(Ω

c), we know from Proposition 2.7 that the energy minimizing function

u ∈W 2s
1 (Ω), while Theorem 2.10 guarantees that for any region Ω̃ b Ω, u ∈W 2t

1 (Ω̃) for every t ∈ R.
These two properties are sufficient to guarantee the consistency of the discrete energy.

Theorem 4.2 (energy consistency). Let s ∈ (0, 1/2), and assume that Ω and g satisfy (2.4) and
(3.1). Let u and uh be, respectively, the solutions to (2.13) and (3.2). Then,

lim
h→0

Is[uh] = Is[u].

Proof. Let Ih be defined according to (3.4). Since Ihu ∈ Vgh, it follows that Is[Ihu] ≥ Is[uh] and
hence

0 ≤ Is[uh]− Is[u] ≤ Is[Ihu]− Is[u]

=

∫∫
QΩ

(
Fs

(
Ihu(x)− Ihu(y)

|x− y|

)
− Fs

(
u(x)− u(y)

|x− y|

))
dxdy

|x− y|d+2s−1
.

Because Fs is Lipschitz continuous, we deduce

0 ≤ Is[uh]− Is[u] .
∫∫

QΩ

|(Ihu− u)(x)− (Ihu− u)(y)|
|x− y|d+2s

dxdy,

and using Proposition 3.4 we conclude that limh→0 Is[uh] = Is[u]. �

Finally, we prove the convergence of the finite element approximations to the nonlocal minimal
graph as the maximum element size h→ 0.

Theorem 4.3 (convergence). Under the same hypothesis as in Theorem 4.2, it holds that

lim
h→0
‖u− uh‖W 2r

1 (Ω) = 0 ∀r ∈ [0, s).

Proof. Due to our assumptions on g, we apply Theorem 4.2 to deduce that the finite element
discretization is energy-consistent. Thus, the family {Is[uh]}h>0 is uniformly bounded.

Similarly to the first formula in (2.8), we obtain

|uh|W 2s
1 (Ω) ≤ C1 + C2Is[uh],

and because of Lemma 4.1, it follows that ‖uh‖W 2s
1 (Ω) is uniformly bounded.

This fact, combined with the compactness of the embedding W 2s
1 (Ω) ⊂ L1(Ω), allows us to

extract a subsequence {uhn}, which converges to some ũ in L1(Ω). According to (3.5) in the proof
of Proposition 3.4, {uhn} converges to g a.e. in Ωc; then, extending ũ as g onto Ωc, we have by
Fatou’s Lemma that

Is[ũ] ≤ lim inf
n→∞

Is[uhn ] = Is[u].

As a consequence, Is[ũ] is finite and, by Proposition 2.7, it follows that ũ ∈ Vg. Because ũ minimizes
the energy Is, it is a solution of (3.2), and by uniqueness it must be ũ = u. Since any subsequence
of {uh} has a subsequence converging to u in L1(Ω), it follows immediately that uh converges to u
in L1(Ω) as h→ 0.

Finally, the convergence in the W 2r
1 (Ω)-norm for r ∈ (0, s) is obtained by interpolation between

the spaces L1(Ω) and W 2s
1 (Ω). �

5. A geometric notion of error

In this section, we introduce a geometric notion of error and prove the convergence of the discrete
approximations proposed in Section 3.1 according to it. The error estimate for this novel quantity
mimics the estimates in the classical Plateau problem for the error

(5.1)

e2(u, uh) =

∫
Ω

∣∣∣ν̂(∇u)− ν̂(∇uh)
∣∣∣2 Q(∇u) +Q(∇uh)

2
dx,

=

∫
Ω

(
ν̂(∇u)− ν̂(∇uh)

)
·
(
∇(u− uh), 0

)
dx,
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where Q(aaa) =
√

1 + |aaa|2, ν̂(aaa) = (aaa,−1)
Q(aaa) . Since, in this context, ν̂(∇u) is the normal unit vector on

the graph of u, e(u, uh) represents a weighted L2-error for the normal vectors of the corresponding
graphs given by u and uh, where the weight is the average of the area elements of the graphs of u and
uh. An estimate for e(u, uh) was derived by Fierro and Veeser [37] in the framework of a posteriori
error estimation for prescribed mean curvature equations. Geometric notions of errors like e(u, uh)
have also been considered in the setting of mean curvature flows [26, 27] and surface diffusion [7].

For the nonlocal minimal surface problem, let u and uh be the solutions to (2.13) and (3.2),
respectively. We introduce the quantity

(5.2) es(u, uh) :=

(
Cd,s

∫∫
QΩ

(
Gs (du(x, y))−Gs (duh(x, y))

) du−uh(x, y)

|x− y|d−1+2s
dxdy

)1/2

,

where Gs is given by (2.10), the constant Cd,s = 1−2s
αd

, with αd denoting the volume of the d-

dimensional unit ball and, for any function v, dv(x, y) is defined as

(5.3) dv(x, y) :=
v(x)− v(y)

|x− y|
.

The term in parenthesis in (5.2) is non-negative because Gs is non-decreasing on R. We include the

constant Cd,s in the definition of es in order to have asymptotic compatibility in the limit s → 1
2

−

(cf. Theorem 5.12 below).
Section 5.1 derives an estimate for es(u, uh) that does not rely on regularity assumptions. Al-

though the proof of such an error estimate is simple, providing an interpretation of the quantity es
is not a straightforward task. Thus, in Section 5.2 we study the behavior of es and related quantities

in the limit s→ 1
2

−
.

5.1. Error estimate. In this section we derive an upper bound for the geometric discrepancy
es(u, uh) between the continuous and discrete minimizers u and uh, without additional assumptions
on the regularity of u. More precisely, the next theorem states that es(u, uh) can be bounded in
terms of the approximability of u by the discrete spaces Vgh in terms of the Vg-seminorm.

Theorem 5.1 (geometric error). Let s ∈ (0, 1/2) and let Ω and g satisfy (2.4) and (3.1). Let u and
uh be the solutions to (2.13) and (3.2) respectively. Then, it holds that

(5.4)

es(u, uh) ≤ inf
vh∈Vgh

√
2Cd,sK |u− vh|Vg

= inf
vh∈Vgh

(
2Cd,sK

∫∫
QΩ

|(u− vh)(x)− (u− vh)(y)|
|x− y|d+2s

dxdy

)1/2

,

where K is the constant from (2.11).

Proof. The proof follows by ‘Galerkin orthogonality’. Indeed, let vh ∈ Vgh and use uh − vh as test
function in (2.13) and (3.2) to obtain∫∫

QΩ

(
Gs (du(x, y))−Gs (duh(x, y))

) duh(x, y)− dvh(x, y)

|x− y|d−1+2s
dxdy = 0.

The identity above immediately implies that

(5.5)

e2
s(u, uh) = Cd,s

∫∫
QΩ

(
Gs (du(x, y))−Gs (duh(x, y))

)du(x, y)− duh(x, y)

|x− y|d−1+2s
dxdy

= Cd,s

∫∫
QΩ

(
Gs (du(x, y))−Gs (duh(x, y))

)du(x, y)− dvh(x, y)

|x− y|d−1+2s
dxdy.

Estimate (5.4) follows immediately from the bound |Gs| ≤ K (cf. (2.11)). �

In case the fractional minimal graph possesses additional regularity, a convergence rate follows
straightforwardly by applying Proposition 3.5.
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Corollary 5.2 (convergence rate). Let the same conditions as in Theorem 5.1 be valid and further
assume that u ∈W t

1(Λ) for some t ∈ (2s, 2], where Λ is given by (3.1). Then,

es(u, uh) . ht/2−s|u|1/2
W t

1 (Λ)
.

Remark 5.3 (BV regularity). Although minimal graphs are expected to be discontinuous across the
boundary, they are smooth in the interior of Ω and, naturally, possess the same regularity as the
datum g over Ωc. Therefore, in general, we expect that u ∈ BV (Λ) whence the error estimate

es(u, uh) . h1/2−s|u|1/2BV (Λ).

5.2. Asymptotic behavior. Our goal in this section is to show that, for u and v smooth enough,

es(u, v) converges to the geometric notion of error e(u, v) defined in (5.1) in the limit s → 1
2

−
. To

this aim, we first introduce a nonlocal normal vector.

Definition 5.4 (nonlocal normal vector). Let s ∈ (0, 1/2) and E ⊂ Rd be an open, bounded,
measurable set. The nonlocal inward normal vector of order s at a point x ∈ ∂E is defined as

(5.6) νs(x;E) =
Cd−1,s

2
lim
R→∞

∫
BR(x)

χE(y)− χEc(y)

|x− y|d+2s
(y − x) dy,

where Cd−1,s = 1−2s
αd−1

as in (5.2), except that d is replaced by d− 1.

Remark 5.5 (dimensions). We point out that, definition (5.2) aims to measure the normal vector
discrepancies over graphs in Rd+1, whereas Definition 5.4 deals with the normal vector to a subset
of Rd. This is why in (5.6) we use the constant Cd−1,s instead of Cd,s.

Notice that, by symmetry, ∫
∂BR(x)

y − x
|x− y|d+2s

dS(y) = 0 ∀R > 0.

Consequently, because χEc = 1− χE , if E ⊂ BR(x) for some R > 0, then

νs(x;E) =
Cd−1,s

2

∫
BR(x)

χE(y)− χEc(y)

|x− y|d+2s
(y − x) dy

= Cd−1,s

∫
BR(x)

χE(y)

|x− y|d+2s
(y − x) dy.

The following lemma justifies that the nonlocal normal vector defined in (5.6) is indeed an ex-
tension of the classical notion of normal vector. The scaling factor in the definition of νs yields the

convergence to the normal derivative as s→ 1
2

−
.

Lemma 5.6 (asymptotic behavior of νs). Let E be a bounded set in Rd, x be a point on ∂E, the
surface ∂E be locally C1,γ for some γ > 0 and ν(x) be the inward normal vector to ∂E at x. Then,
the following holds:

(5.7) lim
s→ 1

2
−
νs(x;E) = ν(x).

Proof. Without loss of generality, we assume x = 0. Let Ẽ := {y : y · ν(x) ≥ 0} and for simplicity
we write Br = Br(x). Then, since ∂E is locally C1,γ , there exists some r0 > 0 such that

(5.8)

∣∣∣∣∫
∂Br

χE4Ẽ(y) dS(y)

∣∣∣∣ . rd+γ−1
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for any r ∈ (0, r0], where 4 denotes the symmetric difference between sets. Fix R > r0 large enough
so that E ⊂ BR(x). Then, we can write νs(x;E) as

(5.9)

νs(x;E) = Cd−1,s

∫
BR

χE(y)

|y|d+2s
y dy

= Cd−1,s

(∫
BR\Br0

χE(y)

|y|d+2s
y dy +

∫
Br0

χE(y)

|y|d+2s
y dy

)
.

For the first integral in the right hand side, since the surface area of the (d − 1)-dimensional unit
ball equals dαd, we have∣∣∣∣∣

∫
BR\Br0

χE(y)

|y|d+2s
y dy

∣∣∣∣∣ =

∣∣∣∣∣
∫ R

r0

dr

∫
∂Br

χE(y)

rd+2s
y dS(y)

∣∣∣∣∣
≤
∫ R

r0

dr

∫
∂Br

1

rd+2s
rd dS = dαd

∫ R

r0

r−2s dr

=
dαd

1− 2s
(R1−2s − r1−2s

0 ).

Therefore, in the limit s→ 1
2

−
, we obtain

(5.10) Cd−1,s

∣∣∣∣∣
∫
BR\Br0

χE(y)

|y|d+2s
y dy

∣∣∣∣∣ ≤ dαd
αd−1

(
R1−2s − r1−2s

0

)
→ 0.

We now deal with the second term in the right hand side in (5.9). Without loss of generality, we

additionally assume ν(x) = e1. If we replace E by the set Ẽ defined above, that coincides with the
half-space {y : y1 ≥ 0}, it follows by symmetry that all components but the first one in the integral
vanish. The first component can be calculated explicitly by writing it as an iterated integral along
the (d− 1)-dimensional slices Πt = {y1 = t} and integrating in polar coordinates on these:∫

Br0

χẼ(y)

|y|d+2s
y1 dy =

∫ r0

0

dt

∫
Πt∩{|z|2≤r2

0−t2}

t

(t2 + |z|2)
d+2s

2

dz

=

∫ r0

0

dt

∫ √r2
0−t2

0

dr

∫
∂B

(d−2)
r

t

(t2 + r2)
d+2s

2

dS(z)

= (d− 1)αd−1

∫ r0

0

dt

∫ √r2
0−t2

0

trd−2

(t2 + r2)
d+2s

2

dr.

The iterated integral above can be calculated with elementary manipulations (Fubini’s theorem,

change of variables t 7→ w =
(
t
r

)2
and explicit computation of integrals) to give∫ r0

0

dt

∫ √r2
0−t2

0

trd−2

(t2 + r2)
d+2s

2

dr =
r1−2s
0

(d− 1)(1− 2s)
,

and therefore, as s→ 1
2

−
,

Cd−1,s

∫
Br0

χẼ(y)

|y|d+2s
y1 dy = Cd−1,s (d− 1)αd−1

r1−2s
0

(d− 1)(1− 2s)
= r1−2s

0 → 1.

This shows that

(5.11) lim
s→ 1

2
−

∫
Br0

2χẼ(y)

|y|d+2s
y1 dy = ν(x).
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Using (5.8), the difference between the integrals over E and Ẽ can be bounded as

Cd−1,s

∣∣∣∣∣
∫
Br0

χE(y)− χẼ(y)

|y|d+2s
y dy

∣∣∣∣∣ ≤ Cd−1,s

∫ r0

0

dr

∫
∂Br

χE4Ẽ(y) r−d−2s r dS(y)

. Cd−1,s

∫ r0

0

rγ−2s dr = Cd−1,s
rγ+1−2s
0

γ + 1− 2s
,

where the right hand side above tends to 0 because C(d−1, s) = 1−2s
αd−1

and γ > 0 is fixed. Combining

this estimate with (5.9), (5.10) and (5.11), we finally get

lim
s→ 1

2
−
νs(x;E) = ν(x),

thereby finishing the proof. �

Remark 5.7 (localization). From the preceding proof, it follows that only the part of the integral

near x remains in the limit when s→ 1
2

−
. Thus, for any neighborhood Nx of x, we could similarly

prove

lim
s→ 1

2
−

Cd−1,s

2

∫
Nx

χE(y)− χEc(y)

|x− y|d+2s
(y − x) dy = ν(x)

without the assumption of the boundedness of E.

We now go to the graph setting and consider

E =
{

(x, xd+1) : xd+1 ≤ u(x), x ∈ Rd
}
⊂ Rd+1,

where u ∈ L∞(Rd). For such a set E it is clear that our definition (5.6) is not adequate: the limit
of the integral therein does not exist. However, the only issue in such a definition is that the last
component of the nonlocal normal vector in Rd+1 tends to −∞, and thus it can be solved in a simple
way. Indeed, we introduce the projection operator P that maps

Rd+1 3 x̃ = (x, xd+1) 7→ P (x̃) = x ∈ Rd.

Then we could actually define the normal vector for this type of unbounded set E as the projection
P (νs(x;E)).

More precisely, given x̃ = (x, u(x)), we define the projection of nonlocal normal vector, ν̃s(x̃;E) =
P (νs(x̃;E)), as

(5.12) ν̃s(x̃;E) =
Cd,s

2
lim
R→∞

∫
BR(x̃)

χE(ỹ)− χEc(ỹ)

|x̃− ỹ|d+1+2s
P (ỹ − x̃) dỹ,

where x = P (x̃) and y = P (ỹ). To show that this limit exists, consider the sets

B+
R (x̃) :=

{
ỹ = (y, yd+1) ∈ Rd+1 : |ỹ − x̃| ≤ R, yd+1 ≥ u(x)

}
,

B−R (x̃) := BR(x̃) \B+
R(x̃).

Since both B+
R (x̃) and B−R (x̃) are half balls, by symmetric cancellation, we have∫

B+
R(x̃)

1

|x̃− ỹ|d+1+2s
dỹ −

∫
B−R (x̃)

1

|x̃− ỹ|d+1+2s
dỹ = 0

in the principal value sense. Therefore, using that χE = 1− χEc , we can express∫
BR(x̃)

χE(ỹ)− χEc(ỹ)

|x̃− ỹ|d+1+2s
P (ỹ − x̃) dỹ

= 2

∫
B+
R(x̃)∩E

(y − x)

|x̃− ỹ|d+1+2s
dỹ − 2

∫
B−R (x̃)\E

(y − x)

|x̃− ỹ|d+1+2s
dỹ.
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The two integrands above have enough decay at infinity because we are assuming u ∈ L∞(Rd). Thus,
as R → ∞, we may replace B−R (x̃) by the half space H− (x̃) := {(y, yd+1) ∈ Rd+1 : yd+1 < u(x)}.
Thus, the vector defined in (5.12) can be written as

ν̃s(x̃;E) = Cd,s

∫
E\H−(x̃)

(y − x)

|x̃− ỹ|d+1+2s
dỹ − Cd,s

∫
H−(x̃)\E

(y − x)

|x̃− ỹ|d+1+2s
dỹ

= Cd,s

∫
Rd
dy

∫ u(y)

u(x)

(y − x)

(|x− y|2 + (yd+1 − u(x))2)
d+1+2s

2

dyd+1.

Making the substitution t = yd+1−u(x)
|x−y| , recalling the definitions of Gs and du (cf. (2.10) and (5.3),

respectively), and noticing that du(x, y) = −du(y, x), we conclude that

ν̃s(x̃;E) = Cd,s

∫
Rd

(y − x) dy

∫ u(y)−u(x)
|x−y|

0

1

|x− y|d+2s (1 + t2)
d+1+2s

2

dt

= Cd,s

∫
Rd

Gs (du(x, y))

|x− y|d+1+2s
(x− y) dy.

As we mentioned above, ν̃s(x̃;E) can be regarded as the projection of νs(x̃;E) under P . Therefore,
following similar steps as in Lemma 5.6 and Remark 5.7, it is possible to prove the following result.

Lemma 5.8 (asymptotics of ν̃s). Let E =
{

(x, xd+1) : xd+1 ≤ u(x), x ∈ Rd
}

, where u ∈ L∞(Rd)
and u is locally C1,γ around a point x for some γ > 0. Then, the following asymptotic behavior
holds

(5.13)

lim
s→ 1

2
−
ν̃s(x̃;E) = lim

s→ 1
2
−
Cd,s

∫
Rd

Gs (du(x, y))

|x− y|d+2s
(x− y) dy

=
∇u(x)√

1 + |∇u(x)|2
,

where x̃ = (x, u(x)). In addition, we also have

(5.14) lim
s→ 1

2
−
Cd,s

∫
Nx

Gs (du(x, y))

|x− y|d+2s
(x− y) dy =

∇u(x)√
1 + |∇u(x)|2

,

for any neighborhood Nx of x.

