english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/47504 How to cite
Title: Quasi-linear fractional-order operators in Lipschitz domains.
Authors: Borthagaray, Juan Pablo
Li, Wenbo
Nochetto, Ricardo H.
Type: Preprint
Keywords: Fractional quasi-linear operators, Besov regularity, Lipschitz domains, Finite element approximation
Issue Date: 2024
Abstract: We prove Besov boundary regularity for solutions of the homogeneous Dirichlet problem for fractional-order quasi-linear operators with variable coefficients on Lipschitz domains Ω of Rd. Our estimates are consistent with the boundary behavior of solutions on smooth domains and apply to fractional p-Laplacians and operators with finite horizon. The proof exploits the underlying variational structure and uses a new and flexible local translation operator. We further apply these regularity estimates to derive novel error estimates for finite element approximations of fractional p-Laplacians and present several simulations that reveal the boundary behavior of solutions.
IN: SIAM Journal on Mathematical Analysis, vol. 56 , no. 3, 2024, pp. 4006-4039.
Sponsors: Proyecto ANII - FCE_3_2022_1_172393 (Fondo Clemente Estable, modalidad II).
Citation: Borthagaray, J., Li, W. y Nochetto, R. Quasi-linear fractional-order operators in Lipschitz domains [Preprint]. Publicado en: SIAM Journal on Mathematical Analysis, 2024, vol. 56 , no. 3, pp. 4006-4039. DOI: 10.1137/23M1575871.
Appears in Collections:Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)
Publicaciones académicas y científicas - Facultad de Ingeniería

Files in This Item:
File Description SizeFormat  
BLN24.pdfPreprint826,8 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons