Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47556
Cómo citar
Título: | Nearly Frobenius structures in some families of algebras. |
Autor: | Artenstein, Dalia González, Ana Mata, Gustavo |
Tipo: | Preprint |
Palabras clave: | Nearly Frobenius, String algebra, Radical square zero algebra |
Fecha de publicación: | 2019 |
Resumen: | In this article we continue with the study started in [2] of nearly Frobenius structures in
some representative families of finite dimensional algebras, as radical square zero algebras,
string algebras and toupie algebras. We prove that such radical square zero algebras with at least one path of length two are nearly Frobenius. As for the string algebras, those who are not gentle can be endowed with at least one non-trivial nearly Frobenius structure. Finally, in the case of toupie algebras, we prove that the existence of monomial relations is a sufficient condition to have non-trivial nearly Frobenius structures. Using the technics developed for the previous families of algebras we prove sufficient conditions for the existence of non-trivial Frobenius structures in quotients of path algebras in general. |
Descripción: | También publicado en São Paulo Journal of Mathematical Sciences, vol. 14, 2020, pp. 165-184. DOI : 10.1007/s40863-019-00158-z. |
Editorial: | arXiv |
EN: | Mathematics. Rings and Algebras (math.RA), arXiv:1705.10222v3, mar. 2019, pp. 1-17. |
Citación: | Artenstein, D., González, A. y Mata, G. Nearly Frobenius structures in some families of algebras. [Preprint]. Publicado en: Mathematics. Rings and Algebras (math.RA), 2019, pp. 1-17. arXiv:1705.10222v3. DOI: 10.48550/arXiv.1705.10222. |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
AGM19.pdf | Preprint | 216,62 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons