
QUASI-LINEAR FRACTIONAL-ORDER OPERATORS IN

LIPSCHITZ DOMAINS

JUAN PABLO BORTHAGARAY, WENBO LI, AND RICARDO H. NOCHETTO

Abstract. We prove Besov boundary regularity for solutions of the homoge-

neous Dirichlet problem for fractional-order quasi-linear operators with vari-
able coefficients on Lipschitz domains Ω of Rd. Our estimates are consistent

with the boundary behavior of solutions on smooth domains and apply to frac-

tional p-Laplacians and operators with finite horizon. The proof exploits the
underlying variational structure and uses a new and flexible local translation

operator. We further apply these regularity estimates to derive novel error esti-

mates for finite element approximations of fractional p-Laplacians and present
several simulations that reveal the boundary behavior of solutions.

1. Introduction

In recent years, fractional-order and, more generally, nonlocal operators have
received a great deal of attention in applied sciences and engineering. This is
mainly because such operators arise in jump processes modeling the ubiquitous
phenomenon of anomalous diffusion [?]. In this vein, the fractional Laplacian,
an outstanding nonlocal operator, arises as a limit of a long-jump random walk
[?]. Among other applications of nonlocal operators, we mention finance [?, ?],
ground-water solute transport [?], and biological systems with binding, crowding,
or trapping, such as electrodiffusion of ions within nerve cells [?, ?].

For problems with a variational structure, finite element methods provide the
best approximation in the energy norm, and are amenable to an analysis with low
regularity conditions. In our setting, the latter is fundamental because solutions of
fractional-order problems generically develop algebraic boundary layers. Solution
regularity estimates in the Sobolev scale are a key ingredient to prove a priori
convergence rates for the finite element discretization of such problems.

However, most progress in that direction and most computational studies have
been limited to either linear or semi-linear problems. This paper deals with fractional-
order quasi-linear operators. We prove elliptic regularity estimates up to the bound-
ary of the domain, which is only assumed to be bounded and Lipschitz. The
model operator we consider is the so-called (p, s)-fractional Laplacian (s ∈ (0, 1),
p ∈ (1,∞)), but our theory is also valid for a broader class of operators, includ-
ing operators with finite horizon. In this regard, we remark that our regularity
estimates for finite-horizon operators are even new for linear problems. As an ap-
plication of our regularity estimates, we consider direct finite element discretization
of the problems under study and prove convergence rates in the energy norm.

Let us make precise the problem setting in this paper. Let Ω ⊂ Rd (d ≥ 1)
be a bounded, Lipschitz domain, s ∈ (0, 1), and p ∈ (1,∞). We consider energy
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functionals whose domain is the fractional-order Sobolev space W̃ s
p (Ω), namely

functions in W s
p (Rd) that vanish in Ωc := Rd \ Ω. More precisely, for a given

function G : Rd × Rd × R→ (0,∞), with (x, y, ρ) 7→ G(x, y, ρ), and f ∈ (W̃ s
p (Ω))′,

we are interested in minimizers of the energy

(1.1) F(u) :=

∫∫
QΩ

G

(
x, y,

u(x)− u(y)

|x− y|s

)
1

|x− y|d
dydx− 〈f, u〉.

Above, 〈·, ·〉 stands for the duality pairing between (W̃ s
p (Ω))′ and W̃ s

p (Ω) and

QΩ := (Rd × Rd) \ (Ωc × Ωc).

Specific requirements on G are listed in Hypothesis ?? below. The Gateaux differ-

ential of F at u is given by A : W̃ s
p (Ω)→ (W̃ s

p (Ω))′,
(1.2)

Au(x) :=

∫
Rd

[
Gρ

(
x, y,

u(x)− u(y)

|x− y|s

)
−Gρ

(
y, x,

u(y)− u(x)

|x− y|s

)]
1

|x− y|d+s
dy,

where Gρ denotes the derivative of G with respect to ρ. For the moment, let us
assume that G satisfies the relation G(x, y, ρ) = G(y, x,−ρ) for a.e. x, y, ρ. While
this assumption allows us to write the minimization problem in a strong form in a
concise fashion, it is not necessary for our theoretical results. Under this additional
condition, we have Gρ(x, y, ρ) = −Gρ(y, x,−ρ) for a.e. x, y, ρ and we can write

(1.3) Au(x) := 2

∫
Rd
Gρ

(
x, y,

u(x)− u(y)

|x− y|s

)
1

|x− y|d+s
dy.

Minimizers of (??) are weak solutions of the homogeneous Dirichlet problem for
the operator A:

(1.4)

{
Au = f in Ω,
u = 0 in Ωc.

We assume standard hypotheses on G in order to apply the direct method in the

calculus of variations. As a prototypical example, we consider G(x, y, ρ) =
Cd,s,p

2p |ρ|
p

with Cd,s,p defined below. Then, Gρ(x, y, ρ) =
Cd,s,p

2 |ρ|p−2ρ, and

(1.5) Au(x) = (−∆)spu(x) := Cd,s,p

∫
Rd

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|d+sp
dy

is the so-called fractional (p, s)-Laplacian (or fractional p-Laplacian of order s). We
define the normalizing constant Cd,s,p as

(1.6) Cd,s,p =
s(1− s)p Γ(ps+d2 ) 22s−2

π
d−1

2 Γ( (p−2)s+3
2 )Γ(2− s)

.

This choice is somewhat arbitrary, but for p = 2 it allows us to recover the integral
fractional Laplacian, which is the pseudodifferential operator with symbol |ξ|2s.
Moreover, for every smooth function v ∈ C∞c (Rd) we have the asymptotic behaviors
[?, ?, ?]

(1.7) lim
s→0+

(−∆)spv = |v|p−2v, lim
s→1−

(−∆)spv = −∇ · (|∇v|p−2∇v).

We also point out that the integral in (??) needs to be understood in the principal
value sense if s ≥ 1− 1

p .
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Another way to write the operator in (??) is

(1.8) (−∆)spu(x) = 2

∫
Rd

(
|u(x)− u(y)|
|x− y|s

)p−2
(u(x)− u(y))

|x− y|d+2s
dy,

which suggests that, heuristically, one can understand the fractional (p, s)-Laplacian

as a weighted fractional Laplacian of order s, with a weight
(
|u(x)−u(y)|
|x−y|s

)p−2

. This is

analogous to the local case, for which the p-Laplacian (−∆)pu := −div(|∇u|p−2∇u)
can be regarded as a Laplacian with weight |∇u|p−2. The Dirichlet problem for the
local p-Laplacian arises in a number of models of physical processes, including
non-Newtonian fluids [?], turbulent flows in porous media [?], and global climate
modeling [?]. We refer to [?] for a historical account and other applications of this
operator, and to [?, ?, ?] for its numerical treatment.

The representation (??) also shows that the operator (??) corresponds to a
degenerate diffusion if p > 2 and to a singular one if p < 2. We refer to [?]
for several motivations for considering nonlinear operators like (??), to [?] for a
thorough discussion about existence and regularity results for problems driven by
the fractional (p, s)-Laplacian, and to [?] for a monotone finite difference scheme
with consistency error estimates for C4 functions and applications to the Cauchy
problem for such an operator.

Depending on whether the resulting operator A in (??) is degenerate or singular,
our regularity estimates are somewhat different from one another. The main result
of our paper is ??, that derives Besov regularity estimates for weak solutions to
(??) under suitable assumptions on the nonlinearity G (see Hypothesis ?? below).
Applied to the (p, s)-Laplacian (??), such a theorem reads as follows.

Theorem A (maximal Besov regularity). Let Ω be a bounded Lipschitz domain,

s ∈ (0, 1), p ∈ (1,∞), p′ = p
p−1 , and u ∈ W̃ s

p (Ω) be a weak solution to (??) with

the operator A given by (??).

If p ≥ 2 and f ∈ B
−s+ 1

p′

p′,1 (Ω), then u ∈ Ḃs+
1
p

p,∞ (Ω) and

(1.9) ‖u‖
Ḃ
s+ 1

p
p,∞ (Ω)

. ‖f‖
1
p−1

B
−s+ 1

p′
p′,1 (Ω)

.

If p < 2 and f ∈ B−s+
1
2

p′,1 (Ω), then u ∈ Ḃs+
1
2

p,∞ (Ω) and

(1.10) ‖u‖
Ḃ
s+ 1

2
p,∞ (Ω)

. ‖f‖
2−p
p−1

W−s
p′ (Ω)

‖f‖
B
−s+ 1

2
p′,1 (Ω)

.

The hidden constants in (??) and (??) depend on d, s, p, and Ω.

These Besov estimates extend classical ones [?, Theorems 2 and 2’] to the
fractional setting. To check optimality, we consider the prototypical 1d-function
v(x) = xs+, which mimics the boundary behavior of solutions of (??) for the oper-
ator (??), cf. [?, ?, ?, ?]. A simple calculation using second differences shows that

v ∈ Bs+1/p
p,∞ (Ω) for all p ∈ (1,∞), which revals that (??) is optimal while (??) is

suboptimal. Moreover, by a simple embedding argument, (??) and (??) give rise
to Sobolev regularity estimates (cf. ??). Here, we only state the result applied to
the (p, s)-Laplacian.
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Corollary (maximal Sobolev regularity). Let the assumptions of ?? be satisfied.