Our next lemma deals with the interaction between the nonlocal normal vector to the graph of
u : Rd → R and a function v : Rd → R. For that purpose, we redefine au so as to include the proper

scaling factor for s→ 1
2

−
. Indeed, given u ∈ Vg, we set au : Vg × V0 → R to be

(5.15) au(w, v) := Cd,s

∫∫
QΩ

G̃s

(
u(x)− u(y)

|x− y|

)
(w(x)− w(y))(v(x)− v(y))

|x− y|d+1+2s
dxdy.

Lemma 5.9 (asymptotics of au with Hölder regularity). Let u, v ∈ C1,γ
c (Λ) for some γ > 0 and a

bounded set Λ containing Ω ⊂ Rd. Then, it holds that

lim
s→ 1

2
−
au(u, v) =

∫
Ω

∇u(x) · ∇v(x)√
1 + |∇u(x)|2

dx,

where au(u, v) is the form defined in (5.15).

Remark 5.10 (heuristic interpretation of Lemma 5.9). Suppose v was a linear function. Then, for
all x, y we have v(x)− v(y) = (x− y) · ∇v(x), and thus we can write

au(u, v) = Cd,s

∫∫
QΩ

Gs (du(x, y))
(x− y) · ∇v(x)

|x− y|d+2s
dxdy,
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while

ν̃s(x̃;E) · ∇v(x) = Cd,s

(∫
Rd

Gs (du(x, y))

|x− y|d+2s
(x− y) dy

)
· ∇v(x).

Therefore, taking into account the asymptotic behavior in (5.14), Lemma 5.9 would follow upon
integration of the identity above over Ω. However, for an arbitrary (nonlinear) v, we can only
interpret au(u, v) as a certain interaction between the nonlocal normal vector ν̃s and the ‘nonlocal

gradient’ dv. Nevertheless, in the limit s→ 1
2

−
, only the interaction for x, y close remains, and the

asserted result follows because any C1 function is locally linear.

Proof of Lemma 5.9. We first split the domain of integration using symmetry:

(5.16)

au(u, v) = Cd,s

∫∫
Ω×Ω

Gs (du(x, y))
dv(x, y)

|x− y|d−1+2s
dxdy

+ 2Cd,s

∫∫
Ω×Ωc

Gs (du(x, y))
dv(x, y)

|x− y|d−1+2s
dxdy.

Consider the first integral in (5.16). For a fixed x ∈ Ω, we expand v(y) = v(x) +∇v(x) · (x− y) +
O(|x− y|1+γ) and exploit the fact that |Gs| is uniformly bounded (cf. (2.11)) to obtain

(5.17)

∫
Ω

Gs (du(x, y))
dv(x, y)

|x− y|d−1+2s
dy

=

∫
Ω

Gs (du(x, y))
∇v(x) · (x− y) +O

(
|x− y|1+γ

)
|x− y|d+2s

dy

=

(∫
Ω

Gs (du(x, y))
x− y

|x− y|d+2s
dy

)
· ∇v(x) +O

(∫
Ω

1

|x− y|d+2s−1−γ dy

)
.

Let us define D = supx,y∈Λ |x − y|. Then, it is clear that Ω ⊂ Λ ⊂ BD(x) and integrating in polar
coordinates we get

Cd,s

∫
Ω

1

|x− y|d+2s−1−γ dy .
1− 2s

αd

∫ D

0

r−2s+γdr

.
1− 2s

(γ + 1− 2s)αd
Dγ+1−2s → 0, as s→ 1

2

−
.

Identity (5.14) guarantees that

lim
s→ 1

2
−
Cd,s

(∫
Ω

Gs (du(x, y))
x− y

|x− y|d+2s
dy

)
· ∇v(x) =

∇u(x) · ∇v(x)√
1 + |∇u(x)|2

,

so that it follows from (5.17) that

lim
s→ 1

2
−
Cd,s

∫
Ω

Gs (du(x, y))
dv(x, y)

|x− y|d−1+2s
dy =

∇u(x) · ∇v(x)√
1 + |∇u(x)|2

,

for every x ∈ Ω. Since for all x ∈ Ω we have∣∣∣∣Cd,s ∫
Ω

Gs (du(x, y))
dv(x, y)

|x− y|d−1+2s
dy

∣∣∣∣ ≤ Cd,s |v|C0,1(Ω)

∫
Ω

1

|x− y|d−1+2s
dy

≤ d(1− 2s)

∫ D

0

r−2sdr = dD1−2s,

we can apply the Lebesgue Dominated Convergence Theorem to deduce that

(5.18) lim
s→ 1

2
−
Cd,s

∫
Ω×Ω

Gs (du(x, y))
dv(x, y)

|x− y|d−1+2s
dxdy =

∫
Ω

∇u(x) · ∇v(x)√
1 + |∇u(x)|2

dx.

It remains to prove that the last term in (5.16) converges to 0 as s→ 1
2

−
. This is a consequence

of the Dominated Convergence Theorem as well. For x ∈ Ω, we write δ(x) = dist(x, ∂Ω). We first
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use that |Gs| is uniformly bounded, according to (2.11), and integrate in polar coordinates to obtain,
for every x ∈ Ω,∣∣∣∣Cd,s ∫

Ωc
Gs (du(x, y))

dv(x, y)

|x− y|d−1+2s
dy

∣∣∣∣ . (1− 2s) |v|C0,1(Ω)

∫ D

δ(x)

r−2s dr → 0.

To prove that the integrands are uniformly bounded, we invoke again the uniform boundedness
of Gs and split the integral with respect to y into two parts:

Cd,s

∫
Ωc
Gs (du(x, y))

dv(x, y)

|x− y|d−1+2s
dy . (1− 2s)

∫
Ωc

dv(x, y)

|x− y|d−1+2s
dy

. (1− 2s)

(∫
{y : |y−x|≤1}

dv(x, y)

|x− y|d−1+2s
dy +

∫
{y : |y−x|>1}

dv(x, y)

|x− y|d−1+2s
dy

)

≤ (1− 2s)

(∫
{y : |y−x|≤1}

|v|C0,1(Λ)

|x− y|d−1+2s
dy +

∫
{y : |y−x|>1}

2|v|L∞(Λ)

|x− y|d+2s
dy

)

. (1− 2s)

(∫ 1

0

r−2sdr +

∫ ∞
1

r−2s−1dr

)
= 1 +

1− 2s

2s
.

Consequently, we have proved that

lim
s→ 1

2
−
Cd,s

∫∫
Ω×Ωc

Gs (du(x, y))
dv(x, y)

|x− y|d−1+2s
dxdy = 0.

This, together with (5.16) and (5.18), finishes the proof. �

Actually, the regularity assumptions in Lemma 5.9 can be weakened by a density argument.
To this aim, we recall the following stability result proved in [14, Theorem 1]: given f ∈ W 1

p (Ω),

1 ≤ p <∞ and ρ ∈ L1(Rd) such that ρ ≥ 0,

(5.19)

∫∫
Ω×Ω

|f(x)− f(y)|p

|x− y|p
ρ(x− y) dxdy ≤ C‖f‖pW 1

p (Ω)‖ρ‖L1(Rd).

The constant C depends only on p and Ω. We next state and prove a modified version of Lemma 5.9.

Lemma 5.11 (asymptotics of au with Sobolev regularity). Let u, v ∈ H1
0 (Λ), for some bounded set

Λ containing Ω. Then, it holds that

lim
s→ 1

2
−
au(u, v) =

∫
Ω

∇u(x) · ∇v(x)√
1 + |∇u(x)|2

dx.

Proof. First we point out that the double integral in the definition of au is stable in the H1-norm.
More specifically, for u1, u2, v1, v2 ∈ H1

0 (Λ), we have

|au1
(u1, v1)− au2

(u2, v2)| ≤ |au1
(u1, v1)− au1

(u1, v2) + au1
(u1, v2)− au2

(u2, v2)|

. (1− 2s)

∫∫
Rd×Rd

|du1(x, y)| |dv1−v2(x, y)|+ |du1−u2(x, y)| |dv2(x, y)|
|x− y|d−1+2s

dxdy.

As before, set D = supx,y∈Λ |x− y|. Using the Cauchy-Schwarz inequality and choosing

ρ(x) =

{
|x|−d+1−2s, |x| ≤ D
0, |x| > D

in (5.19), we obtain that

|au1
(u1, v1)− au2

(u2, v2)|
. (1− 2s)

(
|u1|H1(Rd)|v1 − v2|H1(Rd) + |u1 − u2|H1(Rd)|v2|H1(Rd)

)
‖ρ‖L1(Rd).
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For the function ρ we have chosen, it holds that

‖ρ‖L1(Rd) =
dαdD

1−2s

1− 2s
.

Thus, we obtain the following stability result for the form a:

(5.20) |au1
(u1, v1)− au2

(u2, v2)| ≤ C
(
|u1|H1(Rd)|v1 − v2|H1(Rd) + |u1 − u2|H1(Rd)|v2|H1(Rd)

)
,

where the constant C is independent of s ∈ (0, 1
2 ) and the functions involved.

A standard argument now allows us to conclude the proof. Given u, v ∈ H1
0 (Λ), consider sequences

{un}, {vn} ∈ C∞c (Λ) such that un → u and vn → v in H1(Rd). Due to Lemma 5.9, we have, for
every n,

lim
s→ 1

2
−
aun(un, vn) =

∫
Ω

∇un(x) · ∇vn(x)√
1 + |∇un(x)|2

dx.

Applying (5.20), the claim follows. �

We are finally in position to show the asymptotic behavior of the notion of error es introduced
at the beginning of this section (cf. (5.2)). Notice that, with the rescaling (5.15),

e2
s(u, v) = au(u, u)− au(u, v)− av(v, u) + av(v, v),

while for its local counterpart (5.1),

e2(u, v) =

∫
Ω

∇u(x) · ∇u(x)√
1 + |∇u(x)|2

− ∇u(x) · ∇v(x)√
1 + |∇u(x)|2

− ∇v(x) · ∇u(x)√
1 + |∇v(x)|2

+
∇v(x) · ∇v(x)√

1 + |∇v(x)|2
.

Applying Lemma 5.11 term by term in the expansions above, we conclude that effectively, es recovers
e in the limit.

Theorem 5.12 (asymptotics of es). Let u, v ∈ H1
0 (Λ), for some bounded set Λ containing Ω. Then,

we have
lim
s→ 1

2
−
es(u, v) = e(u, v).

6. Numerical experiments

This section presents some numerical results that illustrate the properties of the algorithms dis-
cussed in Section 3.4. As an example, we consider Ω = B1 \ B1/2, where Br denotes an open ball

with radius r centered at the origin. For the Dirichlet data, we simply let g = 0 in Rd \ B1 and
g = 0.4 in B1/2. Our computations are performed on an Intel Xeon E5-2630 v2 CPU (2.6 GHz), 16
GB RAM using MATLAB R2016b. More numerical experiments will be presented in an upcoming
paper by the authors [12].

Remark 6.1 (classical minimal graph in a symmetric annulus). We consider the classical graph
Plateau problem in the same domain as our example above, with g = 0 on ∂B1 and g = γ on ∂B1/2.

When γ > γ∗ := 1
2 ln(2 +

√
3) ≈ 0.66, the minimal surface consists of two parts. The first part is

given by the graph of function u(x, y) = γ∗ − 1
2 cosh−1(2

√
x2 + y2) and the second part is given by

{(x, y, z) : γ∗ ≤ z ≤ γ, (x, y) ∈ ∂B1/2}. In this situation, a stickiness phenomenon occurs and u is
discontinuous across ∂B1/2. Notice with our choice of Dirichlet data γ = 0.4 < γ∗, stickiness should
not be observed for the classical minimal graph.

We first compute the solution uh of nonlinear system (3.2) using the L2-gradient flow mentioned
in Section 3.4. For s = 0.25 and mesh size h = 2−4, we choose the initial solution u0

h = 0 and
time step τ = 1. The computed discrete solution uh is plotted in Figure 1. By symmetry we know
the continuous solution u should be radially symmetric, and we almost recover this property on the
discrete level except in the region very close to ∂B1/2 where the norm of ∇uh is big. It is also seen
that 0 ≤ uh ≤ 0.4 computationally, which is a consequence of Lemma 4.1. To justify convergence
of the L2-gradient flow, we consider the hat functions {ϕi}Ni=1 forming a basis of V0

h where N is the
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degrees of freedom. Consider residual vector {ri}Ni=1 where ri := aukh(ukh, ϕi), we plot the Euclidean

norm ‖r‖l2 along the iteration for different time step τ in Figure 2 (left). In the picture, the line
for τ = 1 and τ = 10 almost coincide and we get faster convergence (fewer iterations) for larger
time step τ . For every choice of time step, we observe the linear convergence for the gradient flow
iteration computationally. We have also tried different choices of initial solution u0

h, and always
end up observing the similar linear convergence behavior. We also plot the energy Is[u

k
h] along the

iterations in Figure 2 (right); this shows that the energy Is[u
k
h] monotonically decreases along the

gradient flow iterations independently of the step size τ > 0. This energy decay property will be
proved in the upcoming paper [12].

Figure 1. Plot of uh computed by L2-gradient flow for s = 0.25 and h = 2−4.
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Figure 2. Gradient flow for s = 0.25 for different choices of τ . Left: norm of residual
vector r in the iterative process. Right: energy of Is[uk

h] in the iterative process.

The solution uh of nonlinear system (3.2) can also be solved using the damped Newton method
mentioned in Section 3.4. We choose initial solution u0

h = 0 and the plots of uh for several different
s ∈ (0, 1/2) are shown in Figure 3. The computed discrete solution for s = 0.25 is almost the same
as the one computed by gradient flow in Figure 1. However, the damped Newton method is more
efficient than the gradient flow since we only need 4 iterations and 243 seconds compared with 26
iterations and 800 seconds when using the gradient flow with τ = 1.

As shown in the Figure 3, the graph of uh near ∂B1/2 is steeper, and the norm of ∇uh larger for
smaller s, while it becomes smoother, and the norm of ∇uh smaller as s increases. This seems to
suggest a stickiness phenomenon (see Remark A.3) (stickiness) for small s in this example. We also
notice that on the other part of boundary ∂B1, the stickiness seems to be small or vanish (i.e. the
gap of u on both sides of ∂Ω is small or zero), which is kind of expected since there is no stickiness
on ∂B1 for the classical case Remark 6.1.
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Figure 3. Plot of uh computed by damped Newton method for s =
0.05, 0.15, 0.25, 0.35, 0.45 (from left to right) and h = 2−4.

Due to the Gamma-convergence result of fractional perimeter in [5, Theorem 3], s−nonlocal

minimal graph u converges to the classical minimal graph u∗ in L1(Ω) as s → 1
2

−
. Since we know

the analytical solution of classical minimal graph u∗ in our example, to verify our computation, we
could compare the discrete nonlocal minimal graph uh for s = 0.499999 ≈ 1

2 with u∗. Figure 4 shows

that at least ‖uh−u∗‖ converges for L1 norm to a small number, which indicates the convergence of
uh as h→ 0, and a second order convergence rate. Although we could not prove this theoretically,
this second order convergence might be due to the fact that s is too close to 0.5, and the nonlocal
graph is almost the same as the classical one. In fact, this O(h2) convergence rate has been proved
for the classical minimal graph problems in L1 norm under proper assumptions for dimension d = 2
in [41, Theorem 2].
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10
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10
-2

Figure 4. Plot of ‖uh − u∗‖L1(Ω) for different mesh size h, where uh is the discrete
solution for s = 0.499999 and u∗ is the exact solution of classical minimal graph. Least
square regression suggests a convergence rate 1.96, which is close to O(h2).

Appendix A. Fractional perimeter and minimal sets

The concept of fractional perimeter, that leads to fractional minimal sets, was introduced in [19]
and has been further developed in [15, 16, 29, 31, 32, 33, 42, 43]. Since this justifies the choice of
functional Is[u] in (1.1), we review this rather technical development with emphasis on fractional
graphs.

A.1. Fractional perimeters and minimal sets. Here we present the definitions of fractional
perimeter and fractional minimal sets and discuss their properties.
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Definition A.1 (s-perimeter). Given a domain Ω′ ⊂ Rd+1 and s ∈ (0, 1/2), the s-perimeter of a
set E ⊂ Rd+1 in Ω′ is defined as

(A.1) Ps(E,Ω
′) := Ls(E ∩ Ω′, Ec) + Ls(E \ Ω′,Ω′ \ E),

where Ec := Rd+1 \ E and for any sets A,B ⊂ Rd+1, the interaction between them is defined as

Ls(A,B) :=

∫∫
A×B

dxdy

|x− y|d+1+2s
.

Formally, definition (A.1) coincides with

Ps(E,Ω
′) =

1

2

(
[χE ]W 2s

1 (Rd+1) − [χE ]W 2s
1 (Ω′c)

)
,

where

[v]W s
p (U) :=

(∫∫
U×U

|v(x)− v(y)|p

|x− y|d+1+sp
dxdy

)1/p

is the standard Gagliardo-Aronszajn-Slobodeckij seminorm.

It is known that, as s→ 1
2

−
, the scaled s-perimeter Ps(E,Ω

′) converges to the classical perimeter,
see [16, Theorem 6.0.5] and references therein. Indeed, for all R > 0 and all sets E with finite
perimeter in the ball BR,

lim
s→ 1

2
−

(
1

2
− s
)
Ps(E,Br) = cd+1P (E,Br),

for almost every r ∈ (0, R), where cd+1 is a renormalizing constant and P (E,Ω′) is defined as

P (E,Ω′) := sup

{∫
E

div ϕ dx : ϕ ∈ C1
c (Ω′,Rd+1), |ϕ| ≤ 1

}
.

On the other hand, the behavior of Ps as s → 0 is investigated in [29], where it is shown that if
Ps0(E,Ω′) <∞ for some s0 ∈ (0, 1/2), and the limit

α(E) := lim
s→0

2s

∫
E∩Bc1

1

|y|d+1+2s
dy

exists, then
lim
s→0

2s|∂B1|Ps(E,Ω′) = (|∂B1| − α(E)) |E ∩ Ω′|+ α(E) |Ω′ \ E|.

In particular, if E is a bounded set and Ps0(E,Ω′) <∞ for some s0, then α(E) = 0 and lims→0 2sPs(E,Ω
′) =

|E∩Ω′|. Therefore, the scaled limit of Ps(E,Ω
′) is the measure of E within Ω′ provided E is bounded.

We are now in position to define s-minimal sets in Ω′, which are sets that minimize the s-fractional
perimeter among those that coincide with them outside Ω′. It is noteworthy that this definition does
not only involve the behavior of sets in Ω′ but rather in the whole space Rd+1.

Definition A.2 (s-minimal set). A set E is s-minimal in a open set Ω′ ⊂ Rd+1 if Ps(E,Ω
′) is

finite and Ps(E,Ω
′) ≤ Ps(F,Ω

′) among all measurable sets F ⊂ Rd+1 such that F \ Ω′ = E \ Ω′.
The boundary ∂E of a s-minimal set E is then called a s-minimal surface in Ω′.

Given an open set Ω′ and a fixed set E0, the Dirichlet or Plateau problem for nonlocal minimal
surfaces aims to find a s-minimal set E such that E \Ω′ = E0 \Ω′. For a bounded Lipschitz domain
Ω′ the existence of solutions to the Plateau problem is established in [19].

Remark A.3 (stickiness). A striking difference between nonlocal minimal surface problems and
their local counterparts is the emergence of stickiness phenomena [32]: the boundary datum may not
be attained continuously. Stickiness is indeed the typical behavior of nonlocal minimal surfaces over
bounded domains Ω′. Reference [15] proves that when s is small and the Dirichlet data occupies, in
a suitable sense, less than half the space at infinity, either s-minimal sets are empty in Ω′ or they
satisfy a density condition. The latter entails the existence of a δ = δ(s) > 0 such that for every
x ∈ Ω′ satisfying Bδ(x) b Ω′, it holds that |E ∩Bδ(x)| > 0. The recent work [33] shows that, in the
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1d graph setting, there is no intermediate behavior: minimizers either develop jump discontinuities
or have a Hölder continuous first derivative across ∂Ω′.

A.2. Fractional minimal graphs. Since we are concerned with graphs, the set Ω′ = Ω × R is
a cylinder and E \ Ω′ is a subgraph. Lombardini points out in [42, Remark 1.14] that, in this
case, the definition of minimal set as a minimizer of the fractional perimeter is meaningless because
Ps(E,Ω

′) =∞ for every set E. This issue can be understood by decomposing the fractional perimeter

Ps(E,Ω
′) = PLs (E,Ω′) + PNLs (E,Ω′),

with

PLs (E,Ω′) = Ls(E ∩ Ω′, Ec ∩ Ω′) =
1

2
|χE |W 2s

1 (Ω),

PNLs (E,Ω′) = Ls(E ∩ Ω′, Ec \ Ω′) + Ls(E \ Ω′,Ω′ \ E)

=

∫∫
Ω′×Ω′c

|χE(x)− χE(y)|
|x− y|d+1+2s

dxdy,

and realizing that PNLs (E,Ω′) is trivially infinite independently of E. This problem can be avoided
by, instead of s-minimal sets, seeking for locally s-minimal sets.

Definition A.4 (locally s-minimal set). A set E is locally s-minimal in Ω′ if it is s-minimal in
every bounded open subset compactly supported in Ω′.

For bounded sets with Lipschitz boundary, the notions of s-minimality and local s-minimality
coincide [42]. However, as also shown in [42], the Plateau problem (in terms of locally s-minimal
sets) admits solutions even when the domain is unbounded.

Proposition A.5 (existence of locally s-minimal sets). Let Ω′ ⊂ Rd+1 be an open set and let
E0 ⊂ Rd+1. Then, there exists a set E ⊂ Rd+1 locally s-minimal in Ω′, such that E \ Ω′ = E0 \ Ω′.

We now consider the minimal graph problem: we assume Ω′ = Ω× R is a cylinder with Ω ⊂ Rd
being a Lipschitz domain, and the Dirichlet datum to be the subgraph of some function g that
is bounded and compactly supported (cf. (2.3) and (2.4)). In this setting, Dipierro, Savin and
Valdinoci [31] proved that for every locally s-minimal set in Ω′ there exists M0 > 0 such that

(A.2) Ω× (−∞,−M0) ⊂ E ∩ Ω′ ⊂ Ω× (−∞,M0).

As pointed out in [43, Proposition 2.5.3], a consequence of this estimate is that a set E is locally
s-minimal in Ω′ = Ω× R if and only if it is s-minimal in ΩM = Ω× (−M,M) for every M > M0.

Additionally, once the a priori bound (A.2) on the vertical variation of locally s-minimal sets is
known, it can be shown that minimal sets need to be subgraphs, that is,

(A.3) E ∩ Ω′ = {(x′, xd+1) : xd+1 < u(x′), x′ ∈ Ω}
for some function u (cf. [43, Theorem 4.1.10]). We refer to such a set E as a nonlocal minimal graph
in Ω. Thus, as expressed in Remark 2.2, the Plateau problem for nonlocal minimal graphs consists
in finding a function u : Rd → R, with the constraint u = g in Ωc, such that the resulting set E is a
locally s-minimal set.

Appendix B. Derivation of the energy (1.1) for graphs: proof of Proposition 2.3

In this appendix, we establish the relation between the fractional s-perimeter Ps(E,Ω
′) of the

subgraph of a certain function u given by (A.3) and the energy functional Is[u] defined in (1.1).
This will also prove Proposition 2.3.

We recall our basic assumptions (2.4): Ω ⊂ Rd is a bounded Lipschitz domain and g ∈ L∞(Ωc).
Given M > 0 sufficiently large depending on s, d,Ω, g, we let ΩM = Ω × [−M,M ]. We note that,
according to (A.2) and (A.3), the problem of nonlocal minimal graphs in Ω reduces to finding a
function u in the class {

u : Rd → R : ‖u‖L∞(Ω) ≤M, u = g in Ωc
}
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such that the set E := {(x′, xd+1) ∈ Rd+1 : xd+1 ≤ u(x′)} satisfies

Ps(E,ΩM ) ≤ Ps(F,ΩM )

for every set F that coincides with E outside ΩM . Our goal is to prove Proposition 2.3, namely to
show that

Ps(E,ΩM ) = Is[u] + C(M,d, s,Ω, g),

where Is is given (1.1) and (2.7) and reads

Is[u] =

∫∫
QΩ

Fs

(
u(x)− u(y)

|x− y|

)
1

|x− y|d+2s−1
dxdy.

This identity will follow by elementary arguments, inspired in Lombardini [42]; further details
can be found in [43, Chapter 4]. Definition (A.1) yields

(B.1) Ps(E,ΩM ) = Ls(E ∩ ΩM , E
c) + Ls(E \ ΩM , E

c ∩ ΩM ).

For the first term I on the right hand side above, we write I = I1 + I2 where

I := Ls(E ∩ ΩM , E
c) =

∫∫
Ω×Rd

dxdy

∫ u(x)

−M
dt

∫ ∞
u(y)

dr

((t− r)2 + |x− y|2)
(d+1+2s)/2

and

I1 :=

∫∫
Ω×Ω

dxdy

∫ u(x)−u(y)

−M−u(y)

dt

∫ ∞
−t

dr

(r2 + |x− y|2)
(d+1+2s)/2

,

I2 :=

∫∫
Ω×Ωc

dxdy

∫ u(x)−u(y)

−M−u(y)

dt

∫ ∞
−t

dr

(r2 + |x− y|2)
(d+1+2s)/2

.

Recalling that Ω′ = Ω× R, the second term II in (B.1) can be split as

II := Ls(E \ ΩM , E
c ∩ ΩM ) = II1 + II2,

where

(B.2) II1 := Ls((E ∩ Ω′) \ ΩM , E
c ∩ ΩM ), II2 := Ls(E \ Ω′, Ec ∩ ΩM ).

Applying Fubini’s Theorem and the change of variables (r, t) = (−r̃ − t̃,−r̃ −M), we obtain

II1 =

∫∫
Ω×Ω

dxdy

∫ −M
−∞

dt̃

∫ M

u(y)

dr̃(
(t̃− r̃)2 + |x− y|2

)(d+1+2s)/2

=

∫∫
Ω×Ω

dxdy

∫ −u(y)−M

−2M

dt

∫ ∞
−t

dr

(r2 + |x− y|2)
(d+1+2s)/2

.

Therefore, we have

I1 + II1 =

∫∫
Ω×Ω

dxdy

∫ u(x)−u(y)

−2M

dt

∫ ∞
−t

dr

(r2 + |x− y|2)(d+1+2s)/2

=

∫∫
Ω×Ω

dxdy

|x− y|d−1+2s

∫ u(x)−u(y)
|x−y|

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2
,

and using the symmetry in (x, y) of the integral over Ω× Ω, we arrive at

I1 + II1 =
1

2

∫∫
Ω×Ω

dxdy

|x− y|d−1+2s

(∫ u(x)−u(y)
|x−y|

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2

+

∫ u(y)−u(x)
|x−y|

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2

)
.
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Next, the splitting∫ u(x)−u(y)
|x−y|

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2

=

∫ 0

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2
−
∫ u(y)−u(x)

|x−y|

0

dt

∫ ∞
t

dr

(r2 + 1)(d+1+2s)/2

gives ∫ u(x)−u(y)
|x−y|

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2
+

∫ u(y)−u(x)
|x−y|

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2

= 2

∫ 0

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2
+

∫ u(y)−u(x)
|x−y|

0

dt

∫ t

−t

dr

(r2 + 1)(d+1+2s)/2
.

Thus, collecting the estimates above and recalling definition (2.6), we deduce

I1 + II1 = C1 +

∫∫
Ω×Ω

Fs

(
u(x)− u(y)

|x− y|

)
1

|x− y|d−1+2s
dxdy,

where

C1 :=

∫∫
Ω×Ω

dxdy

∫ 0

−2M
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2

is a finite number that only depends on M,d, s,Ω. The finiteness of C1 is due to the boundedness
of Ω and the bound∫ 2M

|x−y|

0

dt

∫ ∞
t

dr

(r2 + 1)(d+1+2s)/2

≤
∫ ∞

0

dt

∫ ∞
t

dr

(r2 + 1)(d+1+2s)/2
=

∫ ∞
0

r dr

(r2 + 1)(d+1+2s)/2
<∞.

Applying the change of variables (t, r) = (−r̃ + u(y), r̃ − t̃), the term II2 = Ls(E \ Ω, Ec ∩ ΩM )
from (B.2) can be expressed as

II2 =

∫∫
Ωc×Ω

dxdy

∫ u(x)

−∞
dt̃

∫ M

u(y)

dr̃(
(t̃− r̃)2 + |x− y|2

)(d+1+2s)/2

=

∫∫
Ω×Ωc

dxdy

∫ u(y)

−∞
dt̃

∫ M

u(x)

dr̃(
(t̃− r̃)2 + |x− y|2

)(d+1+2s)/2

=

∫∫
Ω×Ωc

dxdy

∫ u(y)−u(x)

−M+u(y)

dt

∫ ∞
−t

dr

(r2 + |x− y|2)(d+1+2s)/2
.

We next combine I2 and II2 to obtain

I2 + II2 =

∫∫
Ω×Ωc

dxdy

|x− y|d−1+2s

(∫ u(x)−u(y)
|x−y|

−M−u(y)
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2

+

∫ u(y)−u(x)
|x−y|

−M+u(y)
|x−y|

dt

∫ ∞
−t

dr

(r2 + 1)(d+1+2s)/2

)

=

∫∫
Ω×Ωc

dxdy

|x− y|d−1+2s

(∫ u(x)−u(y)
|x−y|

−M−u(y)
|x−y|

dt

∫ 0

−t

dr

(r2 + 1)(d+1+2s)/2

+

∫ u(y)−u(x)
|x−y|

−M+u(y)
|x−y|

dt

∫ 0

−t

dr

(r2 + 1)(d+1+2s)/2
+

2M

|x− y|
K

)
,
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where K =
∫∞

0
(r2 + 1)−(d+1+2s)/2dr. Therefore, recalling once again (2.6), we deduce

I2 + II2 =

∫∫
Ω×Ωc

dxdy

|x− y|d−1+2s

(
2Fs

(
u(x)− u(y)

|x− y|

)
−Fs

(
−M − g(y)

|x− y|

)
− Fs

(
M − g(y)

|x− y|

))
+ C2,

with C2 = 2MK
∫∫

Ω×Ωc
|x − y|−(d+2s)dxdy < ∞, because Ω is bounded Lipschitz. Additionally,

note that because g ∈ L∞(Ωc), we have∫∫
Ω×Ωc

(
Fs

(
−M − g(y)

|x− y|

)
+ Fs

(
M − g(y)

|x− y|

))
dxdy

|x− y|d−1+2s
<∞.

Since Ps(E,ΩM ) = I1 + I2 + II1 + II2, collecting the estimates above yields

Ps(E,ΩM ) =

∫∫
QΩ

Fs

(
u(x)− u(y)

|x− y|

)
1

|x− y|d+2s−1
dxdy + C(M,d, s,Ω, g).

This finishes the proof of Proposition 2.3, and shows that the function u, whose subgraph solves the
nonlocal Plateau problem in Ω′, minimizes the energy (2.7).
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