Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12008/47504
How to cite
Title: | Quasi-linear fractional-order operators in Lipschitz domains. |
Authors: | Borthagaray, Juan Pablo Li, Wenbo Nochetto, Ricardo H. |
Type: | Preprint |
Keywords: | Fractional quasi-linear operators, Besov regularity, Lipschitz domains, Finite element approximation |
Issue Date: | 2024 |
Abstract: | We prove Besov boundary regularity for solutions of the homogeneous Dirichlet problem for fractional-order quasi-linear operators with variable coefficients on Lipschitz domains Ω of Rd. Our estimates are consistent with the boundary behavior of solutions on smooth domains and apply to fractional p-Laplacians and operators with finite horizon. The proof exploits the underlying variational structure and uses a new and flexible local translation operator. We further apply these regularity estimates to derive novel error estimates for finite element approximations of fractional p-Laplacians and present several simulations that reveal the boundary behavior of solutions. |
IN: | SIAM Journal on Mathematical Analysis, vol. 56 , no. 3, 2024, pp. 4006-4039. |
Sponsors: | Proyecto ANII - FCE_3_2022_1_172393 (Fondo Clemente Estable, modalidad II). |
Citation: | Borthagaray, J., Li, W. y Nochetto, R. Quasi-linear fractional-order operators in Lipschitz domains [Preprint]. Publicado en: SIAM Journal on Mathematical Analysis, 2024, vol. 56 , no. 3, pp. 4006-4039. DOI: 10.1137/23M1575871. |
Appears in Collections: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) Publicaciones académicas y científicas - Facultad de Ingeniería |
This item is licensed under a Creative Commons License