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Abstract

In the first part we study nearly Frobenius algebras. The concept of nearly Frobe-
nius algebras is a generalization of the concept of Frobenius algebras. Nearly Frobenius
algebras do not have traces, nor they are self-dual. We prove that the known con-
structions: direct sums, tensor, quotient of nearly Frobenius algebras admit natural
nearly Frobenius structures.
In the second part we study algebras associated to some families of quivers and the
nearly Frobenius structures that they admit. As a main theorem, we prove that an
indecomposable algebra associated to a bound quiver (Q, I) with no monomial rela-

tions admits a non trivial nearly Frobenius structure if and only if the quiver is
−→
An

and I = 0. We also present an algorithm that determines the number of independent
nearly Frobenius structures for Gentle algebras without oriented cycles.

Introduction

A Frobenius algebra over a field k is a (non-necessarily commutative) associative al-
gebra A, together with a non-degenerate trace ε : A → k. In other words we have that
〈a, b〉 = ε(ab) is a non-degenerate bilinear form. They have been studied since the 1930’s,
specially in representation theory, for their very nice duality properties. In recent times
the surprising connection found to topological quantum field theories has made them sub-
ject of renewed interest.
An important example for us, of Frobenius algebra, is the Poincaré algebra associated to
every compact closed manifold M, A = H∗(M). In this case we can define the trace as
ε(w) =

∫
Mw, for w ∈ H∗(M). It is a classical result that Poincaré duality is equivalent

to the assertion that this trace is non-degenerate. In topology this fact manifests in many
ways, for instance in the existence of an intersection product in homology that becomes
a coproduct in cohomology. The coproduct ∆ is the composition of the Poincaré duality

isomorphism D : H∗(M)
∼= // H∗(M) with the dual map for the ordinary cup product

µ : H∗(M)⊗H∗(M)→ H∗(M). Note that if we consider the case of a non-compact mani-
fold M, its cohomology algebra is no longer a Frobenius algebra, but we may ask ourselves
what structure remains. In this way we arrive at the following definition.
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A nearly Frobenius algebra A is an algebra together with a coassociative coproduct ∆ :
A → A ⊗ A such that ∆ is an A-bimodule morphism. To the best of our knowledge this
notion was first isolated by R. Cohen and V. Godin, see [CG04]. A good reference for this
topic is the book [GLSU13].

The other objects studied in this work are the quivers and the associated algebras.
It is a known result that to each finite dimensional basic algebra over an algebraically
closed field k corresponds a graphical structure, called a quiver, and that, conversely,
to each quiver corresponds an associative k-algebra, which has an identity and is finite
dimensional under some conditions. Similarly, using the quiver associated to an algebra
A, it will be possible to visualice a (finitely generated) A-module as a family of (finite
dimensional) k-vector spaces connected by linear maps (see [ASS06]). The idea of such
a graphical representation seems to go back to the late forties but it became widespread
in the early seventies, mainly due to Gabriel [Gab72], [Gab73]. In an explicit form, the
notions of quiver and linear representation of quiver were introduced by Gabriel in [Gab72].
It was the starting point of the modern representation theory of associative algebras.

In section 1 we present known concepts required in the rest of the work. We dedicate
section 2 to develop the concept of nearly Frobenius algebras. Studying nearly Frobenius
structures over an algebra we prove that this family defines a k-vector space. This result
permit us to define the Frobenius dimension of an algebra as the dimension of this vector
space. Moreover, in this section we determine the Frobenius dimension of particular
algebras as the matrix algebra, the group algebra and the truncated polynomial algebra.
All these cases verify that Frobdim

(
A
)
≤ dimk

(
A
)
. In section 3 we show that known

constructions, as opposite algebra, direct sum, tensor product and quotient of nearly
Frobenius algebras admit natural nearly Frobenius structures. The last section is divided
in three parts. In the first part we prove that an indecomposable algebra associated to
a bound quiver

(
Q, I

)
with no monomial relations admits a non trivial nearly Frobenius

structure if and only if the quiver is
−→
An and I = 0. Moreover, in this case the Frobenius

dimension is one. In the second part we deal with gentle algebras. If the quiver associated
to a gentle algebra A has no oriented cycles we show that the Frobenius dimension of A is
finite and we determine this number by an algorithm. In the last part we exhibit a family
of algebras A =

{
AC
}
C

given by bound quivers for which Frobdim
(
AC
)
> dimk

(
AC
)
.

1 Preliminaries

Definition 1.1. A quiver Q =
(
Q0, Q1, s, t

)
is a quadruple consisting of two sets: Q0

(whose elements are called points, or vertices) and Q1 (whose elements are called arrows),
and two maps s, t : Q1 → Q0 which associate to each arrow α ∈ Q1 its source s(α) ∈ Q0
and its target t(α) ∈ Q0, respectively.

An arrow α ∈ Q1 of source a = s(α) and target b = t(α) is usually denoted by
α : a→ b. A quiver Q =

(
Q0, Q1, s, t

)
is usually denoted briefly by Q = (Q0, Q1) or even

simply by Q. Thus, a quiver is nothing but an oriented graph without any restriction on
the number of arrows between two points, to the existence of loops or oriented cycles.
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Definition 1.2. Let Q =
(
Q0, Q1, s, t

)
be a quiver and a, b ∈ Q0. A path of length l ≥ 1

with source a and target b (or, more briefly, from a to b) is a sequence(
a|α1, α2, . . . , αl|b

)
,

where αk ∈ Q1 for all 1 ≤ k ≤ l, s
(
α1
)
= a, t

(
αk
)
= s

(
αk+1

)
for each 1 ≤ k < l, and

t
(
αl
)
= b. Such a path is denoted briefly by α1α2 . . . αl.

Definition 1.3. LetQ be a quiver. The path algebra kQ is the k-algebra whose underlying
k-vector space has as its basis the set of all paths

(
a|α1, α2, . . . , αl|b

)
of length l ≥ 0 in Q

and such that the product of two basis vectors
(
a|α1, α2, . . . , αl|b

)
and

(
c|β1, β2, . . . , βk|d

)
of kQ is defined by(

a|α1, α2, . . . , αl|b
)(
c|β1, β2, . . . , βk|d

)
= δbc

(
a|α1, . . . , αl, β1, . . . , βk|d),

where δbc denotes the Kronecker delta. In other words, the product of two paths α1 . . . αl
and β1 . . . βk is equal to zero if t

(
αl
)
6= s

(
β1
)

and is equal to the composed path
α1 . . . αlβ1 . . . βk if t

(
αl
)
= s

(
β1
)
. The product of basis elements is then extended to

arbitrary elements of kQ by distributivity.

Assume, that Q is a quiver and k is a field. Let kQ be the associated path algebra.
Denote by RQ the two-sided ideal in kQ generated by all paths of length 1, i.e. all arrows.
This ideal is known as the arrow ideal.
It is easy to see, that for any m ≥ 1 we have that RmQ is a two-sided ideal generated by all
paths of length m. Note, that we have the following chain of ideals:

R2Q ⊇ R3Q ⊇ R4Q ⊇ · · ·

Definition 1.4. A two-sided ideal I in kQ is said to be admissible if there exists m ≥ 2
such that

RmQ ⊆ I ⊆ R2Q.

Definition 1.5. Let k be a field, and Q a quiver. We call a finite dimensional k-algebra

A gentle if it is Morita equivalent to an algebra
kQ
I

where Q is a quiver and I ⊂ kQ an

admissible ideal subject to the following conditions:

(1) • at each vertex of Q at most 2 arrows start,

• at each vertex of Q at most 2 arrows finish;

(2) • for each arrow β ∈ Q1 there is at most one arrow γ ∈ Q1 with βγ a path not
contained in I,

• for each arrow β ∈ Q1 there is at most one arrow α ∈ Q1 with αβ a path not
contained in I;

(3) the ideal I is generated by paths of length 2;

(4) • for each arrow β ∈ Q1 there is at most one arrow γ ′ ∈ Q1 with βγ ′ a path
contained in I,

• for each arrow β ∈ Q1 there is at most one arrow α ′ ∈ Q1 with α ′β a path
contained in I.
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2 Nearly Frobenius algebras

The concept of nearly Frobenius algebras is a generalization of the concept of Frobenius
algebras. Nearly Frobenius algebras do not have traces, nor they are self-dual.

Definition 2.1. A k-algebra A is a nearly-Frobenius algebra if there exists a linear map
∆ : A→ A⊗A such that

1. ∆ is coassociative

A
∆ //

∆

��

A⊗A

∆⊗1
��

A⊗A
1⊗∆

// A⊗A⊗A

2. ∆ is a morphism of A-bimodule

A⊗A m //

∆⊗1
��

A

∆

��
A⊗A⊗A

1⊗m
// A⊗A

A⊗A

1⊗∆
��

m // A

∆
��

A⊗A⊗A
m⊗1

// A⊗A

Remark 2.2. Any nearly Frobenius coproduct in a k-algebra is determined by the evalua-
tion in the unit of the algebra structure, that is if A is a k-algebra and ∆ : A→ A⊗A is
a k-linear map such that

∆(x) =
(
x⊗ 1

)
∆(1) = ∆(1)

(
1⊗ x

)
for all x ∈ A.

Theorem 2.3. Let A be a fixed k-algebra and E the set of nearly Frobenius coproducts of
A making it into a nearly Frobenius algebra. Then E is a k-vector space.

Proof. To prove that E is a k-vector space we prove that E is a subspace of V =
{
∆ :

A→ A⊗A linear transformation
}

, which is a k-vector space. We consider the linear map
∆ = α∆1 + β∆2 : A → A ⊗ A, with α,β ∈ k where ∆1, ∆2 ∈ E. First we prove that this
map is an A-bimodule morphism, i.e.

(
m⊗ 1

)(
1⊗ ∆

)
= ∆ ◦m =

(
1⊗m

)(
∆⊗ 1

)
(
m⊗ 1

)(
1⊗ ∆

)
=

(
m⊗ 1

)(
1⊗ (α∆1 + β∆2)

)
= α

(
m⊗ 1

)(
1⊗ ∆1

)
+ β

(
m⊗ 1

)(
1⊗ ∆2

)
= α∆1m+ β∆2m = ∆m.

To prove the coassociativity of ∆:
(
∆⊗ 1

)
∆ =

(
1⊗∆

)
∆, we fix a basis, as k-vector space,

of A, B = {ei}i∈I and we note, by the Remark 4.6, that

∆
(
ek
)
=
(
ek ⊗ 1

)
∆(1) = ∆(1)

(
1⊗ ek

)
. (1)
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If we represent eiej =
∑
k a

k
ijek, ∆1(1) =

∑
i,j bijei ⊗ ej and ∆2(1) =

∑
i,j cijei ⊗ ej, then

the equation (1) by ∆1 and ∆2 is expressed as:∑
i,j,l

bija
l
kiel ⊗ ej =

∑
i,j,l

blia
j
ikel ⊗ ej,

∑
i,j,l

cija
l
kiel ⊗ ej =

∑
i,j,l

clia
j
ikel ⊗ ej,

therefore ∑
i

bija
l
ki =

∑
i

blia
j
ik, (2)

∑
i

cija
l
ki =

∑
i

clia
j
ik. (3)

Using the definition of ∆, the coassociativity condition is equivalent to((
∆2 ⊗ 1

)
∆1 −

(
1⊗ ∆1

)
∆2
)
+
((
∆1 ⊗ 1

)
∆2 −

(
1⊗ ∆2

)
∆1
)
= 0. (4)

We will prove that
(
∆1⊗ 1

)
∆2−

(
1⊗∆2

)
∆1 = 0 =

(
∆2⊗ 1

)
∆1−

(
1⊗∆1

)
∆2. To prove

that the map
(
∆1 ⊗ 1

)
∆2 −

(
1⊗∆2

)
∆1 is zero is enough to observe that the evaluation in

1 is zero:(
∆1 ⊗ 1

)
∆2(x) −

(
1⊗ ∆2

)
∆1(x) =

(
∆1 ⊗ 1

)
∆2(1)

(
1⊗ x

)
−
(
1⊗ ∆2

)
∆1(1)

(
1⊗ x

)
=

((
∆1 ⊗ 1

)
∆2(1) −

(
1⊗ ∆2

)
∆1(1)

)(
1⊗ x

)
= 0.

And the last equation holds from

(
∆1 ⊗ 1

)
∆2(1) =

∑
i,j

cij∆1(ei)⊗ ej =
∑
j,l,m

(∑
i,k

cijbkla
m
ik

)
em ⊗ el ⊗ ej

and

(
1⊗ ∆2

)
∆1(1) =

∑
i,j

bijei ⊗ ∆2(ej) =
∑
i,l,m

∑
j,k

bijckla
m
jk

 ei ⊗ em ⊗ el
=
∑
j,l,m

(∑
i,k

bmkcija
l
ki

)
em ⊗ el ⊗ ej

=
∑
j,l,m

(∑
i

cij

(∑
k

bmka
l
ki

))
em ⊗ el ⊗ ej

=
∑
j,l,m

(∑
i

cij

(∑
k

bkla
m
ik

))
em ⊗ el ⊗ ej using (2), and (3).
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Definition 2.4. The Frobenius space associated to an algebra A is the vector space of all
the possible coproducts ∆ that make it into a nearly Frobenius algebra (E from Theorem
3.6). Its dimension over k is called the Frobenius dimension of A, that is,

Frobdim
(
A
)
= dimk

(
E
)
.

Example 2.1. Every Frobenius algebra is also a nearly Frobenius algebra.

It is known that the truncated polynomial algebra is a Frobenius algebra, in the next
example we prove that this algebra admits nearly Frobenius structures that do not come
from Frobenius structures.

Example 2.2. Let A be the truncated polynomial algebra in one variable k[x]/xn+1. We
will determine all nearly Frobenius structures on A, even more we will determine a basis
of the Frobenius space E of A.

We consider the canonical basis B =
{
1, x, . . . , xn

}
of A. Then the general expression

of a k-linear map ∆ : A→ A⊗A in the value 1 is

∆(1) =

n∑
i,j=1

aijx
i ⊗ xj.

This map is an A-bimodule morphism if

∆
(
xk
)
=
(
xk ⊗ 1

)
∆(1) = ∆(1)

(
1⊗ xk

)
, ∀ k ∈ {0, . . . , n}. (5)

The equation (5) when k = 1 is

n∑
i,j=1

aijx
i+1 ⊗ xj =

n∑
ij,=1

aijx
i ⊗ xj+1.

This happens if a0j−1 = 0, j = 1, . . . , n; ai−10 = 0, i = 1, . . . , n and aij−1 = ai−1j. Then

∆(1) =

n∑
k=0

akn

 ∑
i+j=n+k

xi ⊗ xj


We denote ak = akn. Applying the Remark 4.6 we need to prove that ∆(xk) =
(
xk ⊗

1
)
∆(1) = ∆(1)

(
1⊗ xk

)
to conclude that ∆ is an A-bimodule morphism.

∆(1)
(
1⊗ xl

)
=

n∑
k=0

ak

 ∑
i+j=n+k

xi ⊗ xj
(1⊗ xl) = n∑

k=0

ak

 ∑
i+j=n+k

xi ⊗ xj+l


=

n∑
k=0

ak

( ∑
i+m=n+k+l

xi ⊗ xm
)

=

n∑
k=0

ak

( ∑
r+m=n+k

xr+l ⊗ xm
)

=
(
xl ⊗ 1

) n∑
k=0

ak

( ∑
r+m=n+k

xr ⊗ xm
)

=
(
xl ⊗ 1

)
∆(1).
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Finally, we need to check that this map is coassociative: Let xl ∈ A with l ≥ 0.

(
∆⊗ 1

)(
∆
(
xl
))

=
(
∆⊗ 1

) n∑
k=0

ak

 ∑
i+j=n+k+l

xi ⊗ xj
 =

n∑
k=0

ak

 ∑
i+j=n+k+l

∆
(
xi
)
⊗ xj


=

n∑
k,m=0

akam

 ∑
i+j=n+k+l

∑
r+s=n+m+i

xr ⊗ xs ⊗ xj


=

n∑
k,m=0

akam

 ∑
r+s+j=2n+m+k+l

xr ⊗ xs ⊗ xj


(
1⊗ ∆

)(
∆
(
xl
))

=
(
1⊗ ∆)

 n∑
k=0

ak

 ∑
i+j=n+k+l

xi ⊗ xj
 =

n∑
k=0

ak

 ∑
i+j=n+k+l

xi ⊗ ∆
(
xj
)

=

n∑
k,m=0

akam

 ∑
i+j=n+k+l

∑
r+s=n+m+j

xi ⊗ xr ⊗ xs


=

n∑
k,m=0

akam

 ∑
r+s+j=2n+m+k+l

xr ⊗ xs ⊗ xj
.

Then the pair
(
A,∆

)
is a nearly Frobenius algebra. In particular we have that the coproduct

∆ is a linear combination of the coproducts ∆k defined by

∆k
(
xl
)
=

∑
i+j=n+k+l

xi ⊗ xj, for k ∈ {0, . . . , n}

that is ∆ =

n∑
k=0

ak∆k where ak ∈ k for all k ∈ {1, . . . , n}. It is clear that the set of

coproducts ∆k is a linearly independent set. Then

C =
{
∆k : A→ A⊗A, k ∈ {0, 1, . . . , n}

}
is a basis of E, and Frobdim(A) = n+ 1(= dimk(A)).

Note that ∆0 is the Frobenius coproduct of A where the trace map ε : A → k is given
by ε

(
xi
)
= δi,n and it is the only coproduct that admits a completion to Frobenius algebra

structure. This is because if we have a counit map ε : A → k then it satisfies the counit
axiom: m(ε⊗ 1)

(
∆k
(
xi
))

= xi, ∀i = 0, 1, . . . , n. But

m(ε⊗ 1)
(
∆k
(
xi
))

=
∑

j+l=n+k+i

ε
(
xj
)
xl

with l > i so m(ε⊗ 1)
(
∆k
(
xi
))
6= xi for k ∈ {1, . . . , n}.

Example 2.3. Let A be the algebra C
[[
x, x−1

]]
of formal Laurent series. Consider the

coproducts given by:

∆j
(
xi
)
=
∑

k+l=i+j

xk ⊗ xl.
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These coproducts define nearly Frobenius structures that do not come from a Frobenius
structure and Frobdim(A) =∞.

Example 2.4. Let be A the matrix algebra Mn×n(k). We consider the canonical basis of
A, B =

{
Eij : i, j = 1, . . . , n

}
.

As in the example 2.2 we can prove that Mn×n(k) admits n×n independent coproducts,
these are ∆kl

(
Eij
)
= Eik ⊗ Elj, and a general coproduct in A is

∆
(
Eij
)
=

n∑
k,l=1

akl∆kl
(
Eij
)
.

Then C =
{
∆kl : k, l ∈ {1, . . . , n}

}
is a basis of E and Frobdim(A) = n2.

The coproduct in the identity matrix is

∆(I) =

n∑
i=1

∆
(
Eii
)
=

n∑
i=1

n∑
k,l=1

aklEik ⊗ Eli.

In the particular case that akl = 0 if k 6= l and akk = 1, for all k ∈ {1, . . . , n} we recover
the Frobenius coproduct

∆(I) =

n∑
i,k=1

Eik ⊗ Eki,

where the trace map ε :Mn×n(k)→ k is ε(A) = tr(A).

Example 2.5. Let G be a cyclic finite group. The group algebra kG is a nearly Frobenius
algebra. A basis of kG is

{
gi : i = 1, . . . , n

}
where |G| = n.

Using the bimodule condition of the coproduct we can prove that a basis of the Frobenius
space is

C =
{
∆k : kG→ kG⊗ kG : k ∈ 2, . . . , n

}
where ∆k(1) =

k−1∑
i=1

gi ⊗ gk−i +
n∑
i=k

gi ⊗ gn+k−i. Then we have that

Frobdim(A) = n− 1 < dim(A) = n.

The general expression of any nearly Frobenius coproduct is

∆(1) =

n∑
k=2

ak

(
k−1∑
i=1

gi ⊗ gk−i +
n∑
i=k

gi ⊗ gn+k−i
)

In the particular case that ai = 0, for i ∈ {2, . . . , n− 1} and an = 1 we have

∆(1) =

n∑
k=1

gk ⊗ gn−k

the Frobenius coproduct of the group algebra A where the counit is ε
(
gi
)
= δni.
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To complete the construction of the category of nearly Frobenius algebras we need to
define the morphisms of them.

Definition 2.5. Let
(
A,∆A

)
and

(
B,∆B

)
be nearly Frobenius algebras. We say that

f : A → B is a morphism of nearly Frobenius algebras if it is a morphism of algebras and
the next diagram commutes

A
∆A //

f
��

A⊗A

f⊗f
��

B
∆B

// B⊗ B

.

3 Constructing nearly Frobenius structures

In this section we show that known constructions, as opposite algebra, direct sum,
tensor product and quotient of nearly Frobenius algebras admit natural nearly Frobenius
structures. A basic but important remark in this section is the following. If A and B are
isomorphic k-algebras, such that B is a nearly Frobenius algebra, we can provide to A
with a nearly Frobenius structure, where the coproduct is defined as

∆A(a) =
(
ψ⊗ψ

)
∆B
(
ϕ(a)

)
,

with ϕ : A → B and ψ : B → A morphisms of k-algebras such that ψ ◦ ϕ = IdA and
ϕ ◦ψ = IdB.

Theorem 3.1. 1. An algebra A is nearly Frobenius if and only if Aop is a nearly
Frobenius algebra.

2. Let A1, . . . , An be nearly Frobenius k-algebras then A = A1 ⊕ · · · ⊕ An is a nearly
Frobenius k-algebra.

3. If A and B are nearly Frobenius k-algebras, then A⊗k B also is.

Proof. 1. We define the coproduct ∆op : Aop → Aop ⊗ Aop as τ ◦ ∆, where ∆ is the
coproduct in A and τ is the twist, that is τ(a ⊗ b) = b ⊗ a. It is clear that ∆op is
coassociative because ∆ is coassociative. We need to check that ∆op is morphism of
Aop-bimodule.

∆op(a∗b) = ∆op(ba) = τ
(
∆(ba)

)
=
∑

a2⊗ba1 =
∑

a2⊗a1∗b =
(
1⊗∗

)(
∆op(a)⊗b

)
∆op(a∗b) = ∆op(ba) = τ

(
∆(ba)

)
=
∑

b2a⊗b1 =
∑

a∗b2⊗b1 =
(
∗⊗1

)(
a⊗∆op(b)

)
2. Let A1, . . . , An be nearly Frobenius algebras with ∆1 . . . , ∆n are the associated co-

products. We consider the canonical injections qi : Ai → n⊕
i=1

Ai. By the universal
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property of the direct sum in Vectk, there exists a unique morphism ∆ in Vectk such
that the diagram

Aj
qj //

∆j

��

n⊕
i=1

Ai

∆

��

Aj ⊗Aj qj⊗qj
//
( n⊕
i=1

Ai
)
⊗
( n⊕
i=1

Ai
)

commutes.

The coassociativity is a consequence of the commutativity of the cube

A⊗A⊗A A⊗A∆⊗1oo

Ai ⊗Ai ⊗Ai

qi⊗qi⊗qi
77

Ai ⊗Ai
∆i⊗1oo

qi⊗qi
99

A⊗A

1⊗∆

OO

A
∆oo

∆

OO

Ai ⊗Ai

1⊗∆i

OO

qi⊗qi

77

Ai

∆i

OO

∆i

oo

qi

99

To prove the Frobenius identities, first we note that the diagram

A
pi //

∆
��

Ai

∆i

��
A⊗A

pi⊗pi
// Ai ⊗Ai

commutes, where pj :
n⊕
i=1

Ai → Aj is the canonical projection. This implies that the
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next cube commutes.

A⊗A m //

pi⊗pi

ww

∆⊗1
��

A

∆

��

pi
yy

Ai ⊗Ai
mi //

∆i⊗1

��

Ai

∆i

��

A⊗A⊗A 1⊗m //

pi⊗pi⊗pi

ww

A⊗A
pi⊗pi

yy
Ai ⊗Ai ⊗Ai

1⊗mi // Ai ⊗Ai

Then (A,∆) is a nearly Frobenius algebra.

3. We can define the coproduct ∆ : A⊗ B→ (
A⊗ B

)
⊗
(
A⊗ B

)
as

∆ = (1⊗ τ⊗ 1) ◦
(
∆1 ⊗ ∆2

)
, where τ is the twist.

Using that ∆1 and ∆2 are the coproducts of A and B respectively we conclude that(
A⊗ B,∆

)
is a nearly Frobenius algebra.

Corollary 3.2. Let G be a finite group. If char(k) does not divide the order of G, then
kG is a nearly Frobenius algebra.

Proof. Applying Maschke’s theorem we have that kG is semisimple, then it is a direct sum
of simple algebras Mni×ni

(k). Therefore, by the Theorem 3.1, we conclude that kG is a
nearly Frobenius algebra.

Corollary 3.3. If G is a finite abelian group. Then kG is a nearly Frobenius algebra.

Proof. If G is a finite abelian group, then, by the fundamental theorem of finite abelian
groups, G = G1 ⊕ · · · ⊕Gp, where Gi is a finite cyclic group for i ∈ {1, . . . , p}. Therefore,
the group algebra kG of G is isomorphic, as a k-algebra, to kG1 ⊗ . . . ⊗ kGp. Finally,
applying the Example 2.5 and the Theorem 3.1 we conclude that kG is a nearly Frobenius
algebra.

Definition 3.4. Let
(
A,∆

)
be a nearly Frobenius algebra. A linear subspace J in A is

called a nearly Frobenius ideal if

(a) J is an ideal of A and

(b) ∆(J) ⊂ J⊗A+A⊗ J.

Note that, if A is a bialgebra, i.e. we have a trace map ε : A → k, the additional
condition ε(J) = 0 implies that J is a bi-ideal of A.
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Example 3.1. Go back to Example 2.2. We observe that the ideal J =
〈
x
〉

is a nearly
Frobenius ideal if we consider the coproduct ∆1. Because

∆1(x) =
∑

i+j=n+2

xi ⊗ xj = x2 ⊗ xn + x3 ⊗ xn−1 + · · ·+ xn ⊗ x2 ∈ J⊗ J ⊂ J⊗A+A⊗ J.

Proposition 3.5. Let
(
A,∆

)
be a nearly Frobenius algebra, J a nearly Frobenius ideal.

Then A/J admits a unique nearly Frobenius structure such that p : A → A/J is a nearly
Frobenius morphism.

Proof. Since (p ⊗ p)∆(J) ⊂ (p ⊗ p)
(
J ⊗ A + A ⊗ J

)
= 0, by the universal property of the

quotient vector space it follows that there exists a unique morphism of vector spaces

∆ : A/J→ A/J⊗A/J

for which the diagram

A
p //

∆

��

A/J

∆
��

A
p⊗p

// A/J⊗A/J

is commutative. This map is defined by ∆(a) =
∑

a1 ⊗ a2 where a = p(a) and ∆(a) =
∑

a1 ⊗ a2,
i.e. ∆ = (p⊗ p) ◦ ∆.

The fact that
(
∆⊗ 1

)
∆(a) =

(
1⊗∆

)
∆(a) =

∑
a1 ⊗ a2 ⊗ a3 follows immediately from

the commutativity of the diagram.
The last step is to prove that the coproduct is a bimodule morphism:

A/J⊗A/J m //

∆⊗1
��

A/J

∆
��

A/J⊗A/J⊗A/J
1⊗m
// A/J⊗A/J

A/J⊗A/J m //

1⊗∆
��

A/J

∆
��

A/J⊗A/J⊗A/J
m⊗1
// A/J⊗A/J

∆m(a⊗ b) = ∆(p(ab)) = (p⊗ p)∆(ab) = (p⊗ p)
(
(1⊗m)(∆⊗ 1)(a⊗ b)

)
= (p⊗ p)

(∑
a1 ⊗ a2b

)
=
∑

a1 ⊗ a2b

(1⊗m)(∆⊗ 1)(a⊗ b) = (1⊗m)
(∑

a1 ⊗ a2 ⊗ b
)

=
∑

a1 ⊗ a2b.

Example 3.2. Consider the linear quiver

1 2 3
α β

and the associated path algebra

A =
〈
e1, e2, e3, α, β, αβ

〉
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This algebra admits a unique nearly Frobenius coproduct:

∆(e1) = αβ⊗ e1, ∆(e2) = β⊗ α, ∆(e3) = e3 ⊗ αβ,

∆(α) = αβ⊗ α, ∆(β) = β⊗ αβ, ∆(αβ) = αβ⊗ αβ,

in particular Frobdim(A) = 1.
Now, let be J = 〈αβ〉. Note that J is a nearly Frobenius ideal:

∆(αβ) = αβ⊗ αβ ∈ A⊗ J+ J⊗A.

Then, applying the Proposition 3.5, B = A/J =
〈
e1, e2, e3, α, β

〉
admits a nearly Frobe-

nius structure defined by
∆ : B→ B⊗ B

∆
(
e1
)
= ∆

(
e3
)
= ∆

(
α
)
= ∆

(
β
)
= 0 and ∆

(
e2
)
= β⊗ α.

Note that the algebra B is associated to the quiver

1 2 3
α β

where the dashed line represents the relation αβ = 0, admits three independent coproducts,
in fact Frobdim(B) = 3:

∆1
(
e1
)
= α⊗ e1, ∆1

(
e2
)
= e2 ⊗ α, ∆1

(
e3
)
= ∆1(β) = 0, ∆1

(
α
)
= α⊗ α

∆2
(
e1
)
= ∆2

(
α
)
= 0, ∆2

(
e2
)
= β⊗ e2, ∆2

(
e3
)
= e3 ⊗ β, ∆2

(
β
)
= β⊗ β

∆3
(
e1
)
= ∆3

(
e3
)
= ∆3

(
α
)
= ∆3

(
β
)
= 0, ∆3

(
e2
)
= β⊗ α.

Observe that ∆ coincides with ∆3.

Theorem 3.6. Let A, B and C nearly Frobenius algebras. Given two epimorphisms of
nearly Frobenius algebras fA : A� C and fB : B� C the pullback R of fA and fB

R =
{(
a, b

)
∈ A× B : fA

(
a
)
= fB

(
b
)}

is a nearly Frobenius algebra.

Proof. The pullback R is a subalgebra of A× B, then the product is defined by(
a, b

)
·
(
c, d
)
=
(
ac, bd

)
for all

(
a, b

)
,
(
c, d
)
∈ R. Note that

(
ac, bd

)
∈ R because

fA
(
ac
)
= fA

(
a
)
fA
(
c
)
= fB

(
b
)
fB
(
d
)
= fB

(
bd
)
.

As A and B are nearly Frobenius algebras there exist ∆A : A→ A⊗A and ∆B : B→ B⊗B
coproducts. Then, we define

∆R : R→ R⊗ R
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as ∆R
(
(a, b)

)
=
∑(

a1, b1
)
⊗
(
a2, b2

)
, where ∆A

(
a
)
=
∑
a1⊗a2 and ∆B

(
b
)
=
∑
b1⊗ b2.

First, we check that the map ∆R is well defined, that is ∆R
(
(a, b)

)
∈ R⊗R for (a, b) ∈ R.

As the maps fA and fB are morphisms of nearly Frobenius algebras the next diagrams
commute

A
∆A //

fA
��

A⊗A
fA⊗fA
��

C
∆C

// C⊗ C

B
∆B //

fB
��

B⊗ B
fB⊗fB
��

C
∆C

// C⊗ C

,

then
(
fA ⊗ fA

)
∆A(a) = ∆C

(
fA(a)

)
= ∆C

(
fB(b)

)
=
(
fB ⊗ fB

)
∆B(b). Using this we have(

fA ⊗ fA
)(∑

a1 ⊗ a2
)

=
(
fB ⊗ fB

)(∑
b1 ⊗ b2

)
⇒∑

fA
(
a1
)
⊗ fA

(
a2
)

=
∑
fB
(
b1
)
⊗ fB

(
b2
)

⇒(∑
fA
(
a1
))
⊗
(∑

fA
(
a2
))

=
(∑

fB
(
b1
))
⊗
(∑

fB
(
b2
))
.

Then
∑
fA
(
a1
)
=
∑
fB
(
b1
)

and
∑
fA
(
a2
)
=
∑
fB
(
b2
)

and

fA

(∑
a1

)
= fB

(∑
b1

)
and fA

(∑
a2

)
= fB

(∑
b2

)
therefore

∆R
(
(a, b)

)
=
∑(

a1, b1
)
⊗
∑(

a2, b2
)
∈ R⊗ R.

1. Coassociativity of ∆R:
(
∆R ⊗ 1

)
∆R
(
(a, b)

)
=
(
1⊗ ∆R

)
∆R
(
(a, b)

)
.(

∆R ⊗ 1
)
∆R
(
(a, b)

)
=
∑
∆R
(
a1, b1

)
⊗
(
a2, b2

)
=
∑∑(

a11, b11
)
⊗
(
a12, b12

)
⊗
(
a2, b2

)(
1⊗ ∆R

)
∆R
(
(a, b)

)
=
∑(

a1, b1
)
⊗ ∆R

(
a2, b2

)
=
∑∑(

a1, b1
)
⊗
(
a21, b21

)
⊗
(
a22, b22

)
.

As the coproducts ∆A and ∆B are coassociatives the expressions
∑∑(

a11, b11
)
⊗(

a12, b12
)
⊗
(
a2, b2

)
and

∑∑(
a1, b1

)
⊗
(
a21, b21

)
⊗
(
a22, b22

)
coincide, then the

coproduct ∆R is coassociative.

2. ∆R is a morphism of bimodules if

R⊗ R m //

∆R⊗1
��

R

∆R

��
R⊗ R⊗ R

1⊗m
// R⊗ R

R⊗ R m //

1⊗∆R

��

R

∆R

��
R⊗ R⊗ R

m⊗1
// R⊗ R

commute. We will prove that the first diagram commutes, the other case is analo-
gous.
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We knows that ∆A and ∆B are bimodule morphisms, then∑
a1 ⊗ a2c =

∑
(ac)1 ⊗ (ac)2, (6)

for all a, c ∈ A, and ∑
b1 ⊗ b2d =

∑
(bd)1 ⊗ (bd)2, (7)

for all b, d ∈ B.

Let
(
a, b

)
,
(
c, d
)
∈ R, then

∆R
(
ac, bd

)
=
∑(

(ac)1, (bd)1
)
⊗
(
(ac)2, (bd)2

)(
∆R ⊗ 1

)(
(a, b)⊗ (c, d)

)
=
∑(

a1, b1
)
⊗
(
a2, b2

)
⊗
(
c, d
)

⇒(
1⊗m

)(
∆R ⊗ 1

)(
(a, b)⊗ (c, d)

)
=
∑(

a1, b1
)
⊗
(
a2c, b2d

)
Using (6) and (7) we have that

∑(
(ac)1, (bd)1

)
⊗
(
(ac)2, (bd)2

)
=
∑(

a1, b1
)
⊗(

a2c, b2d
)
. Then the first diagram commutes.

Example 3.3. Let be the quivers QA, QB and QC illustrated in the next picture,

1 2 3
α β

4
γ

2 3
α β

1

2

3
α β

1

5

δ

Q

Q

QA
B

C:

::

as before the dashed lines represent the relations αδ = 0 and αβγ = 0. The pullback
algebra R = A ×C B where fA : A → C and fB : B → C are the natural projections, by
the previous theorem, admits a nearly Frobenius structure. In the next step we develop the
associated coproduct.

First, we describe the nearly Frobenius structures of the algebras A, B and C.

The path algebra C admits only one independent coproduct, this is

∆
(
e1
)

= αβ⊗ e1, ∆
(
α
)

= αβ⊗ α, ∆
(
e2
)

= β⊗ α,
∆
(
β
)

= β⊗ αβ, ∆
(
e3
)

= e3 ⊗ αβ, ∆
(
αβ
)

= αβ⊗ αβ.

The path algebra B admits three independent coproducts, these are

∆
(
e1
)

= aαβ⊗ e1, ∆
(
α
)

= aαβ⊗ α,
∆
(
e2
)

= aβ⊗ α+ bβγ⊗ e2 + cβγ⊗ α, ∆
(
e4
)

= be4 ⊗ βγ,
∆
(
e3
)

= ae3 ⊗ αβ+ bγ⊗ β+ cγ⊗ αβ, ∆
(
γ
)

= bγ⊗ βγ,
∆
(
β
)

= aβ⊗ αβ+ bβγ⊗ β+ cβγ⊗ αβ, ∆
(
αβ
)

= aαβ⊗ αβ,
∆
(
βγ
)

= bβγ⊗ βγ.
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The path algebra A admits only one independent coproduct, this is

∆
(
e1
)

= αβ⊗ e1, ∆
(
α
)

= αβ⊗ α, ∆
(
e2
)

= β⊗ α, ∆
(
β
)

= β⊗ αβ,
∆
(
e3
)

= e3 ⊗ αβ, ∆
(
δ
)

= 0, ∆
(
e5
)

= 0, ∆
(
αβ
)

= αβ⊗ αβ.

The pullback algebra R is defined by the next diagram

R
π1 //

π2
��

A

fA
��

B
fB

// C

Then

R =
〈(
e1, e1

)
,
(
e2, e2

)
,
(
e3, e3

)
,
(
α,α,

)
,
(
β,β

)
,
(
αβ,αβ

)
,
(
e5, 0

)
,
(
δ, 0
)
,
(
0, e4

)
,
(
0, γ
)
,
(
0, βγ

)〉
'〈

e1, e2, e3, α, β, αβ, e5, δ, e4, γ, βγ
〉
,

that is the path algebra associated to the pushout quiver QA
∐
QC
QB.

Finally, the coproduct of R, by the last identification, is

∆
(
e1
)

= αβ⊗ e1, ∆
(
α
)

= αβ⊗ α ∆
(
e2
)

= β⊗ α, ∆
(
β
)

= β⊗ αβ,
∆
(
e3
)

= e3 ⊗ αβ, ∆
(
γ
)

= 0, ∆
(
e4
)

= 0, ∆
(
δ
)

= 0,

∆
(
e5
)

= 0, ∆
(
αβ
)

= αβ⊗ αβ, ∆
(
βγ
)

= 0.

Using the Lemma 2.1.2 of [Lév04] we have that R is the path algebra of the pushout
quiver QR = QA

∐
QC
QB. This quiver is represented in the next picture.

4
γ2

3
α β

1

5

δ

QR :

The algebra associated to the pushout quiver QA
∐
QC
QB is generated by{

e1, e2, e3, e4, e5, α, β, γ, δ, αβ, βγ
}
.

This algebra admits two independent nearly Frobenius coproducts, these are

∆
(
e1
)

= aαβ⊗ e1 ∆
(
α
)

= aαβ⊗ α
∆
(
e2
)

= aβ⊗ α+ bβγ⊗ α ∆
(
β
)

= β⊗ αβ+ bβγ⊗ αβ
∆
(
e3
)

= ae3 ⊗ αβ+ bγ⊗ αβ ∆
(
γ
)

= 0

∆
(
e4
)

= 0 ∆
(
δ
)

= 0

∆
(
e5
)

= 0 ∆
(
αβ
)

= aαβ⊗ αβ
∆
(
βγ
)

= 0

Note that if b = 0 we have the coproduct detected by the pullback structure defined in
the Theorem 3.6 and developed in the previous example.
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4 Quivers and nearly Frobenius algebras

This section is divided in three parts. In the first part we prove that an indecomposable
algebra associated to a bound quiver

(
Q, I

)
with no monomial relations admits a non trivial

nearly Frobenius structure if and only if the quiver is
−→
An and I = 0. Moreover, in this

case the Frobenius dimension is one. In the second part we deal with gentle algebras.
If the quiver associated to a gentle algebra A has no oriented cycles we show that the
Frobenius dimension of A is finite and we determine this number by an algorithm. In the
last part we exhibit a family of algebras A =

{
AC
}
C

given by bound quivers for which

Frobdim
(
AC
)
> dimk

(
AC
)
.

4.1 Path algebras

Lemma 4.1. If Q =
−→
An, that is, Q is the following quiver

1 2
α

3

α

4

α

nn-1
2 α1 3 n-1

,

the path algebra A = kQ,

kQ =
〈
e1, e2, . . . , en, αi . . . αj : i = 1, . . . , n, i ≤ j ≤ n

〉
,

admits only one independent nearly Frobenius structure, where the coproduct is defined as
follows

∆
(
e1
)

= α1 . . . αn−1 ⊗ e1;
∆
(
en
)

= en ⊗ α1 . . . αn−1;
∆
(
ei
)

= αi . . . αn−1 ⊗ α1 . . . αi−1, i = 2, . . . , n− 1;
∆
(
αi . . . αj

)
= αi . . . αn−1 ⊗ α1 . . . αj, 1 ≤ i ≤ j ≤ n− 1.

Proof. If we have a coproduct ∆ the next condition is required

∆
(
ei
)
= ∆

(
ei
)(
1⊗ ei

)
=
(
ei ⊗ 1

)
∆
(
ei
)
, ∀i = 1, . . . , n. (8)

This implies that the coproduct in the vertexes e1 and en is

∆
(
e1
)

= a10e1 ⊗ e1 +
n−1∑
i=1

a1iα1 . . . αi ⊗ e1, a1i ∈ k

∆
(
en
)

= an0 en ⊗ en +
n−1∑
i=1

ani en ⊗ αi . . . αn−1, ani ∈ k.

As ∆
(
α1 . . . αn−1

)
= ∆

(
e1
)(
α1 . . . αn−1

)
=
(
α1 . . . αn−1

)
∆
(
en
)

we have that

a1i = a
n
i = 0 ∀i = 0, . . . , n− 2.

Then the coproduct in these vertexes is

∆
(
e1
)

= aα1 . . . αn−1 ⊗ e1,
∆
(
en
)

= aen ⊗ α1 . . . αn−1.
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Using the equation (8) the coproduct in the vertex ei, i = 2, . . . , n− 1 is

∆
(
ei
)
= ai0ei⊗ei+

i−1∑
j=1

aijei⊗αj . . . αi−1+
n−1∑
j=i

aijαi . . . αj⊗ei+
i−1∑
j=1

n−1∑
k=i

aijkαi . . . αk⊗αj . . . αi−1.

The coproduct in the path α1 . . . αi−1 is given by

∆
(
α1 . . . αi−1

)
= ∆

(
e1
)(
1⊗ α1 . . . αi−1

)
=
(
α1 . . . αi−1 ⊗ 1

)
∆
(
ei
)
,

then
∆
(
α1 . . . αi−1

)
= aα1 . . . αn−1 ⊗ α1 . . . αi−1

= ai0α1 . . . αi−1 ⊗ ei +
i−1∑
j=1

aijα1 . . . αi−1 ⊗ αj . . . αi−1

+

n−1∑
j=i

aijα1 . . . αi−1αi . . . αj ⊗ ei

+

i−1∑
j=1

n−1∑
k=i

aijkα1 . . . αi−1αi . . . αk ⊗ αj . . . αi−1

therefore ai0 = aij = 0, ∀j = 1, . . . n − 1, aijk = 0, ∀j = 2, . . . n − 1, k = 1, . . . n − 2,

ai1n−1 = a and ∆
(
ei
)
= aαi . . . αn−1 ⊗ α1 . . . αi−1. Also, this determine the coproduct on

paths αi . . . αj:
∆
(
αi . . . αj

)
= aαi . . . αn−1 ⊗ α1 . . . αj.

To conclude the construction we need to check that ∆ is coassociative.

(∆⊗ 1)∆
(
ei
)

= (∆⊗ 1)
(
aαi . . . αn−1 ⊗ α1 . . . αi−1

)
= a2αi . . . αn−1 ⊗ α1 . . . αn−1 ⊗ α1 . . . αi−1,

(1⊗ ∆)∆
(
ei
)

= (1⊗ ∆)
(
aαi . . . αn−1 ⊗ α1 . . . αi−1

)
= a2αi . . . αn−1 ⊗ α1 . . . αn−1 ⊗ α1 . . . αi−1.

(∆⊗ 1)∆
(
αi . . . αj

)
= (∆⊗ 1)

(
aαi . . . αn−1 ⊗ α1 . . . αj

)
= a2αi . . . αn−1 ⊗ α1 . . . αn−1 ⊗ α1 . . . αj,

(1⊗ ∆)∆
(
αi . . . αj

)
= (∆⊗ 1)

(
aαi . . . αn−1 ⊗ α1 . . . αj

)
= a2αi . . . αn−1 ⊗ α1 . . . αn−1 ⊗ α1 . . . αj.

Then, a basis of the Frobenius space has only one coproduct and Frobdim(A) = 1.

Lemma 4.2. Let A =
kQ
I

be a finite dimensional algebra. If α, µ ∈ Q1 with s
(
α
)
=

s
(
µ
)
= p (t

(
α
)
= t

(
µ
)
= p) such that no monomial relation ends (starts) on α or β.

Then ∆
(
ep
)
= ∆

(
α
)
= ∆

(
µ
)
= 0 for all nearly Frobenius structure ∆.

Proof. We prove the first case, the other is analogous. The situation is the following

α

μ
2

p

1
q

q
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with p, q1 and q2 ∈ Q0, α, µ ∈ Q1, s
(
α
)
= s
(
µ
)
= p, t

(
α
)
= q1 and t

(
µ
)
= q2. Since

∆
(
ep
)
=
(
ep ⊗ 1

)
∆
(
ep
)
= ∆

(
ep
)(
1⊗ ep

)
the elementary tensors appearing in ∆

(
ep
)

must
have the first coordinate starting in ep and the second coordinate ending in ep, this means:∑

aijαi ⊗ βj

where s
(
αi
)
= p and t

(
βj
)
= p.

In the same way we have that:

∆
(
eq1
)
=
∑

bijγi ⊗ δj

with s
(
γi
)
= q1, t

(
δj
)
= q1.

Since ∆(α) = ∆
(
ep
)(
1⊗ α

)
=
(
α⊗ 1

)
∆
(
eq1
)

we have that

∆
(
α
)
=
∑

bijαγi ⊗ δj =
∑

aijαi ⊗ βjα,

then αγi = αi and δj = βjα (some αγi could be zero but βjα 6= 0 ∀j since there is no
relation ending on α). Therefore

∆
(
ep
)
=
∑

aijαγi ⊗ βj.

On the other hand we have that

∆
(
eq2
)
=
∑

cijηi ⊗ ξj,

with s
(
ηi
)
= q2, t

(
ξj
)
= q2. Then

∆(µ) =
∑

cijµηi ⊗ ξj =
∑

aijαi ⊗ βjµ.

So we conclude that ∆
(
ep
)
=
∑
aijµηi ⊗ βj.

Comparing ∆
(
ep
)
=
∑
aijµηi ⊗βj and ∆

(
ep
)
=
∑
aijαγi ⊗βj we deduce that ∆

(
ep
)
= 0

and therefore ∆
(
α
)
= ∆

(
µ
)
= 0.

Theorem 4.3. Let A =
kQ
I

be a finite dimensional indecomposable algebra such that there

are no monomial relations. If A admits a non trivial nearly Frobenius structure then I = 0

and Q =
−→
An.

Proof. If there exist p, q1, q2 ∈ Q0 and α, µ ∈ Q1 such that s
(
α
)
= s
(
µ
)
= p, t

(
α
)
= q1

and t
(
µ
)
= q2, that is

α

μ
2

p

1
q

q
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applying the Lema 4.2 we have that ∆
(
ep
)
= ∆

(
α
)
= ∆

(
µ
)
= 0. Moreover, using that

there exist no monomial relations, arguing in the same way that in Lemma 4.2 we conclude
that ∆

(
eq1
)
= ∆

(
eq2
)
= 0.

Since A is a finite dimensional indecomposable algebra Q is finite and connected. Given
a point r of the quiver there is a walk w = p ∼ p1 ∼ · · · ∼ ps ∼ r from p to r, where
∼ means that there is an arrow pi → pj or pj → pi. Then, since ∆

(
ep
)
= 0 and there

exist non monomial relations, we can reproduce again the arguments and prove that
∆
(
ep1
)
= · · · = ∆

(
eps
)
= ∆

(
er
)
= 0. Therefore ∆

(
er
)
= 0 for any point of Q0. Then the

coproduct ∆ is trivial.

Corollary 4.4. Let A be the path algebra associated to Q, a finite connected quiver. Then

A admits a non trivial nearly Frobenius structure if and only if Q =
−→
An.

Proof. If Q =
−→
An, by the Lemma 4.1, there exists a unique non trivial nearly Frobenius

structure on A.
Suppose now that A is the path algebra associated to Q with a non trivial nearly

Frobenius structure, then, by the Theorem 4.3, we have that Q =
−→
An.

4.2 Gentle algebras

Lemma 4.5. The algebra associated to the quiver

2 31
Q :

0
ααα1 2 m

m

β1 βn
mm+1 +n

with the relation αmβ1 = 0, admits mn+2 independent nearly Frobenius structures, these
are

∆
(
e1
)

= aα1 . . . αm ⊗ e1, ∆
(
em+1

)
= bβ2 . . . βn ⊗ β1,

∆
(
ei
)

= aαi . . . αm ⊗ α1 . . . αi−1, ∆
(
em+i

)
= bβi+1 . . . βn ⊗ β1 . . . βi,

∆
(
em
)

= aαm ⊗ α1 . . . αm−1, ∆
(
em+n

)
= bem+n ⊗ β1 . . . βn,

∆
(
αi . . . αj

)
= aαi . . . αm ⊗ α1 . . . αj, ∆

(
βi . . . βj

)
= bβi . . . βn ⊗ β1 . . . βj,

∆
(
e0
)
= ae0 ⊗ α1 . . . αm + bβ1 . . . βn ⊗ e0 +

m∑
i=1

n∑
j=1

cijβ1 . . . βj ⊗ αi . . . αm,

where a, b, cij ∈ k, i = 1, . . . ,m and j = 1, . . . , n. Therefore Frobdim
(
kQ
I

)
= mn+ 2.

Proof. Using that the coproduct satisfies

∆
(
ei
)
=
(
ei ⊗ 1

)
∆
(
ei
)
= ∆

(
ei
)(
1⊗ ei

)
we conclude that, on the vertex ei for i = 1, . . . ,m, the coproduct is

∆
(
ei
)
= aiei⊗ei+

m∑
j=i

a
j
iαi . . . αj⊗ei+

i∑
j=1

aijei⊗αj . . . αi+
m∑
j=i

i∑
k=1

aijkαi . . . αj⊗αk . . . αi.



NEARLY FROBENIUS ALGEBRAS 21.

and

∆
(
e1
)
= a1e1 ⊗ e1 +

m∑
j=1

a
j
1α1 . . . αj ⊗ e1.

Similarly, we have that the coproduct on the vertex ei+m, for i = 1, . . . , n is

∆
(
em+i

)
= biem+i⊗em+i+

n∑
j=i

b
j
iβi . . . βj⊗em+i+

i∑
j=1

bijem+i⊗βj . . . βi+
n∑
j=i

i∑
k=1

bijkβi . . . βj⊗βk . . . βi

and

∆
(
em+n

)
= bnem+n ⊗ em+n +

n∑
j=1

bnj em+n ⊗ βj . . . βn.

In the vertex e0 the situation is different.

∆
(
e0
)
= c0e0⊗e0+

m∑
k=1

cke0⊗αk . . . αm+
n∑
j=1

cjβ1 . . . βj⊗e0+
n∑
j=1

m∑
k=1

cjkβ1 . . . βk⊗αk . . . αm.

If we consider the path α1 . . . αm the coproduct ∆
(
α1 . . . αm

)
is

∆
(
e1
)(
1⊗ α1 . . . αm

)
=
(
α1 . . . αm ⊗ 1

)
∆
(
e0
)
.

Then a1 = a
j
1 = 0 for all j = 1, . . .m − 1 and c0 = ck = 0 for all k = 2, . . .m. The only

coefficient not zero is c1 = am1 .
Therefore

∆
(
e1
)
= aα1 . . . αm ⊗ e1,

∆
(
e0
)
= ae0 ⊗ α1 . . . αm +

n∑
j=1

cjβ1 . . . βj ⊗ e0 +
n∑
j=1

m∑
k=1

cjkβ1 . . . βk ⊗ αk . . . αm.

On the other hand, if we consider the path β1 . . . βn

∆
(
β1 . . . βn

)
= ∆

(
e0
)(
1⊗ β1 . . . βn

)
=
(
β1 . . . βn ⊗ 1

)
∆
(
em+n

)
,

then bn = bnj = 0 for all j = 2, . . . n and cj = 0 for all j = 1, . . . n− 1. The only coefficient
not zero is cn = bn1 .

Consequently
∆
(
em+n

)
= bβ1 . . . βn ⊗ em+n,

∆
(
e0
)
= ae0 ⊗ α1 . . . αm + bβ1 . . . βn ⊗ e0 +

n∑
j=1

m∑
k=1

cjkβ1 . . . βj ⊗ αk . . . αm.

To complete the prove we consider the internal paths α1 . . . αi−1, β1 . . . βi, αi . . . αj and
βi . . . βj.

To the first family of paths we have that

∆
(
α1 . . . αi−1

)
= ∆

(
e1
)(
1⊗ α1 . . . αi−1

)
=
(
α1 . . . αi−1 ⊗ 1

)
∆
(
ei
)
,
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then aijk = 0 for all j = i, . . . ,m− 1, k = 2, . . . , i, ai = a
j
i = a

i
j = 0 for all j = 1, . . . ,m and

a = aim1. Accordingly

∆
(
ei
)
= aαi . . . αm ⊗ α1 . . . αi−1, for all i = 2, . . . ,m.

In a very similar way we have that

∆
(
em+i

)
= bβi+1 . . . βn ⊗ β1 . . . βi, ∀ i = 1, . . . , n− 1.

An immediate consequence of these results is

∆
(
αi . . . αj

)
= aαi . . . αm ⊗ α1 . . . αj and ∆

(
βi . . . βj

)
= bβi . . . βn ⊗ β1 . . . βj.

The coassociativity of the coproduct in the vertices ei, ei+m and in the arrows αi . . . αj,
βi . . . βj is analogous to the example 4.1. In the vertex e0 is a simple calculus.

Lemma 4.6. The algebra associated to the quiver

2 31
Q :

0
ααα1 2 m

m

β1

β

m+n

mm+1 +n

r

αm+1 α

m+n+1

m+n+r

with the relation βrαm+1 = 0, admits only one nearly Frobenius structure, this is

∆
(
e1
)

= α1 . . . αm+n ⊗ e1, ∆
(
α1
)

= α1 . . . αm+n ⊗ α1,
∆
(
ei
)

= αi . . . αm+n ⊗ α1 . . . αi−1, ∆
(
αi
)

= αi . . . αm+n ⊗ α1 . . . αi,
∆
(
em+n

)
= em+n ⊗ α1 . . . αm+n, ∆

(
αm+n

)
= αm+n ⊗ α1 . . . αm+n,

∆
(
em+n+i

)
= 0 and ∆

(
βi
)
= 0 ∀ i = 1, . . . , r.

Therefore Frobdim(A) = 1.

Proof. In the extreme vertices the coproduct has the general expression

∆
(
e1
)

= a1e1 ⊗ e1 +
m+n∑
i=1

a1iα1 . . . αi ⊗ e1,

∆
(
em+n

)
= bnem+n ⊗ em+n +

m+n∑
i=1

bni em+n ⊗ αi . . . αm+n.

The coproduct in the path α1 . . . αm+n is

∆
(
α1 . . . αm+n

)
= ∆

(
e1
)(
1⊗ α1 . . . αm+n

)
=
(
α1 . . . αm+n ⊗ 1

)
∆
(
em+n

)
,
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then

a1e1 ⊗ α1 . . . αm+n +

m+n∑
i=1

a1iα1 . . . αi ⊗ α1 . . . αm+n = bnα1 . . . αm+n ⊗ em+n

+

m+n∑
i=1

bni α1 . . . αm+n ⊗ αi . . . αm+n.

Consequently a1i = bnj = 0, for all i = 1, . . . ,m + n − 1, for all j = 2, . . . ,m + n and

a1m+n = bn1 ,

and

∆
(
e1
)

= aα1 . . . αm+n ⊗ e1,
∆
(
em+n

)
= aem+n ⊗ α1 . . . αm+n.

Repeating the procedure of the previous lemma we can prove that

∆
(
ei
)
= aαi . . . αm+n ⊗ α1 . . . αi−1, ∀ i = . . . ,m+ n.

In the vertex e0 the situation is different

∆
(
e0
)

= ∆
(
e0
)(
1⊗ e0

)
=
(
e0 ⊗ 1

)
∆
(
e0
)

= c0e0 ⊗ e0 +
n∑
j=1

cjαm+1 . . . αm+j ⊗ e0 +
m∑
j=1

cje0 ⊗ αk . . . αm

+

n∑
j=1

m∑
k=1

cjkαm+1 . . . αm+j ⊗ αk . . . αm

+

r∑
j=1

dje0 ⊗ βj . . . βr +
n∑
j=1

r∑
k=1

djkαm+1 . . . αm+j ⊗ βj . . . βr.

By the other hand

∆
(
em+n+1

)
= bem+n+1 ⊗ em+n+1 +

r∑
i=1

biβ1 . . . βi ⊗ em+n+1.

Now, consider the path β1 . . . βr, then the coproduct is described by

∆
(
β1 . . . βr

)
= ∆

(
em+n+1

)(
1⊗ β1 . . . βr

)
=
(
β1 . . . βr ⊗ 1

)
∆
(
e0
)
,

then

bem+n+1 ⊗ β1 . . . βr +
r∑
i=1

biβ1 . . . βi ⊗ β1 . . . βr =
m∑
j=1

cjβ1 . . . βr ⊗ αk . . . αm

+

r∑
j=1

djβ1 . . . βr ⊗ βj . . . βr,
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therefore b = c0 = cj = 0, for all j = 1, . . . ,m, dj = bi = 0, for all j = 2, . . . , r, i =
1, . . . , r− 1 and br = d1. Using this we conclude that

∆
(
em+n+1

)
= bβ1 . . . βr ⊗ em+n+1,

∆
(
e0
)

= be0 ⊗ β1 . . . βr +
n∑
j=1

cjαm+1 . . . αm+j ⊗ e0

+

n∑
j=1

m∑
k=1

cjkαm+1 . . . αm+j ⊗ αk . . . αm +

n∑
j=1

r∑
k=1

djkαm+1 . . . αm+j ⊗ βk . . . βr.

The next step is to consider the path αm+1 . . . αm+n, for this path the coproduct is deter-
mined by

∆
(
αm+1 . . . αm+n

)
=
(
αm+1 . . . αm+n ⊗ 1

)
∆
(
em+n

)
= aαm+1 . . . αm+n ⊗ α1 . . . αm+n.

By the other hand, this coproduct is determined by

∆
(
αm+1 . . . αm+n

)
= ∆

(
e0
)(
1⊗ αm+1 . . . αm+n

)
=

n∑
j=1

cjαm+1 . . . αm+j ⊗ αm+1 . . . αm+n

+

n∑
j=1

m∑
k=1

cjkαm+1 . . . αm+j ⊗ αk . . . αm+n.

Comparing the expressions we have cj = 0, for all j = 1, . . . , n, cjk = 0, for all j =
1, . . . , n− 1, i = 2, . . . ,m and a = cn1. Consequently

∆
(
e0
)
= aαm+1 . . . αm+n⊗α1 . . . αm+be0⊗β1 . . . βr+

n∑
j=1

r∑
k=1

djkαm+1 . . . αm+j⊗βk . . . βr.

Finally, we consider the path α1 . . . αm, as before, we have two way to define the coproduct
in this path

∆
(
α1 . . . αm

)
= ∆

(
e1
)(
1⊗ α1 . . . αm

)
= aα1 . . . αm+n ⊗ α1 . . . αm

=
(
α1 . . . αm ⊗ 1

)
∆
(
e0
)
= aα1 . . . αm+n ⊗ α1 . . . αm

+ bα1 . . . αm ⊗ β1 . . . βr +
n∑
j=1

r∑
k=1

djkα1 . . . αm+j ⊗ βk . . . βr,

then b = djk = 0 for all j, k.
As b = 0 we have that ∆

(
em+n+1

)
= 0, this implies that ∆

(
em+n+i

)
= 0 for all i = 1, . . . , r

and ∆
(
e0
)
= aαm+1 . . . αm+n ⊗ α1 . . . αm.

It is a simple calculation to prove that ∆ is coassociative.

The next result is the symmetrical case to Lemma 4.6.
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Lemma 4.7. The algebra associated to the quiver

2 31
Q : 0ααα1 2 m

m
β1

β

m+n

mm+1 +n

r

αm+1 α

m+n+1

m+n+r

with the relation αmβ1 = 0, admits only one nearly Frobenius structure, this is

∆
(
e1
)

= α1 . . . αm+n ⊗ e1, ∆
(
α1
)

= α1 . . . αm+n ⊗ α1,
∆
(
ei
)

= αi . . . αm+n ⊗ α1 . . . αi−1, ∆
(
αi
)

= αi . . . αm+n ⊗ α1 . . . αi,
∆
(
em+n

)
= em+n ⊗ α1 . . . αm+n, ∆

(
αm+n

)
= αm+n ⊗ α1 . . . αm+n,

∆
(
em+n+i

)
= 0 and ∆

(
βi
)
= 0 for all i = 1, . . . , r.

Accordingly Frobdim(A) = 1.

Lemma 4.8. The algebra associated to the quiver

21

Q :

0
αα1 m

m

β1

β

m+n

mm+1 +n

r

αm+1 α

m+n+1

m+n+r

βr+s

βr+1

m+n+2

m+n+r+s

m+n+r+s+1
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with relations βrαm+1 = 0 and αmβr+1 = 0,admits two independent nearly Frobenius
structures and a general coproduct is determined by

∆
(
e1
)

= aα1 . . . αm+n ⊗ e1, ∆
(
α1
)

= aα1 . . . αm+n ⊗ α1,
∆
(
ei
)

= aαi . . . αn ⊗ α1 . . . αi−1, ∆
(
αi
)

= aαi . . . αn ⊗ α1 . . . αi,
∆
(
em+n

)
= aem+n ⊗ α1 . . . αm+n, ∆

(
αm+n

)
= aαm+n ⊗ α1 . . . αm+n,

∆
(
em+n+1

)
= bβ1 . . . βr+sn⊗ e1, ∆

(
β1
)

= bβ1 . . . βr+s ⊗ β1,
∆
(
em+n+i

)
= bβi . . . βr+s ⊗ β1 . . . βi−1, ∆

(
βi
)

= bβi . . . βr+s ⊗ β1 . . . βi,
∆
(
em+n+r+s+1

)
= bem+n+r+s+1 ⊗ β1 . . . βr+s, ∆

(
βr+s

)
= bβr+s ⊗ β1 . . . βr+s,

∆
(
e0
)
= aαm+1 . . . αm+n ⊗ α1 . . . αm + bβr+1 . . . βr+s ⊗ β1 . . . βr,

where a, b ∈ k. In this case Frobdim(A) = 2.

Proof. First, note that, we can expressed the coproduct in the vertices as

∆
(
e1
)

= a1e1 ⊗ e1 +
m+n∑
i=1

aiα1 . . . αi ⊗ e1,

∆
(
em+n

)
= bnem+n ⊗ em+n +

m+n∑
i=1

biem+n ⊗ αi . . . αm+n.

Applying the coproduct in the path α1 . . . αm+n we can prove that

∆
(
e1
)

= aα1 . . . αm+n ⊗ e1,
∆
(
em+n

)
= aem+n ⊗ α1 . . . αm+n.

By symmetry we have that

∆
(
em+n+1

)
= bβ1 . . . βr+s ⊗ em+n+1,

∆
(
em+n+r+s+1

)
= bem+n+r+s+1 ⊗ β1 . . . βr+s.

Reproducing the calculus of Lemma 4.6 we can prove that

∆
(
ei
)

= aαi . . . αm+n ⊗ α1 . . . αi−1,
∆
(
em+n+i

)
= aβi . . . βr+s ⊗ β1 . . . βi−1.

In the vertex e0 the situation is more complicated.

∆
(
e0
)

= b0e0 ⊗ e0 +
m∑
i=1

bie0 ⊗ αi . . . αm +

r∑
j=1

cje0 ⊗ βj . . . βr

+

n∑
i=1

biαm+1 . . . αm+i ⊗ e0 +
s∑
j=1

cjβr+1 . . . βr+j ⊗ e0

+

n∑
i=1

m∑
j=1

bijαm+1 . . . αm+i ⊗ αj . . . αm +

s∑
i=1

r∑
j=1

cijβr+1 . . . βr+i ⊗ βj . . . βr

+

n∑
i=1

r∑
j=1

bijαm+1 . . . αm+i ⊗ βj . . . βr +
s∑
i=1

m∑
j=1

cijβr+1 . . . βr+i ⊗ αj . . . αm.
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If we determine the coproduct in the paths α1 . . . αm and β1 . . . βr we conclude that

∆
(
e0
)
= aαm+1 . . . αm+n ⊗ α1 . . . αm + bβr+1 . . . βr+s ⊗ β1 . . . βr.

The coproduct in the arrows is determined by the value in the vertices.
The coassociativity is an easy exercise.

Now, if we consider a gentle algebra A associated to Q, a finite connected quiver
without oriented cycles, we can produce an algorithm that permit us to determine the
number independent nearly Frobenius structures that the algebra A admits. Next we
develop the algorithm.

AsQ is finite we can suppose that #Q0 = n and #Q1 = m. The quiverQ is triangular,
because it has not cycles. In particular, there exist a partial order 4 of

{
1, 2, . . . , n

}
and

the arrows such that {
i ≺ j if i j

(
i 6= j, i precede to j

)
i 4 j if i = j or i ≺ j

and {
α ≺ β if t

(
α
)
4
(
β
)
,

α 4 β if α = β or α ≺ β

Let F =
{

sources of Q
}

. Note that the sources of the quiver Q are the minimal
elements with the order 4. In addition, any vertex of the quiver Q is a source or one of
the following

;

; ;

;

; ;
α1

α2

β1

i
V

V

V

V

V V

V10

2 3i

α β

:

: : α β
i

4 5 6

: α1

α2

β : α

β2

i

: β2

β1

:
h2

α2

α1i i
i

α

Q0 = F ∪ V0 ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6.

