english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47555 Cómo citar
Título: Constructing nearly Frobenius algebras.
Autor: Artenstein, Dalia
González, Ana
Lanzilotta, Marcelo
Tipo: Preprint
Palabras clave: Nearly Frobenius, Quivers, Gentle algebra, Coproduct, Bimodule morphisms
Fecha de publicación: 2013
Resumen: In the first part we study nearly Frobenius algebras. The concept of nearly Frobenius algebras is a generalization of the concept of Frobenius algebras. Nearly Frobenius algebras do not have traces, nor they are self-dual. We prove that the known constructions: direct sums, tensor, quotient of nearly Frobenius algebras admit natural nearly Frobenius structures. In the second part we study algebras associated to some families of quivers and the nearly Frobenius structures that they admit. As a main theorem, we prove that an indecomposable algebra associated to a bound quiver (Q,I) with no monomial relations admits a non trivial nearly Frobenius structure if and only if the quiver is $\overrightarrow{\mb{A}_n}$ and I=0. We also present an algorithm that determines the number of independent nearly Frobenius structures for Gentle algebras without oriented cycles.
Descripción: También publicado en Algebras and Representation Theory, vol. 18, no. 2, apr. 2015, pp. 339-367. DOI : 10.1007/s10468-014-9497-4.
Editorial: arXiv
EN: Mathematics. Rings and Algebras (math.RA), arXiv:1306.3964v1, jun. 2013, pp. 1-33.
Citación: Artenstein, D., González, A. y Lanzilotta, M. Constructing nearly Frobenius algebras. [Preprint]. Publicado en: Mathematics. Rings and Algebras (math.RA), 2013, pp. 1-33. arXiv:1306.3964v1. DOI: 10.48550/arXiv.1306.3964.
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
AGL13.pdfPreprint517,02 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons