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Abstract

In this article we continue with the study started in [2] of nearly Frobenius structures in
some representative families of finite dimensional algebras, as radical square zero algebras,
string algebras and toupie algebras. We prove that such radical square zero algebras with at
least one path of length two are nearly Frobenius. As for the string algebras, those who are
not gentle can be endowed with at least one non-trivial nearly Frobenius structure. Finally,
in the case of toupie algebras, we prove that the existence of monomial relations is a sufficient
condition to have non-trivial nearly Frobenius structures. Using the technics developed for
the previous families of algebras we prove sufficient conditions for the existence of non-trivial
Frobenius structures in quotients of path algebras in general.
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MSC: 16W99, 16G99.

1 Introduction

It is a well known result that the Poincaré algebra A = H∗(M) associated to a compact closed
manifold M with trace

ε(w) =

∫

M

w,

for w ∈ H∗(M) is a Frobenius algebra. This is not the case for a non-compact manifold M , but we
may ask what structure remains. The answer may be stated nowaday as follows: the cohomology
algebra is a nearly Frobenius algebra.

The concept of nearly Frobenius algebra was developed in the thesis of the second author of this
article, the study of these objects was motivated by the result proved in [9], which states that: the
homology of the free loop space H∗(LM) has the structure of a Frobenius algebra without counit.
Later, these objets were studied in [10] and their algebraic properties were developed in [2]. In
particular, the possible nearly Frobenius structures in gentle algebras were described.

In the framework of differential graded algebras, Abbaspour considers in [1] nearly Frobenius
algebras that he calls open Frobenius algebras. He proves that if A is a symmetric open Frobenius
algebra of degree m, then HH∗(A,A)[m] is an open Frobenius algebra.

The Frobenius algebra structures in quotients of path algebras have been deeply studied. In
particular, there is only a small family of monomial algebras that admits Frobenius structure. The
next result illustrates this assertion.

Lemma 1 ([8], Lemma 2.2). Let A be an indecomposable monomial algebra. Then A is Frobenius
if and only if A = k, or A ∼= kZn

Jd for some positive integers n and d, with d ≥ 2, where Zn the
basic oriented cycle of length n and J is the ideal generated by the arrows.
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If we are interested in finding nearly Frobenius structures the situation is quite different. A
large number of families of finite dimensional algebras can be endowed with nearly Frobenius
structure. In particular, in this work, we study the nearly Frobenius structures in radical square
zero algebras, string algebras and toupie algebras.

The radical square zero algebras are finite dimensional algebras over a field k such that the
square of its Jacobson radical is already zero. They have been extensively studied in representation
theory because their behaviour provides interesting examples and results. Some beautiful results
about them are the following: a radical square zero algebra is of representation finite type if and
only if its separated quiver is a finite disjoint union of Dynkin diagrams (see [4, Chapter X2]). A
connected radical square zero algebra is either self-injective or CM-free (see [7]). As a consequence
of the last result, we have that a connected radical square zero algebra is Gorenstein if and only if
its valued quiver is either an oriented cycle with the trivial valuation or does not contain oriented
cycles.

String algebras are on one hand special biserial algebras whose ideal of relations can be gener-
ated by paths and on the other hand a generalization of gentle algebras. The class of special biserial
algebras was introduced by Skowroński and Waschbüsch in [14]. It has played an important role in
the study of self-injective algebras. Special biserial algebras and in particular string algebras have
a well-understood representation theory. In fact, if A is special biserial, then it has a two-sided
ideal S such that the quotient A/S is a monomial algebra, and actually a string algebra.

The other family of algebras studied in this article are the toupie algebras. They were first
introduced in “Toupie algebras, some examples of Laura algebra” by Diane Castonguay, Julie
Dionne, Francois Huard and Marcelo Lanzilotta (see [11] for more details). These algebras com-
bine features of canonical algebras with monomial algebras. They are quotients of the path algebra
of a finite quiver Q which has a source 0, a sink ω and branches going from 0 to ω. The ideal of
relations I ⊂ Q≤2 can be generated by a set containing two types of relations: monomial ones,
which involve arrows of one branch each, and linear combinations of branches.

This work is developed as follows. In section 2 is devoted to study radical square zero algebras,
in particular we determine the Frobenius dimension for all them. In Section 3 we study the string
algebras and we prove that if A is a not gentle string algebra then it admits at least one non-trivial
nearly Frobenius coproduct. To finish the study of the algebras mentioned above we describe, in
Section 4, the toupie algebras and the conditions ensuring that a toupie algebra admits nearly
Frobenius coproducts. In the last section, based on all the previous results, we give conditions on
quotients of path algebras so that they admit nearly Frobenius structures.

2 Preliminaries

Throughout this article k always denote a field. We denote by A a finite dimensional k-algebra,
and by Proposition 6 of [3], A can be considered as a connected algebra.

Definition 2. A quiver Q =
(

Q0, Q1, s, t
)

is a quadruple consisting of two sets: Q0 (whose
elements are called points, or vertices) and Q1 (whose elements are called arrows), and two maps
s, t : Q1 → Q0 which associate to each arrow α ∈ Q1 its source s(α) ∈ Q0 and its target t(α) ∈ Q0,
respectively.

An arrow α ∈ Q1 of source a = s(α) and target b = t(α) is usually denoted by α : a → b. A
quiver Q =

(

Q0, Q1, s, t
)

is usually denoted simply by Q. Thus, a quiver is nothing but an oriented
graph without any restriction on the number of arrows between two points, the existence of loops
or oriented cycles.
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Definition 3. Let Q =
(

Q0, Q1, s, t
)

be a quiver and a, b ∈ Q0. A path of length l ≥ 1 with
source a and target b (or, more briefly, from a to b) is a sequence

(

a|α1, α2, . . . , αl|b
)

,

where αk ∈ Q1 for all 1 ≤ k ≤ l, s
(

α1

)

= a, t
(

αk

)

= s
(

αk+1

)

for each 1 ≤ k < l, and t
(

αl

)

= b.
Such a path is denoted briefly by α1α2 . . . αl.

Definition 4. Let Q be a quiver. The path algebra kQ is the k-algebra whose underlying k-vector
space has as its basis the set of all paths

(

a|α1, α2, . . . , αl|b
)

of length l ≥ 0 in Q and such that the
product of two basis vectors
(

a|α1, α2, . . . , αl|b
)

and
(

c|β1, β2, . . . , βk|d
)

of kQ is defined by

(

a|α1, α2, . . . , αl|b
)(

c|β1, β2, . . . , βk|d
)

= δbc
(

a|α1, . . . , αl, β1, . . . , βk|d),

where δbc denotes the Kronecker delta. In other words, the product of two paths α1 . . . αl and
β1 . . . βk is equal to zero if t

(

αl

)

6= s
(

β1

)

and is equal to the composed path α1 . . . αlβ1 . . . βk if

t
(

αl

)

= s
(

β1

)

. The product of basis elements is, then, extended to arbitrary elements of kQ by
distributivity.

Let Q be a quiver and kQ be the associated path algebra. Denote by RQ the two-sided ideal
in kQ generated by all paths of length 1, i.e. all arrows. This ideal is known as the arrow ideal.
It is easy to see that, for any m ≥ 1 we have that Rm

Q is a two-sided ideal generated by all paths
of length m. Note that we have the following chain of ideals:

R2
Q ⊇ R3

Q ⊇ R4
Q ⊇ · · ·

Definition 5. A two-sided ideal I in kQ is said to be admissible if there exists m ≥ 2 such that

Rm
Q ⊆ I ⊆ R2

Q.

Also, the algebra kQ
I

is monomial if I is generated by paths.

An algebra kQ
I

is a connected algebra if and only if Q is a connected quiver (See Lema 1.7,
chapter II of [5]), so, from now on, we only consider connected quivers.

Definition 6. An algebra A is a nearly Frobenius algebra if it admits a linear map ∆ : A → A⊗A
such that

A⊗A
m //

∆⊗1

��

A

∆

��
A⊗A⊗A

1⊗m
// A⊗A

, A⊗A
m //

1⊗∆

��

A

∆

��
A⊗A⊗A

m⊗1
// A⊗A

commute.

In [3] was showed that the previous definition agree with the definition given in [2].

Definition 7. The Frobenius space associated to an algebra A is the vector space of all the possible
coproducts ∆ that make it into a nearly Frobenius algebra (E), see [2]. Its dimension over k is
called the Frobenius dimension of A, that is,

FrobdimA = dimk E .

Gabriel’s Theorem states that if A is a basic and connected finite dimensional k-algebra over
a algebraically closed field k, there exist a quiver Q and an ideal I of kQ such that A ∼= kQ

I
. This

motivates us to study the existence of nearly Frobenius structures on quotients of path algebras.
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3 Radical square zero algebras

Definition 8. A radical square zero algebra is a finite dimensional algebra over al field k such
that the square of its Jacobson radical is already zero.

Now, if we consider a radical square zero algebra A associated to Q, we can determine the
general expression of a nearly Frobenius coproduct over a general vertex of Q and, using that the
composition of two arrows is zero, determine the Frobenius dimension of the algebra A.

Remark 9. Let A = kQ
I

be a radical square zero algebra and p ∈ Q0. We can describe all the
possible coproducts over p, depending if p is sink, source, or an intermediate vertex.

First, remember that if ∆ is a nearly Frobenius coproduct then ∆
(

ep
)

=
(

ep ⊗ 1
)

∆
(

ep
)

=

∆
(

ep
)(

1⊗ ep
)

, for p ∈ Q0.

• If p is a source we can distinguish two different situations depending on the outdegree of p.
Let n = gr+(p) be the outdegree of p.
If n = 1 the situation is the following

p
β // q1 · · · ,

then ∆
(

ep
)

= a0ep ⊗ ep + a1β ⊗ ep and ∆(β) = ∆
(

ep
)

(1 ⊗ β) = a0ep ⊗ β + a1β ⊗ β =

(β ⊗ 1)∆
(

eq1
)

. We deduce that a0 = 0 and obtain that

∆
(

ep
)

= a1β ⊗ ep.

If n ≥ 2 we have the following subquiver

q1

p

βn

&&▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲

β1

88rrrrrrrrrrrrrr ...

qn

∆
(

ep
)

= a0ep⊗ep+
∑n

i=1 biβi⊗ep, then ∆
(

βj

)

= ∆
(

ep
)(

1⊗βj

)

= a0ep⊗βj+
∑n

i=1 biβi⊗βj =
(

βj ⊗ 1
)

∆
(

eqj
)

. Therefore a0 = 0 and bi = 0 for i 6= j. Using that n ≥ 2 we conclude that
bi = 0 for all i = 1, . . . , n. Then

∆
(

ep
)

= 0.

• If p is a sink, similarly to the previous case, calling m the indegree of p, we can conclude
that: if m = 1 and α is the arrow ending in p, ∆

(

ep
)

= a1ep ⊗ α.

In the case that m ≥ 2 we have the following situation

p1

αm

&&▲▲
▲▲

▲▲▲
▲▲▲

▲▲▲
▲

... p

pm

α1

88rrrrrrrrrrrrrr
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Reproducing the argument used in the case where p is a source, we conclude that ∆
(

ep
)

= 0.

• The last case is when p is an intermediate vertex: Let m be the indegree and n the outdegree
of p. If m ≥ 2 and n ≥ 2 we have the following representation

p1

α1

&&▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲
q1

... p

β1

88rrrrrrrrrrrrrr

βn

&&▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲
...

pm

αm

88rrrrrrrrrrrrrr
qn

∆
(

ep
)

=
(

ep ⊗ 1
)

∆
(

ep
)

= ∆
(

ep
)(

1⊗ ep
)

= a0ep ⊗ ep +
m
∑

i=1

aiep ⊗ αi +
n
∑

j=1

bjβj ⊗ ep +

m,n
∑

i,j=1

cijβj ⊗ αi.

∆
(

αk

)

=
(

αk ⊗ 1
)

∆
(

ep
)

= a0αk ⊗ ep +
m
∑

i=1

aiαk ⊗ αi = ∆
(

epk

)(

1⊗ αk

)

,

then a0 = 0, and ai = 0 for all i 6= k, for k = 1, . . . ,m. Similarly

∆
(

βk

)

= ∆
(

ep
)(

1⊗ βk

)

=

n
∑

j=1

bjβj ⊗ βk =
(

βk ⊗ 1
)

∆
(

eqk
)

, then bj = 0 for all j 6= k, for

k = 1, . . . , n. Then

∆
(

ep
)

=

m,n
∑

i,j=1

cijβj ⊗ αi.

If one or more arrows are loops, then the result is equal to the previous case.
If m = 1 and n = 1 and it is not an isolated loop, then ∆

(

ep
)

= aep ⊗ α+ bβ ⊗ ep + cβ ⊗ α.

If m = 1 and n = 1 with loop α in ep, then ∆
(

ep
)

= a(ep ⊗ α+ α⊗ ep) + bα⊗ α.
If m = 1 and n ≥ 2 with local representation of the quiver

q1

p1
α // p

β1

88rrrrrrrrrrrrrr

βn

&&▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲
...

qn

∆
(

ep
)

= a0ep ⊗ ep + a1ep ⊗ α+

n
∑

j=1

bjβj ⊗ ep +

n
∑

j=1

cjβj ⊗ α, then ∆(α) = a0α⊗ ep+ a1α⊗

α = ∆
(

ep
)

(1⊗ α), therefore a0 = 0. Similarly,

∆
(

βk

)

= ∆
(

ep
)(

1⊗ βk

)

=

n
∑

j=1

bjβj ⊗ βk = (β ⊗ 1)∆
(

eq1
)

, then bj = 0 for al j 6= k, for k =

1, . . . , n. Finally,

∆
(

ep
)

= a1ep ⊗ α+

n
∑

j=1

cjβj ⊗ α.

5



If m = 1 and n ≥ 2 with a loop α in ep and β1 . . . βn−1 arrows starting in ep, then

∆
(

ep
)

= a1α⊗ α+

n−1
∑

j=1

cjβj ⊗ α.

If m ≥ 2 and n = 1 and the quiver is locally the following

p1

α1

&&▲▲
▲▲▲

▲▲▲
▲▲▲

▲▲▲

... p
β // q1

pm

αm

88rrrrrrrrrrrrrr

As before ∆
(

ep
)

= b1β ⊗ ep +

m
∑

i=1

ciβ ⊗ αi.

Finally if m ≥ 2 and n = 1 with a loop β in ep and α1 . . . αm−1 arrows ending in ep, then

∆
(

ep
)

= b1β ⊗ β +

m−1
∑

i=1

ciβ ⊗ αi.

The previous remark allows us to construct all the nearly Frobenius coproducts that the radical
square zero algebra admits.

Corollary 10. If A = kQ
I

with I 6= 0 is a radical square zero algebra then FrobdimA > 0.

Proof. Since I 6= 0 there is at least one path of length two. Let us call p the intermediate vertex
of that path, m the indegree and n the outdegree of p. Then the situation is similar to the last
case of the previous remark and FrobdimA ≥ m.n ≥ 1.

Finally we determine the Frobenius dimension of radical square zero algebras. For this reason
we introduce the following useful notations for some special subspaces of kQ and kQ⊗ kQ: Vp =
〈{α}s(α)=p, α∈Q1

〉, Wp = 〈{β}t(β)=p, α∈Q1
〉, V̄p = 〈Vp, ep〉, W̄p = 〈Wp, ep〉, where p ∈ Q0, and

Uα = 〈{α⊗ ep − eq ⊗ α}s(α)=p,t(α)=q〉 where α ∈ Q1. From Remark 9 we can obtain the following
result:

Proposition 11. If A = kQ
I

is a radical square zero algebra, then

FrobdimA = dimk

∑
p∈Q0

Vp ⊗ W̄p + V̄p ⊗Wp
∑

p∈Q0,gr
+(p)≥2 Vp ⊗ 〈ep〉+

∑
p∈Q0,gr

−(p)≥2〈ep〉 ⊗Wp +
∑

α∈Q1
Uα

Proof. Suppose that ∆ is a nearly Frobenius coproduct on A. It is clear that ∆(ep) ∈ Vp ⊗ W̄p +
V̄p ⊗Wp + 〈ep ⊗ ep〉.

Claim: if ∆(ep) = aep ⊗ ep + v + w with v ∈ Vp ⊗ W̄p and w ∈ V̄p ⊗Wp, then a = 0.
Let α be an arrow of Q1 such that s(α) = p and t(α) = q. Since ∆(ep) = aep ⊗ ep + v + w,

then ∆(α) = a(ep ⊗ α) + v′ = bα⊗ eq +w′ with v′ ∈ Vp ⊗Wp and w′ ∈ Vq ⊗Wq. It is easy to see
that α⊗ ep 6∈ Vq ⊗Wq + 〈eq ⊗ α〉, hence a = 0.

6



Then ∆(ep) can be generated by vectors in Vp ⊗ W̄p + V̄p ⊗Wp for all p ∈ Q0.
Claim: if γ0 is an arrow of Q1 such that s(γ0) = p and t(γ0) = q, ∆(ep) = v +

∑

cαα ⊗ ep
where v ∈ V̄p ⊗Wp and ∆(eq) = w +

∑

dβeq ⊗ β where w ∈ Vq ⊗ W̄q then cγ0 = dγ0 .
Using that ∆ is a nearly Frobenius structure we have that ∆(γ0) = (γ0 ⊗ 1)∆(eq) = ∆(ep)(1⊗

γ0).

• (γ0 ⊗ 1)∆(eq) =
∑

dβγ0 ⊗ β

• ∆(ep)(1 ⊗ γ0) =
∑

cαα⊗ γ0

On the other hand the set {γ0⊗β}β∈B∪{α⊗γ0}α∈A is linearly independents, then the equations
agree only if cγ0 = dγ0 .

Finally, using Remark 9 when the indegree or outdegree are greater or equal to two, it follows
the thesis statement.

4 String algebras

The class of special biserial algebras was studied by Skowronski and Waschbüsch in [14] where they
characterize the biserial algebras of finite representation type. The definition of these algebras can
be given in terms of conditions on the associated bound quiver (Q, I). A classification of the special
biserial algebras which are minimal representation-infinite has been given by Ringel in [13]. There
is a beautiful description of all finite-dimensional indecomposable modules over special biserial
algebras: they are either string modules or band modules or non-uniserial projective-injective
modules, see [6], [15].

Definition 12. A bound quiver (Q, I) is special biserial if it satisfies the following conditions:

(S1) Each vertex in Q is the source of at most two arrows and the target of at most two arrows.

(S2) For an arrow α in Q there is at most one arrow β and at most one arrow γ such that αβ 6∈ I
and γα 6∈ I.

If the ideal I is generated by paths, the bound quiver (Q, I) is string.
An algebra is called special biserial (or string) if it is isomorphic to kQ/I with (Q, I) a special
biserial bound quiver (or a string bound quiver, respectively).
An algebra is called string quadratic if the ideal I is generated by paths of length two.

Remark 13. Note that every gentle algebra is a string algebra. In [2] all the nearly Frobenius
structures for a gentle algebra A associated to Q are determined, where Q is a finite, connected
and acyclic quiver. The natural question is if we can generalize this result for the family of string
algebras.

The first step is to study the family of string quadratic algebras.

Remark 14. If A is a string quadratic algebra that is not gentle then there is at least one vertex
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in one of the following local situation:

1) 1•

α

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆

❴ ❩ ❯ P ■
❇
✿

•3
γ // •4

❴ ❞ ✐ ♥ ✉
⑤
☎

2•

β

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

2) •3

1•
α //
☎
⑤
✉
♥ ✐ ❞ ❴

✿
❇
■
P ❯ ❩ ❴

2•

γ

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆

β

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

•4

3) 1•

α

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆ •4

◗
▼

●
❆
✾
✸
✴

�
✉
❥ ❴ ❚ ■

❃

3•

γ

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

δ

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆

♠
q

✇
⑥
✆
☛
✎

2•

β

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥
•5

4) 1•

α

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆ •4

◗
▼

●
❆
✾
✸
✴

�
✉
❥ ❴ ❚ ■

❃

3•

γ

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

δ

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆

♠
q

✇
⑥
✆
☛
✎

❃
■
❚ ❴ ❥ ✉

�

2•

β

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥
•5

• In the first case we have that:

∆(e1) = a1e1 ⊗ e1 + a2α⊗ e1
∆(e2) = b1e2 ⊗ e2 + b2β ⊗ e2
∆(e3) = c1e3 ⊗ e3 + c2γ ⊗ e3 + c3e3 ⊗ α+ c4γ ⊗ α+ c5e3 ⊗ β + c6γ ⊗ β
∆(e4) = d1e4 ⊗ e4 + d2e4 ⊗ γ

Let us evaluate on the arrows to obtain conditions about the coefficients above.
For the arrow α,

∆(α) = a1e1 ⊗ α+ a2α⊗ α = c1α⊗ e3 + c3α⊗ α+ c5α⊗ β

so a1 = c1 = c5 = 0 and a2 = c3. For β and γ,

∆(β) = b1e2 ⊗ β + b2β ⊗ β = a2β ⊗ α

and
∆(γ) = d1γ ⊗ e4 + d2γ ⊗ γ = c2γ ⊗ γ;

from the first equation we conclude that a2 = b1 = b2 = 0 and from the second one d1 = 0 and
d2 = c2.

As a consecuence we obtain that

∆(e1) = ∆(e2) = 0
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∆(e3) = aγ ⊗ e3 + bγ ⊗ α+ cγ ⊗ β

∆(e4) = ae4 ⊗ γ.

• Symmetrically, in the second case:

∆(e3) = ∆(e4) = 0

∆(e2) = ae2 ⊗ α+ bβ ⊗ α+ cγ ⊗ α

∆(e1) = aα⊗ e1.

• In the third case the relations are αδ = 0, αγ = 0 and βγ = 0 and

∆(e1) = a1e1 ⊗ e1 + a2α⊗ e1
∆(e2) = b1e2 ⊗ e2 + b2β ⊗ e2 + b3βδ ⊗ e2
∆(e3) = c1e3 ⊗ e3 + c2e3 ⊗ α+ c3e3 ⊗ β + c4γ ⊗ e3 + c5δ ⊗ e3 + c6γ ⊗ β + c7γ ⊗ α+ c8δ ⊗ β + c9δ ⊗ α
∆(e4) = d1e4 ⊗ e4 + d2e4 ⊗ γ
∆(e5) = f1e5 ⊗ e5 + f2e5 ⊗ δ + f3e5 ⊗ βδ

As before, we will evaluate on the arrows. First consider

∆(α) = a1e1 ⊗ α+ a2α⊗ α = c1α⊗ e3 + c2α⊗ α+ c3α⊗ β,

then a1 = c1 = c3 = 0 and a2 = c2. Secondly,

∆(β) = b1e2 ⊗ β + b2β ⊗ β + b3βδ ⊗ β = a2β ⊗ α+ c5βδ ⊗ e3 + c8βδ ⊗ β + c9βδ ⊗ α

therefore a2 = b1 = b2 = c5 = c9 = 0 and b3 = c8. Finally, for the last two arrows we obtain the
following equations:

∆(γ) = d1γ ⊗ e4 + d2γ ⊗ γ = c4γ ⊗ γ

∆(δ) = f1δ ⊗ e5 + f2δ ⊗ δ + f3δ ⊗ βδ = c4γ ⊗ δ + c6γ ⊗ βδ + b3δ ⊗ βδ;

from the first equation we deduce that d1 = 0 and d2 = c4 and from the second one f1 = f2 =
c4 = c6 = 0 and f3 = b3. In conclusion,

∆(e1) = ∆(e4) = 0

∆(e2) = b3βδ ⊗ e2

∆(e3) = c7γ ⊗ α+ b3δ ⊗ β

∆(e5) = b3e5 ⊗ βδ.

• In the last case we have that αδ = 0, βγ = 0, αγ = 0 and βδ = 0. As before,

∆(e1) = a1e1 ⊗ e1 + a2α⊗ e1
∆(e2) = b1e2 ⊗ e2 + b2β ⊗ e2 + b3βδ ⊗ e2
∆(e3) = c1e3 ⊗ e3 + c2e3 ⊗ α+ c3e3 ⊗ β + c4γ ⊗ e3 + c5δ ⊗ e3 + c6γ ⊗ β + c7γ ⊗ α+ c8δ ⊗ β + c9δ ⊗ α
∆(e4) = d1e4 ⊗ e4 + d2e4 ⊗ γ
∆(e5) = f1e5 ⊗ e5 + f2e5 ⊗ δ + f3e5 ⊗ βδ

Evaluating again on the arrows we obtain the following equations:

∆(α) = a1e1 ⊗ α+ a2α⊗ α = c1α⊗ e3 + c2α⊗ α+ c3α⊗ β
∆(β) = b1e2 ⊗ β + b2β ⊗ β = a2β ⊗ α
∆(γ) = d1γ ⊗ e4 + d2γ ⊗ γ = c4γ ⊗ γ + c5δ ⊗ γ
∆(δ) = f1δ ⊗ e5 + f2δ ⊗ δ = d2γ ⊗ δ

9



and analogously to the previous cases, we conclude that

∆(e1) = ∆(e2) = ∆(e4) = ∆(e5) = 0.

∆(e3) = c6γ ⊗ β + c7γ ⊗ α+ c8δ ⊗ β + c9δ ⊗ α.

Theorem 15. If A = kQ
I

is a string quadratic algebra but not a gentle algebra, then it has a
non-trivial nearly Frobenius algebra structure.

Proof. We will construct a non-zero nearly Frobenius coproduct for this type of algebras. Note
that there is at least one vertex p ∈ Q0 in one of the four possible cases of Remark 14. Let us
describe the coproduct in each of them.

Suppose that we are locally in the first case. Analogously to the Remark 14 we can define a
coproduct

∆ : A → A⊗A

such that ∆(eq) = bγ ⊗ α+ cγ ⊗ β, where b, c ∈ k and α, β, γ are as in Remark 14 and ∆(ei) = 0
for any other vertex i ∈ Q0.

To check that ∆ is well defined we need to verifiy that ∆(γ) = ∆(α) = ∆(β) = 0.
For the first arrow γ, ∆(γ) = ∆(q)(1⊗ γ) = (bγ ⊗α+ cγ⊗ β)(1⊗ γ) = bγ⊗αγ + cγ⊗ βγ = 0.
In the case of α and β we have that ∆(α) = (α⊗ 1)(bγ ⊗α+ cγ ⊗ β) = bαγ ⊗α+ cαγ ⊗ β = 0

and ∆(β) = (β ⊗ 1)(bγ ⊗ α+ cγ ⊗ β) = bβγ ⊗ α+ cβγ ⊗ β = 0.
This proves that ∆ is a nearly Frobenius coproduct.
In the second case we can proceed in the same way as before and prove that ∆ : A → A⊗A

defined as ∆(eq) = bβ ⊗ α+ cγ ⊗ α and ∆(ei) = 0 otherwise is a nearly Frobenius coproduct.
In the third local possibility let us define ∆ as follows, ∆(eq) = cγ⊗α, for c ∈ k and ∆(ei) = 0

otherwise. It is straightforward to verifiy that ∆ is well defined and a nearly Frobenius coproduct.
Finally, in the last case we define ∆(eq) = aγ ⊗ β + bγ ⊗α+ cδ⊗ β + dδ⊗α, with a, b, c, d ∈ k

and ∆(ei) = 0 for any other vertex i ∈ Q0.

Now, we study the general case, that is, A is a string algebra.

Theorem 16. Let A be a string algebra, not quadratic. Then, A admits at least one non-trivial
nearly Frobenius coproduct.

Proof. Since A is not gentle there are extra monomial relations. If one of the extra relations is of
lenght 2 we are locally in one of the four cases of Remark 14 and we conclude that A is nearly
Frobenius.

If all the extra relations are of lenght greater that 2 choose one relation named r = α1 · · ·αs.
Locally, we are in the following situation:

•
0

α1 //
s

❧
❢ ❴ ❳ ❘

❑

•
1

•
s−1

αs // •
s

where from every vertex arrows might come in or out in the string scheme.

Claim ∆(ei) = αi+1 · · ·αs ⊗ α1 · · ·αi if 1 ≤ i ≤ s− 1 and ∆(ej) = 0 otherwise is a coproduct
in A:

If 1 ≤ i < j ≤ s− 1,
∆(αi+1 · · ·αj) = ∆(ei)αi+1 · · ·αj = αi+1 · · ·αj∆(ej) = αi+1 · · ·αs ⊗ α1 · · ·αj .
On the other hand,
∆(α1 · · ·αi) = ∆(e0)α1 · · ·αi = α1 · · ·αi∆(ei) = 0 and analogously, ∆(αi+1 · · ·αs) = 0.

10



Suppose there is a path w from a vertex p not involved in the relation to an intermediate vertex
1 ≤ i ≤ s− 1. We can consider two different cases.

If w contains α1 · · ·αi the reasoning is similar to ∆(α1 · · ·αi). If not, there is an arrow βj such
that t(βj) = j is an intermediate vertex and since A is string βjαj+1 = 0. Then we conclude that
∆(w) = 0. The case were there is a path from an intermediate vertex to another vetex not involved
in r is analogous and the result holds.

5 Nearly Frobenius structures on toupie algebras

In this section we first prove that canonical algebras only admit the trivial nearly Frobenius al-
gebra estructure. Then we characterize when a toupie algebra has a non-trivial nearly Frobenius
structure.

Definition 17. Canonical algebras were introduced in [12]. Let k be a field, n =
(

n1, · · · , nt

)

be

a sequence of t ≥ 2 positive integers (weights), and λ =
(

λ3, . . . , λt

)

be a sequence of pairwise

distinct elements of k×. A canonical algebra of type (p,λ) is an algebra Λ(p,λ) =
kQ

I
where Q

is

a
(1)
1

α
(1)
2 // a

(1)
2

// a
(1)
n1−1

α(1)
n1

  ❅
❅❅

❅❅
❅❅

❅❅

0

α
(1)
1

@@✂✂✂✂✂✂✂✂✂

α
(t)
1

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

��

α
(2)
1 // a(2)1

α
(2)
2 // a(2)2

// a(2)n2−1

α(2)
n2 // ω

• // •

==

a
(t)
1

α
(t)
2

// a(t)2
// a(t)nt−1

α(t)
nt

FF☞☞☞☞☞☞☞☞☞☞☞☞☞☞☞

α(i) = α
(i)
1 α

(i)
2 . . . α

(i)
ni , and I is the ideal in the path algebra kQ generated by the following linear

combinations of paths from 0 to ω:

I = 〈α(1) − λiα
(2) − α(i) : i = 3, · · · , t〉.

Theorem 18. Let A be a canonical algebra over a field k, then FrobdimA = 0.

Proof. Since A is a canonical algebra then A =
kQ

I
with Q as in the previous figure, and

I = 〈α(1) − λiα
(2) − α(i) : i = 3, · · · , t〉.

If we have a coproduct ∆ : A → A⊗A the next condition is required

∆(ei) = ∆(ei)(1⊗ ei) = (ei ⊗ 1)∆(ei), for i = 1, . . . , t.

This implies that the coproduct in e0 is

∆(e0) = a0e0 ⊗ e0 +

t
∑

j=1

nj
∑

i=1

ajiα
(j)
1 · · ·α

(j)
i ⊗ e0
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and the coproduct in eω is

∆(eω) = b0eω ⊗ eω +

t
∑

j=1

nj
∑

i=1

bjieω ⊗ α
(j)
i · · ·α(j)

nj
.

The coproduct in α(1) is given by

∆
(

α(1)
)

= ∆(e0)
(

1⊗ α(1)
)

=
(

α(1) ⊗ 1
)

∆(eω).

Then

a0e0 ⊗ α(1) +

t
∑

j=1

nj
∑

i=1

ajiα
(j)
1 · · ·α

(j)
i ⊗ α(1) = b0α

(1) ⊗ eω +

t
∑

j=1

nj
∑

i=1

bjiα
(1) ⊗ α

(j)
i · · ·α(j)

nj

By comparison we deduce that a0 = b0 = 0 and

∆
(

α(1)
)

=

t
∑

i=1

aini
α(i) ⊗ α(1) =

t
∑

j=1

bj1α
(1) ⊗ α(j).

Finally, if we replace α(i) by α(1) − λiα
(2) for i ≥ 3 we get that

∆(e0) = aα(1) ⊗ e0, ∆(eω) = aeω ⊗ α(1).

As before
∆
(

α(2)
)

= ∆(e0)
(

1⊗ α(2)
)

=
(

α(2) ⊗ 1
)

∆(eω).

Then, ∆
(

α(2)
)

= aα(1) ⊗ α(2) = aα(2) ⊗ α(1). Therefore ∆(e0) = ∆(eω) = 0. This implies that
∆ ≡ 0.

Definition 19. A quiver Q is called toupie if it has a unique source 0 and a unique sink ω, and,
for any other vertex x there is exactly one arrow having x as source and exactly one arrow having
x as target:

0

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

��❄
❄❄

❄❄
❄❄

❄

xxuu

•

��

•

��

•

��
...

��

...

��

...

��
•

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖ •

  ❅
❅❅

❅❅
❅❅

❅ •

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

ω

We say that A is a toupie algebra if A =
kQ

I
with Q a toupie quiver, and I any admissible

ideal.

Proposition 20. If Q is a commutative diamond, then A =
kQ

I
has FrobdimA = 1. Moreover,

the only nearly Frobenius structure over A is the linear structure in each branch.
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Proof. The quiver Q associated to A is of the form:

0
β1

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ α1

��❄
❄❄

❄❄
❄❄

❄

•

β2 ��

•

α2��
...

��

...

��
•

βm   ❅
❅❅

❅❅
❅❅

❅ •

αn
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

ω

and I = 〈α1 · · ·αn − β1 · · ·βm〉. This means that α1 · · ·αn = β1 · · ·βm in A.
If ∆ : A → A⊗A is a nearly Frobenius coproduct then

∆(e0) = (e0 ⊗ 1)∆(e0) = ∆(e0)(1 ⊗ e0) = a0e0 ⊗ e0 +

n
∑

i=1

aiα1 . . . αi ⊗ e0 +

m
∑

j=1

bjβ1 . . . βj ⊗ e0

and

∆(eω) = (eω ⊗ 1)∆(eω) = ∆(eω)(1 ⊗ eω) = c0eω ⊗ eω +

n
∑

i=1

cieω ⊗ αi . . . αn

+
m
∑

j=1

djeω ⊗ βj . . . βm.

If we use that ∆(α1 . . . αn) = ∆(e0)(1⊗α1 . . . αn) = (α1 . . . αn⊗1)∆(eω), and α1 · · ·αn = β1 · · ·βm

we deduce that
∆(e0) = aα1 . . . αn ⊗ e0, and ∆(eω) = aeω ⊗ α1 . . . αn

where a = an + bm = c1 + d1. As a consequence of these equalities we have that

∆(ei) = aαi . . . αn ⊗ α1 . . . αi−1, for i = 1, . . . n− 1

and
∆(en+i) = aβi . . . βm ⊗ β1 . . . βi−1, for i = 1, . . . ,m− 1.

The next corollary is a generalization of the previous proposition and is proved in an analogous
way. We call the algebra involved a generalized commutative diamond.

Corollary 21. If A =
kQ

I
with Q a quiver with t branches (t ≥ 2) and I = 〈α(i)−α(1) : i = 2, · · · t〉.

Then A has FrobdimA = 1. Moreover, the only nearly Frobenius structure over A is the linear
structure in each branch.

Theorem 22. Let A be a toupie algebra over a field k. If m, the number of monomial relations,
is zero and A is not the linear quiver An, then FrobdimA = 0, except from the case of the
(generalized) commutative diamond, in which FrobdimA = 1.
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Proof. Let us first consider an order in the branches of the toupie algebra. Suppose that there are
t branches. We can modify the non-monomial relations to have the first D branches to be linearly
independent {α(1), · · ·α(D)} and for i = D+1, · · · , t, α(i) =

∑D
j=1 λijα

(j). Let us call nj the length

of α(j) Now, as in Theorem 18,

∆(e0) = a0e0 ⊗ e0 +
t

∑

j=1

nj
∑

i=1

ajiα
(j)
1 · · ·α

(j)
i ⊗ e0

and the coproduct in eω is

∆(eω) = b0eω ⊗ eω +

t
∑

j=1

nj
∑

i=1

bjieω ⊗ α
(j)
i · · ·α(j)

nj
.

The coproduct in α(1) is given by

∆
(

α(1)
)

= ∆(e0)
(

1⊗ α(1)
)

=
(

α(1) ⊗ 1
)

∆(eω).

Then

a0e0 ⊗ α(1) +

t
∑

j=1

nj
∑

i=1

ajiα
(j)
1 · · ·α

(j)
i ⊗ α(1) = b0α

(1) ⊗ eω +

t
∑

j=1

nj
∑

i=1

bjiα
(1) ⊗ α

(j)
i · · ·α(j)

nj

By comparison we deduce that

∆
(

α(1)
)

=

t
∑

i=1

aini
α(i) ⊗ α(1) =

t
∑

j=1

bj1α
(1) ⊗ α(j).

Finally, if we replace α(i) by
∑D

j=1 λijα
(j) for i > D we obtain that

∆(e0) = aα(1) ⊗ e0, ∆(eω) = aeω ⊗ α(1).

In the case that the toupie algebra is the generalized diamond see Corollary 21. If not, it has at
least two linearly independent branches α(1) and α(2),

∆
(

α(2)
)

= ∆(e0)
(

1⊗ α(2)
)

=
(

α(2) ⊗ 1
)

∆(eω).

Then, ∆
(

α(2)
)

= aα(1) ⊗ α(2) = aα(2) ⊗ α(1). Therefore ∆(e0) = ∆(eω) = 0. This implies that

∆
(

α(i)
)

= 0 and ∆ ≡ 0.

Next we will consider the case of toupie algebras with monomial relations.

Proposition 23. Consider A = An

I
with I 6= 0 a monomial ideal. Then FrobdimA ≥ 1.

Proof. Suppose that A has a relation of length r + 1 of the form:

•
1

α1 // •
2

α2 // •
3

•
m−1

// •
m

αm // •
m+1

•
m+r

αm+r// •
m+r+1

•
m+r+n−1

αm+r+n−1// •
m+r+n

Let us now define a coproduct in A:
∆(em+i) = αm+i . . . αm+r ⊗ αm . . . αm+i−1 if i = 1, . . . r and ∆(ep) = 0 otherwise.

If p ≤ m and there exists a non-null path w from p to m + i with 1 ≤ i ≤ r then, ∆(w) =
∆(ep)w = 0 by definition and on the other hand ∆(w) = w∆(em+i) = 0 since αm . . . αm+i−1 must
be included in w.

14



If p ≥ m+ r + 1 the argument is analogous.
Finally, if 1 ≤ p < q ≤ r, the only path from m + p to m + q is αm+p . . . αm+q−1 and,

∆(αm+p . . . αm+q−1) = ∆(em+p)αm+p . . . αm+q−1 = αm+p . . . αm+q−1∆(em+q) so we conclude that
∆ is a coproduct.

The next theorem describes toupie algebras with nearly Frobenius structures.

Theorem 24. Let A be a toupie algebra over a field k and m the number of branches with monomial
relations, then

(1) if m = 0

(a) and A is the linear quiver An or the (generalized) commutative diamond we have that
FrobdimA = 1,

(b) in other case FrobdimA = 0,

(2) if m > 0 then FrobdimA ≥ 1.

Proof. (1) (a) This result is a consequence of Theorem 1 of [2] and the Corollary 21.

(b) It is the Theorem 22.

(2) If there is only one branch and has monomial relations is the case of Proposition 23. If not,
using Theorem 4 of [2], the coproduct over the branches is zero except for the monomial
branches, moreover, the coproduct on the first and the last arrow of the monomial branches
is zero. Then, combining this result with Proposition 23 over any monomial branch we have
that

FrobdimA ≥ 1.

6 Final Comment

After computing the nearly Frobenius structures in some representative classes of algebras, we ob-
serve that some local situations guarantee the existence of non-trivial nearly Frobenius structures.
We summarized them in the following result.

Theorem 25. Let A = kQ
I

be a finite dimensional algebra. If Q has a local situation in a vertex
v ∈ Q0 as follows

1) •

α

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃

❪ ❨ ❚ ▼ ❋
❂
✻

•
v

γ // •

❛ ❡ ❥ q ①
✁
✟

•

β

@@����������������

2) •

•
α //
✟
✁
①
q ❥ ❡ ❛

✻
❂
❋
▼ ❚ ❨ ❪

•
v

γ

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃

β

@@�����������������

•
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3) •

α

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
•

❖
❏
❉
❁
✻
✵
✱

✂
✇

❴ ●
❁

•
v

γ

@@�����������������

δ

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃

♣
t
③
✂
✟
✍
✒

•

β

@@����������������
•

4) •

α

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
•

❖
❏
❉
❁
✻
✵
✱

✂
✇

❴ ●
❁

•
v

γ

@@�����������������

δ

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃

♣
t
③
✂
✟
✍
✒

❁
●

❴ ✇
✂

•

β

@@����������������
•

5) •
α

//
✂
✇

❴ ●
❁

•
v β

// • ,

then A has a non-trivial structure of nearly Frobenius algebra.

Proof. The coproduct in the first four cases is analogous to the ones in Theorem 15. For the last
case the coproduct is the following

∆(x) =

{

β ⊗ α if x = ev
0 otherwise
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[9] Ralph L. Cohen and Véronique Godin, A polarized view of string topology, Topology, geometry
and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ.
Press, Cambridge, 2004, pp. 127-154.
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