This decomposition permit us to define the type of a vertex as:

type(i) := j if i ∈ Vj, j = 0, . . . , 6.
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With the previous order we can define vectors associated to the vertexes and associated
to the arrows, these are y =

(
y1, . . . , yn

)
∈ Zn and x =

(
x1, . . . , xm

)
∈ Zm. In the next

paragraph we describe the process of construction.
Step 0: Let f ∈ F and grs(f) = 1, that is there exists a unique β ∈ Q1, with s

(
β
)
= f,

we define yf = 1 and xβ = 1.
If f ∈ F and grs(f) = 2, that is there exist β1, β2 ∈ Q1, with s

(
β1
)
= s
(
β2
)
= f, we define

yf = 0 and xβ1
= xβ2

= 0.
We introduce a counter d ∈ N starting in 0.

Step 1: Let U = Q0 − F and i ∈ U minimal.

• If type(i) = 0 we define yi = xα, xβ = yi and the new set is U := U− {i}.

• If type(i) = 1 we define yi = ll(i)lr(i) + 2 + xα − 1, xβ = yi, where lr(i) =
max
{

long(w) : w path , s(w) = i
}

and ll(i) = max
{

long(w) : w path , t(w) = i
}

and U := U− {i}.

• If type(i) = 2 we define yi = xα1
, xβ = yi and U := U− {i},

d := xα2
− 1+ d.

• If type(i) = 3 we define yi = xα, xβ2
= 0, xβ1

= xα and U := U− {i}.

• If type(i) = 4 we define yi = yj1 + yj2 , xβ2
= xα1

, xβ1
= xα2

and U := U− {i}.

• If type(i) = 5 we define yi = 0 and d := d + xα1
+ xα2

− δ
(
α1
)
− δ
(
α2
)
, where

δ : Q1 → Z is defined by δ(α) = 0 if xα = 0 and δ(α) = 1 if xα ≥ 1.

• If type(i) = 6 we define yi = xα and d = d+ xα.

We repeat this process recursiveness over the set U, and finally the number d is the total
of nearly Frobenius structures that the algebra admits.

Corollary 4.9. Let A be a gentle algebra associated to Q, a finite connected quiver without
oriented cycles. Then, A has finite Frobenius dimension

We apply the previous algorithm in the next two examples.

Example 4.1. The gentle algebra A associated to the quiver

4

2

3
1

5

Q :

7

9

6

α

8

α

α

αα

α

α

α

α

α

1 2

3

4

5

6

7

8

9

10

10α11
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with relations α9α6 = 0, α8α1 = 0, α2α7 = 0 and α6α3 = 0, has Frobdim(A) = 0, that is
the only nearly Frobenius structure that this algebra admits is the trivial (∆ ≡ 0).

Applying the algorithm we have the next situation

1

1

0

1

11

1

1

1

1

0

0

000

0

0

0

0

0

and the counter d is zero. Then, in this example, we have only the trivial nearly Frobenius
coproduct.

Example 4.2. If we consider the algebra A associated to the quiver

42 31 5
Q :

7

9

6α

8

αα

αα α

α

α

α

α

1 2 3

4

5 6

7

8

9 10

with relations α1α2 = 0, α2α3 = 0, α3α4 = 0 and α10α5 = 0. It is possible to determine
all the nearly Frobenius structures, they are

∆(e1) = a1α1 ⊗ e1
∆(α1) = a1α1 ⊗ α1
∆(e2) = a1e2 ⊗ α1 + a2α2 ⊗ α1 + a3α2α9 ⊗ α1 + a4α2α9α10 ⊗ α1 + a5α2α9α10α4 ⊗ α1,

∆ = 0 on the other cases

In this case Frobdim(A) = 5. We determine, applying the algorithm, that the counter d is
five and we conclude that Frobdim(A) = 5. In the next diagram we represent the vectors
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given in the algorithm associated to the vertex and arrows

1 06

0

0
0

0

000

1 6 6

6

6

6

6

60

then d = 5.

4.3 Comparing dimensions

In this subsection we determine the Frobenius dimension of algebras associated to
cyclic quivers. Using this result we exhibit a family of algebras with Frobenius dimension
great that it’s dimension over k.

Let C
(
n1, n2, . . . , nm

)
the quiver

1

2

3 n

n

n +1

n +2

n +3

n +n +1

n +... +n

m

n +n

α

α

α α

1

1

2

2

3

1

n

1

1

1
11

1

1 1

α

α

α

αα

α

m

2

2

1

1

1 2

2
2

1 23

n

m1

m
3α2

2α
m

where m,n1, n2, . . . , nm ∈ N∗ and AC =
kC
IC

with

IC =
〈
αmnm

α11, α
i
ni
αi+11 , i = 1, . . . ,m− 1

〉
.

Theorem 4.10. Frobdim(A) = m+
∑m
i=1 nini+1, with nm+1 = n1.



NEARLY FROBENIUS ALGEBRAS 31.

Proof. We will determine the coproduct in the vertices of the algebra A using the formula

∆
(
ei
)
= ∆

(
ei
)(
1⊗ ei

)
=
(
ei ⊗ 1

)
∆
(
ei
)
.

• If i = 1 then

∆
(
e1
)

= a1e1 ⊗ e1 +
nm∑
k=1

ak1e1 ⊗ αmk . . . αmnm
+

n1∑
j=1

a1jα
1
1 . . . α

1
j ⊗ e1

+

n1∑
j=1

nm∑
k=1

a1jkα
1
1 . . . α

1
j ⊗ αmk . . . αmnm

.

• If the index is n1 + · · ·+ ni + 1, i = 1, . . . ,m− 1 then

∆
(
en1+···+ni+1

)
= aien1+···+ni+1 ⊗ en1+···+ni+1 +

ni∑
k=1

aiken1+···+ni+1 ⊗ α
i
k . . . α

i
ni

+

ni+1∑
j=1

a
j
iα
i+1
1 . . . αi+1j ⊗ en1+···+ni+1 +

ni+1∑
j=1

ni∑
k=1

aijkα
i+1
1 . . . αi+1j ⊗ αik . . . αini

.

• If k = 2, . . . ni then

∆
(
en1+...ni−1+k

)
= biken1+...ni−1+k ⊗ en1+...ni−1+k +

k−1∑
l=1

bikl en1+...ni−1+k ⊗ α
i
l . . . α

i
k−1

+

ni∑
j=k

b
ij
kα

i
k . . . α

i
j ⊗ en1+...ni−1+k +

ni∑
j=k

k−1∑
l=1

bikjl α
i
k . . . α

i
j ⊗ αil . . . αik−1.

Now, we consider the maximal path αi1 . . . α
i
ni

, for this the coproduct satisfies

∆
(
αi1 . . . α

i
ni

)
= ∆

(
en1+...ni−1+1

)(
1⊗αi1 . . . αini

)
=
(
αi1 . . . α

i
ni
⊗ 1
)
∆
(
en1+...ni+1

)
(9)

By substitution in (9) we get:

ai−1en1+···+ni−1+1 ⊗ α
i
1 . . . α

i
ni

+

ni∑
j=1

a
j
i−1α

i
1 . . . α

i
j ⊗ αi1 . . . αini

=

aiα
i
1 . . . α

i
ni
⊗ en1+···+ni+1 +

ni∑
k=1

aikα
i
1 . . . α

i
ni
⊗ αik . . . αini

then ai = ai−1 = 0, aik = 0 ∀ k = 2, . . . , ni, a
j
i−1 = 0 ∀ j = 1, . . . , ni − 1 and

ai1 = a
ni

i−1.

Therefore

∆
(
en1+···+ni+1

)
= aien1+···+ni+1 ⊗ α

i
1 . . . α

i
ni

+ ai+1α
i+1
1 . . . αi+1ni+1

⊗ en1+···+ni+1

+

ni+1∑
j=1

ni∑
k=1

aijkα
i+1
1 . . . αi+1j ⊗ αik . . . αini
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If we study the particular paths αi1 . . . α
i
k−1 we can determine the relation between

the coproduct values in the vertices en1+···+ni−1+1 and en1+···+ni−1+k.

The coproduct in αi1 . . . α
i
k−1 satisfies

∆
(
αi1 . . . α

i
k−1

)
= ∆

(
en1+···+ni−1+1

)(
1⊗αi1 . . . αik−1

)
=
(
αi1 . . . α

i
k−1⊗1

)
∆
(
en1+···+ni−1+k

)
then

aiα
i
1 . . . α

i
ni
⊗ αi1 . . . αik−1
=

bikα
i
1 . . . α

i
k−1 ⊗ en1+...ni−1+k +

k−1∑
l=1

bikl α
i
1 . . . α

i
k−1 ⊗ αil . . . αik−1

+

ni∑
j=k

b
ij
kα

i
1 . . . α

i
j ⊗ en1+...ni+k +

ni∑
j=k

k−1∑
l=1

bikjl α
i
1 . . . α

i
j ⊗ αil . . . αik−1

If we compare the expressions we conclude that bik = b
ij
k = bikl = 0 ∀ j, l, bikjl = 0

∀ j = k, . . . , ni − 1, l = 2, . . . , k− 1 and bikni1
= ai

Consequently
∆
(
en1+···+ni−1+k

)
= aiα

i
k . . . α

i
ni
⊗ αi1 . . . αik−1.

The coassociativity is satisfied by a simple calculus. Then, Counting the indepen-
dent coefficients we determine that A admits m+

∑m
i=1 nini+1 independent nearly-

Frobenius structures.

Corollary 4.11. If n1 = n2 = · · · = nm = t, with t ≥ 3, then Frobdim(A) > dimk(A).

Proof. In this case the dimension of A, as vector space, is

dimk(A) =
m
(
t2 + 3t

)
2

and Frobdim(A) = m
(
1+t2

)
. If we compare these expressions we conclude that Frobdim(A) >

dimk(A) if t > 2.
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