For p ∈ [2,∞) and f ∈ B−s+1/p′

p′,1 (Ω) then

‖u‖
W̃
s+ 1

p
−ε

p (Ω)
. ε−

1
p ‖f‖

1
p−1

B
−s+ 1

p′
p′,1 (Ω)

is valid provided ε ∈ (0, s+ 1/p). If p ∈ (1, 2) and f ∈ B−s+1/2
p′,1 (Ω) then

‖u‖
W̃
s+ 1

2
−ε

p (Ω)
. ε−

1
p ‖f‖

2−p
p−1

W−s
p′ (Ω)

‖f‖
B
−s+ 1

2
p′,1 (Ω)

holds provided ε ∈ (0, s+ 1/2).

For p = 2, this estimate turns out to be consistent with well-known optimal reg-
ularity for solutions to the Dirichlet problem for the integral fractional Laplacian
on smooth domains, cf. [?, ?, ?]. Importantly, our estimates are valid for Lipschitz
domains and in that sense generalize the ones derived in [?, ?] to a quasi-linear
setting. Additionally, our estimates are valid under general conditions on the func-
tion G. In this vein, we point out to [?] where, for a class of nonlinear operators
related to the ones in this work, analysis is performed in fractional-order Orlicz-
Sobolev spaces and Hölder regularity estimates are derived for Dirichlet problems
on bounded C1,1 domains.

Finally, the maximal Besov regularity estimates and the continuity properties

of the solution operator in case f ∈ W−sp′ (Ω) = (W̃ s
p (Ω))′ imply the continuity of

the solution operator in intermediate spaces (cf. ??). For the (p, s) Laplacian, we
obtain the following.

Corollary (regularity pickup for rough data). Let the assumptions of ?? be satis-
fied, and let θ ∈ (0, 1). Then, the solution operator f 7→ u is bounded between the
following spaces

if p ≥ 2 and f ∈W
−s+ θ

p′

p′ (Ω) ⇒ u ∈ W̃ s+ θ
p

p (Ω);

if 1 < p < 2 and f ∈W−s+
θ
2

p′ (Ω) ⇒ u ∈ W̃ s+ θ
2

p′ (Ω).

The paper is organized as follows. ?? collects preliminary material about func-
tion spaces and Lipschitz domains, introduces a flexible local translation operator
that plays an instrumental role in our derivation of regularity estimates, specifies
the assumptions we require on the energy, and discusses the use of localized trans-
lations in the proof of regularity of energy minimizers. ?? contains the core of the
paper, and studies the regularity of solutions through the derivation of suitable en-
ergy bounds. It also discusses the extension of the technique to operators with finite
horizon and truncated Laplacians in the linear setting. ?? proposes and analyzes
a finite element discretization of problems of the form (??), and exploits (??) and
(??) to prove error bounds for all p ∈ (1,∞). Finally, ?? exhibits some numerical
experiments that explore the accuracy of this approach and the boundary behavior
of solutions to the (p, s)-Laplacian (??) and linear truncated Laplacians.

2. Notation and assumptions

This section establishes the notation and collects some preliminary results. We
provide some discussion on function spaces and Lipschitz domains. We analyze
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function space characterizations by means of translation operators, discuss the re-
lation between these translations and the regularity of minimizers of (??), and
introduce a suitable localized translation operator to derive regularity estimates.
Finally, we make explicit assumptions on the energy, discuss some of their conse-
quences, and comment on how they apply to the model operator (??).

Given a, b ∈ R, we write a . b if a ≤ cb for some non-essential constant c.
The value of such a constant may vary from one occurrence to another. When
emphasizing the dependency of the constant c, we retain the notation a ≤ cb. If
a . b and b . a, we write a ' b.

2.1. Sobolev and Besov spaces. Here, we briefly review some important facts
about Sobolev and Besov spaces. We follow the notation from [?] and refer to that
work for further details.

Given σ ∈ (0, 1) and p ∈ [1,∞), we consider the zero-extension Sobolev space

W̃σ
p (Ω) :=

{
v ∈Wσ

p (Rd) : supp v ⊂ Ω
}

;

this is a Banach space furnished with the norm

‖v‖
W̃σ
p (Ω)

:= |v|Wσ
p (Rd) =

(
Cd,s,p

2

∫∫
Rd×Rd

|v(x)− v(y)|p

|x− y|d+σp
dx dy

)1/p

.

Because functions in W̃σ
p (Ω) vanish in Ωc, the integrand above vanishes on Ωc×Ωc

and one can effectively compute the integral over QΩ = (Rd × Rd) \ (Ωc × Ωc).
We define Besov spaces by real interpolation. Given a pair of compatible Banach

spaces (X0, X1), u ∈ X0 +X1, and t > 0, we consider the K-functional

(2.1) K(t, u) := inf {‖u0‖X0
+ t‖u1‖X1

: u = u0 + u1, u0 ∈ X0, u1 ∈ X1} .

For θ ∈ (0, 1) and q ∈ [1,∞], we define the interpolation spaces[
X0, X1

]
θ,q

:= {u ∈ X0 +X1 : ‖u‖(X0,X1)θ,q <∞},

where

(2.2) ‖u‖[X0,X1]θ,q :=


[
qθ(1− θ)

∫∞
0
t−(1+θq)|K(t, u)|q dt

]1/q
if 1 ≤ q <∞,

supt>0 t−θ|K(t, u)| if q =∞.

The normalization factor qθ(1 − θ) in (??) guarantees the correct scalings in the
limits θ → 0, θ → 1 and q → ∞; see [?, Appendix B] for a detailed proof in the
case of interpolation between Sobolev spaces with integrability index 2. Because
we are interested in spaces with differentiability order between zero and two, given
p ∈ [1,∞) we let X0 := Lp(Ω), X1 := W 2

p (Ω), σ ∈ (0, 2) and q ∈ [1,∞] to define
the Besov spaces

Bσp,q(Ω) :=
[
Lp(Ω),W 2

p (Ω)
]
σ/2,q

, Ḃσp,q(Ω) := {v ∈ Bσp,q(Ω) : supp v ⊂ Ω}.

By reiteration, we have the following result regarding interpolation of Besov spaces
(cf. [?, Theorem 6.4.5]): given σ0 6= σ1, 1 ≤ p, q0, q1, r ≤ ∞ and 0 < θ < 1,

(2.3)
(
Bσ0
p,q0(Ω), Bσ1

p,q1(Ω)
)
θ,r

= Bσp,r(Ω), where σ = (1− θ)σ0 + θσ1.

Importantly, we have Bσp,p(Ω) = Wσ
p (Ω) for all p ∈ [1,∞), σ ∈ (0, 2) \ {1}. In the

case σ = 1, we only have the equality B1
2,2(Ω) = Hσ(Ω), while B1

p,p(Ω) ⊂ W 1
p (Ω)

if p < 2 and B1
p,p(Ω) ⊃ W 1

p (Ω) if p > 2, cf. [?, §7.67]. Moreover, we have the
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following inclusions between Besov spaces on bounded Lipschitz domains [?, §3.2.4,
§3.3.1]:

Bσp,q0(Ω) ⊂ Bσp,q1(Ω), if σ > 0, 1 ≤ p ≤ ∞, 1 ≤ q0 ≤ q1 ≤ ∞;
Bσ1
p,q1(Ω) ⊂ Bσ0

p,q0(Ω) if 0 < σ0 < σ1, 1 ≤ p ≤ ∞, 1 ≤ q0, q1 ≤ ∞.
We are interested in making precise the statement about inclusion of a higher-order
Besov space with integrability index p ∈ [1,∞) and second parameter q =∞ into a
lower-order Sobolev space with the same integrability index. Concretely, the next
lemma shows the scaling of the continuity constant.

Lemma 2.1 (embedding). Let Ω ⊂ Rd be a bounded Lipschitz domain, p ∈ [1,∞),
σ ∈ (0, 2) \ {1}, and ε ∈ (0, 2− σ). Then, Bσ+ε

p,∞ (Ω) ⊂Wσ
p (Ω) with

(2.4) ‖v‖Wσ
p (Ω) ≤

(
σ(2− σ)1+ ε

σ

ε

) 1
p

‖v‖Bσ+ε
p,∞(Ω) ∀ v ∈ Bσ+ε

p,∞ (Ω).

Proof. We exploit the characterization of Besov and fractional-order Sobolev spaces
as interpolation spaces between integer-order Sobolev spaces. More precisely, if the
K-functional corresponds to interpolation between the spaces X0 = Lp(Ω) and
X1 = W 2

p (Ω), we recall the norm definitions

‖v‖Bσ+ε
p,∞(Ω) = sup

t>0

(
t−

σ+ε
2 |K(t, v)|

)
,

and

‖v‖pWσ
p (Ω) =

pσ(2− σ)

4

∫ ∞
0

t−1−σp2 |K(t, v)|pdt

for σ ∈ (0, 2) \ {1}, according to the remark following (??). We split the integral
above as the sum of the integrals between 0 and N and between N and ∞, with
N > 0 to be chosen. A straightforward calculation gives∫ N

0

t−1−σp2 |K(t, v)|pdt ≤ sup
t>0

t−
(σ+ε)p

2 |K(t, v)|p
∫ N

0

t−1+ εp
2 dt =

2N
εp
2

εp
‖v‖p

Bσ+ε
p,∞(Ω)

.

Additionally, for any v ∈ Bσ+ε
p,∞ (Ω) and t ≥ 0, we choose the trivial decomposition

v = v + 0 in (??) to obtain

|K(t, v)| ≤ ‖v‖Lp(Ω) ≤ ‖v‖Wσ
p (Ω).

This gives rise to∫ ∞
N

t−1−σp2 |K(t, v)|pdt ≤ ‖v‖pWσ
p (Ω)

∫ ∞
N

t−1−σp2 dt =
2N−

σp
2

pσ
‖v‖pWσ

p (Ω),

and thus

‖v‖pWσ
p (Ω) ≤

σ(2− σ)N
εp
2

2ε
‖v‖p

Bσ+ε
p,∞(Ω)

+
(2− σ)N−

σp
2

2
‖v‖pWσ

p (Ω).

It now suffices to fix N such that (2−σ)N−
σp
2

2 = 1
2 , namely N = (2− σ)

2
σp , and kick

back the last term in the right hand side above to arrive to the desired estimate
(??). �

Given p ∈ [1,∞], we denote by p′ its conjugate exponent, namely p′ = p
p−1 . For

σ ∈ (0, 1) and p, q ∈ (1,∞], we consider W−1
p (Ω) := (W̃ 1

p′(Ω))′, define

B−σp,q (Ω) :=
(
Lp(Ω),W−1

p (Ω)
)
σ,q
,



QUASI-LINEAR FRACTIONAL-ORDER OPERATORS 7

and point out that we have the duality [?]

Ḃσp′,q′(Ω) = (B−σp,q (Ω))′.

It is common practice to furnish Besov spaces with equivalent norms based on
Lp-norms of difference quotients, instead of the interpolation norm. Given ρ > 0,

Ωρ := {x ∈ Ω : dist(x, ∂Ω) > ρ}, Ωρ := {x ∈ Rd : dist(x,Ω) < ρ},

and a set of admissible directions D ⊂ Rd, typically a ball, we denote

|v|Bσp,q(Ω;D) :=
(
qσ(2− σ)

∫
D

‖vh − 2v + v−h‖qLp(Ω|h|)

|h|d+qσ
dh
)1/q

for p, q ∈ [1,∞) while for q =∞ we let

|v|Bσp,∞(Ω;D) := sup
h∈D

‖vh − 2v + v−h‖Lp(Ω|h|)

|h|σ
,

where vh(x) := v(x + h) is the translation with vector h ∈ Rd. It is well-known
that, if D is a ball, then the norm ‖ · ‖Lp(Ω) + | · |Bσp,q(Ω;D) is equivalent to the Besov

norm ‖ · ‖Bσp,q(Ω) defined through interpolation [?, Theorem 7.47]. Moreover, [?,

Proposition 2.2] shows that balls D can be replaced by suitable convex cones in the
definition of Besov seminorms for q =∞. More precisely, let us assume D ⊂ Rd is
bounded and star-shaped with respect to the origin. We say that D generates Rd
if there exists ρ0(D) > 0 such that for every ρ ≤ ρ0(D) and every h ∈ Dρ(0), the
ball of radius ρ and center 0, there exists {hj}dj=1 ⊂ D ∪ (−D) satisfying

(2.5) h =

d∑
j=1

hj ,

d∑
j=1

|hj | ≤ c|h|

with a constant c > 0 only dependent on D.
Let us briefly comment on the use of d vectors in the last definition. Since 0 ∈ D,

one could set hj = 0 if needed. The worst case is the one in which {v1, . . . , vd}
forms a basis of Rd and D = {λvi : λ ∈ [0, 1], i = 1, . . . , d}: in such a case, in
general one must take combinations with d vectors in (??).

We are mostly interested in the case in which D is a convex cone generating
Rd. In that case, one can effectively take combinations with two vectors in (??).
Indeed, because D has nonempty interior one can take h1 ∈ int(D) and ρ0 such
that Dρ0(h1) ⊂ D. Then, h2 := h1 + h ∈ D for every h ∈ Dρ0(0), and this is
precisely (??).

The following equivalence is proved in [?, Proposition 2.2].

Proposition 2.1 (Besov seminorms using cones). Let D be a convex cone gener-
ating Rd and let B ⊂ Rd be a ball. If σ ∈ (0, 2) and p ∈ [1,∞), then for every
function v : Rd → R we have |v|Bσp,∞(Ω;D) ' |v|Bσp,∞(Ω;B).

We will decompose Ω into overlapping balls and apply Proposition ?? to subdo-
mains ω made of intersections of such balls with Ω. The convex cone D will depend
on ω and will be dictated by the Lipschitz property of Ω. However, we will omit
writing D in Bσp,q(ω) for simplicity of notation but without compromising clarity.

We can estimate higher-order Besov norms, possibly of order higher than one,
in terms of difference quotients of Besov norms of order less than one. We express
this instrumental reiteration property as follows and refer to [?, Proposition 2.1].
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Proposition 2.2 (reiteration of Besov seminorms). Let ω ⊂ Rd be a bounded
Lipschitz domain, s ∈ (0, 1), p, q ∈ [1,∞], σ ∈ (0, 1] and let D be a set generating
Rd and star-shaped with respect to the origin. Then,

|v|Bs+σp,q (ω) .

(∫
D

|v − vh|qW s
p (ω)

|h|d+qσ
dh

)1/q

, q ∈ [1,∞),

|v|Bs+σp,∞(ω) . sup
h∈D

1

|h|σ
|v − vh|W s

p (ω).

2.2. Lipschitz domains. We next briefly state a few well-known but relevant
results regarding Lipschitz domains in Rd.

Definition 2.1 (admissible outward vectors). For every x0 ∈ Rd and ρ ∈ (0, 1],
we define the set of admissible outward vectors

Oρ(x0) = {h ∈ Rd : |h| ≤ ρ, (D2ρ(x0) \ Ω) + th ⊂ Ωc, ∀t ∈ [0, 1]}.

An important fact about bounded Lipschitz domains is that they satisfy a uni-
form cone property. This can be stated in the following fashion [?, §1.2.2].

Proposition 2.3 (uniform cone property). If Ω is a bounded Lipschitz domain,
then there exist ρ ∈ (0, 1], θ ∈ (0, π] and a map n : Rd → Sd−1 such that, for every
x ∈ Rd,

Cρ(n(x), θ) := {h ∈ Rd : |h| ≤ ρ, h · n ≥ |h| cos θ} ⊂ Oρ(x).

Besov seminorms can be equivalently written as sums of norms over partitions,
as long as the partitions have some overlap. We refer to [?, Lemma 2.6].

Lemma 2.2 (localization). Let p, q ∈ [1,∞] and σ ∈ (0, 2). Let {Dj}Jj=1 be a finite
covering of Ω by balls of radius ρ, Dj = Dρ(xj). Then, v ∈ Bσp,q(Ω) if and only if

v
∣∣
Ω∩Dj

∈ Bσp,q(Ω ∩Dj) for all j = 1, . . . , J , and

(2.6) ‖v‖pBσp,q(Ω) '
J∑
j=1

‖v‖pBσp,q(Ω∩Dj).

Moreover, for δ ≥ ρ, let {Dj}Jj=1 be a finite covering of Ωδ and let v : Rd → R be

such that supp(v) ⊂ Ω. Then, v ∈ Ḃσp,q(Ω) if and only if v
∣∣
Dj
∈ Bσp,q(Dj) for all

j = 1, . . . , J , and

(2.7) ‖v‖p
Ḃσp,q(Ω)

' |v|p
Ḃσp,q(Ω)

'
J∑
j=1

|v|pBσp,q(Dj).

The equivalence constants above depend on s, p, q,Ω and the covering chosen.

2.3. Localized translation operator. Our next goal is to construct a smooth
operator that resembles a translation around a certain given point x0 ∈ Rd, while
coincides with the identity away from x0. Such localized translation operator plays
an instrumental role in our derivation of regularity estimates.

Given x0 and ρ, we fix a cut-off function φ such that 0 ≤ φ ≤ 1, φ ≡ 1 on the ball
Dρ(x0) of radius ρ centered at x0, supp(φ) ⊂ D2ρ(x0). Given h ∈ Rd, we define

(2.8) Thv(x) := v
(
x+ hφ(x)

)
=
(
v ◦ Sh

)
(x),
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where the map Sh := I+hφ is defined from Rd to Rd. We restrict our consideration
to |h| small enough such that the Jacobian of Sh satisfies

(2.9)
1

2
I 4 ∇Sh = I + h⊗∇φ 4 2I.

and thus Sh is a one-to-one mapping from D2ρ(x0) to D2ρ(x0). It is also one-to-one
from Rd to Rd and coincides with the identity in D2ρ(x0)c.

In [?, ?], the localized translation operator T̃hv := φvh + (1− φ)v was employed

instead. The translation operator Th in (??) is somewhat more flexible than T̃h,
in the sense that it gives rise to cleaner regularity estimates in which a priori one
gains one full derivative; compare the right-hand side in (??) below with the one
in [?, formula (3.3)]. This leads to a simpler bootstrapping argument than in [?].
We return to this point in ?? below.

Remark 1 (properties of Sh and S−1
h ). Some important properties of the trans-

formations Sh and S−1
h follow immediately from their definitions. We have the

inequalities

|Sh(x)− x| . |h|, ∀x ∈ Rd,(2.10)

|det(∇Sh(x))− 1| . |h|, ∀x ∈ Rd,(2.11) ∣∣∣∣ |x− y|
|Sh(x)− Sh(y)|

− 1

∣∣∣∣ . |h|, ∀x, y ∈ Rd.(2.12)

Analogous properties also hold for S−1
h .

Remark 2 (boundedness of translations). Clearly, the operator Th in (??) is bounded
from Lp(Rd) to Lp(Rd) and, more in general, from W k

p (Rd) to W k
p (Rd) for every

k ∈ N. Therefore, it is also bounded from Bσp,q(Rd) to Bσp,q(Rd) for any non-integer
σ > 0. Moreover, if h ∈ Oρ(x0) is an admissible outward vector (cf. Definition ??)

and v ∈ Ḃσp,q(Ω), we have

x ∈ Ωc ∩D2ρ(x0) : 0 ≤ φ(x) ≤ 1⇒ Sh(x) = x+ hφ(x) ∈ Ωc ⇒ Thv(x) = 0,

x ∈ Ωc \D2ρ(x0) : φ(x) = 0⇒ Thv(x) = v(x) = 0.

Therefore, Th is also a bounded operator from Ḃσp,q(Ω) to Ḃσp,q(Ω).

Lemma 2.3 (moduli of continuity). Given ρ > 0, x0 ∈ Rd, and a function φ as
above, we consider the localized translation operator Th given in (??) with h ∈ Rd
such that (??) holds. Then, for all p, q ∈ [1,∞] and σ ∈ (0, 1) we have

(2.13) ‖v − Thv‖Lp(D2ρ(x0)) . |h|σ‖v‖Bσp,q(D2ρ(x0)) ∀v ∈ Bσp,q(D2ρ(x0)).

Moreover, for all r > 0 and σ ∈ [0, 1], we have

(2.14) ‖v − Thv‖Brp,q(D2ρ(x0)) . |h|σ‖v‖Br+σp,q (D2ρ(x0)) ∀v ∈ Br+σp,q (D2ρ(x0)).

Proof. In first place, the boundedness of Th : Lp(D2ρ(x0))→ Lp(D2ρ(x0)) yields

‖v − Thv‖Lp(D2ρ(x0)) . ‖v‖Lp(D2ρ(x0)) ∀v ∈ Lp(D2ρ(x0)),

while a standard calculation, exploiting the fact that Thv− v has a vanishing trace
in D2ρ(x0), gives

(2.15) ‖v − Thv‖Lp(D2ρ(x0)) . |h| ‖∇v‖Lp(D2ρ(x0)) ∀v ∈W 1
p (D2ρ(x0)).

Estimate (??) follows by interpolation.
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We next consider higher-order derivatives. Given a positive integer k and α with
|α| = k, a direct calculation gives for any sufficiently smooth v and x ∈ D2ρ(x0),

|(Dαv) ◦ Sh(x)−Dα (v ◦ Sh(x))| . |h|‖φ‖Ck(Rd)

∑
0<|α′|≤k

∣∣(Dα′v
)
◦ Sh(x)

∣∣.
Consequently, applying (??) to (Dαv) ◦ Sh, we deduce

‖v − Thv‖Wk
p (D2ρ(x0)) = ‖v − v ◦ Sh‖Wk

p (D2ρ(x0))

≤
∑

0≤|α|≤k

‖(Dαv)◦Sh−Dα (v◦Sh)‖Lp(D2ρ(x0))+‖(Dαv)◦Sh−Dαv‖Lp(D2ρ(x0))

. |h|
∑

0<|α′|≤k+1

‖Dα′v‖Lp(D2ρ(x0)) ≤ |h|‖v‖Wk+1
p (D2ρ(x0)).

By using the boundedness of Th on W k
p (Rd) and interpolation, we deduce that

‖v − Thv‖Wk
p (D2ρ(x0)) . |h|σ‖v‖Bk+σ

p,q (D2ρ(x0)) ∀v ∈ Bk+σ
p,q (D2ρ(x0))

for σ ∈ (0, 1). Finally, we obtain (??) by combining this estimate with (??). �

Remark 3. The only properties of Sh we exploited in the previous lemma are the
fact that it maps D2ρ(x0) onto D2ρ(x0), and that the resulting translation operator
Thv = v ◦ Sh is stable in W k

p (D2ρ(x0)) and satisfies properties like (??). Thus, the

same arguments can be applied to the translation operator v ◦ S−1
h . In particular,

we have

‖v − v ◦ S−1
h ‖Wk

p (D2ρ(x0)) . |h|σ|v|Bk+σ
p,q (D2ρ(x0)) ∀v ∈ Bk+σ

p,q (D2ρ(x0))

for σ ∈ (0, 1), and

‖v − v ◦ S−1
h ‖Brp,q(D2ρ(x0)) . |h|σ‖v‖Br+σp,q (D2ρ(x0)) ∀v ∈ Br+σp,q (D2ρ(x0))

for r > 0, σ ∈ [0, 1].

2.4. Assumptions on the energy. We recall the energy (??),

F(u) =

∫∫
QΩ

G

(
x, y,

u(x)− u(y)

|x− y|s

)
1

|x− y|d
dydx− 〈f, u〉.

Here, we list the conditions we require on this functional, discuss some consequences
of these conditions, and how they apply to the problems we are interested in.

Hypothesis 2.1. The function G : Rd × Rd × R → (0,∞) satisfies the following
conditions.

1. Convexity. The function ρ 7→ G(x, y, ρ) is uniformly convex for each x, y ∈ Rd.

2. Space continuity. There exists β ∈ (0, 1] such that G is β-Hölder continuous
with respect to the space variables: for all x, y, x′, y′ ∈ Rd and ρ ∈ R,

(2.16) |G(x, y, ρ)−G(x′, y′, ρ)| ≤ C(|x− x′|β + |y − y′|β)|ρ|p.

3. p-growth. There exists some p ∈ (1,∞) such that, for all x, y ∈ Rd, G(x, y, ρ)
is differentiable with respect to ρ with

(2.17) |G(x, y, ρ)| ≤ C|ρ|p, |Gρ(x, y, ρ)| ≤ C|ρ|p−1.
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4. Monotonicity. There exists α > 0 such that, if 2 ≤ p < ∞ in the p-growth
condition, then for all x, y,∈ Rd and ρ, ρ′ ∈ R,

(Gρ(x, y, ρ)−Gρ(x, y, ρ′))(ρ− ρ′) ≥ α|ρ− ρ′|p,
while if 1 < p < 2, then for all x, y,∈ Rd and ρ, ρ′ ∈ R,

(Gρ(x, y, ρ)−Gρ(x, y, ρ′))(ρ− ρ′) ≥ α|ρ− ρ′|2
∣∣|ρ|+ |ρ′|∣∣p−2

.

5. Continuity. There exists c > 0 such that, if 2 ≤ p < ∞ in the p-growth
condition, then

|Gρ(x, y, ρ)−Gρ(x, y, ρ′)| ≤ c|ρ− ρ′|
∣∣|ρ|+ |ρ′|∣∣p−2 ∀x, y,∈ Rd, ρ, ρ′ ∈ R,

while if 1 < p < 2, then

|Gρ(x, y, ρ)−Gρ(x, y, ρ′)| ≤ c|ρ− ρ′|p−1 ∀x, y,∈ Rd, ρ, ρ′ ∈ R.

Remark 4 (symmetry). While not strictly needed for our purposes, the following
assumption is practical for the analysis and applies to a general class of operators:

6. Symmetry. The function G is symmetric with respect to the space variables
and with respect to ρ,

G(x, y, ρ) = G(y, x, ρ), G(x, y, ρ) = G(x, y,−ρ), ∀x, y ∈ Rd, ρ ∈ R.

Under this symmetry assumption, the operator A associated with the energy
minimization problem becomes (??); otherwise, it takes the form (??).

Remark 5 (monotonicity). The monotonicity hypothesis above implies the fol-
lowing estimates for the operator A in (??). If 2 ≤ p <∞, there exists α > 0 such

that, for all u, v ∈ W̃ s
p (Ω),

(2.18) 〈Au−Av, u− v〉 ≥ α‖u− v‖p
W̃ s
p (Ω)

;

hence A is p-coercive in W̃ s
p (Ω). Instead, if 1 < p < 2, one can proceed as for

the classical p-Laplacian (see, for example, [?, Lemme 5.2 and Proposition 5.2]) to

show that for all u, v ∈ W̃ s
p (Ω)

(2.19) 〈Au−Av, u− v〉 ≥ α‖u− v‖2
W̃ s
p (Ω)

(
‖u‖

W̃ s
p (Ω)

+ ‖v‖
W̃ s
p (Ω)

)p−2

,

whence A is 2-coercive on bounded sets in W̃ s
p (Ω):

〈Au−Av, u− v〉 ≥ C(R)‖u− v‖2
W̃ s
p (Ω)

provided ‖u‖
W̃ s
p (Ω)

, ‖v‖
W̃ s
p (Ω)

≤ R. It is worth realizing that (??) cannot hold for

p < 2 and G smooth and convex [?, Remark 2.1]. This fact is responsible for the
dichotomy between (??) and (??) and reveals that our variational approach, which
hinges on (??) for p < 2, cannot improve upon (??).

Remark 6 (continuity). The continuity hypothesis implies that the operator A
satisfies the following bounds: if p ∈ (1, 2] then for all u, v ∈ W̃ s

p (Ω),

(2.20) ‖Au−Av‖W−s
p′ (Ω) ≤ C‖u− v‖

p−1

W̃ s
p (Ω)

,

while if p ∈ [2,∞) then for all u, v ∈ W̃ s,p(Ω),

(2.21) ‖Au−Av‖W−s
p′ (Ω) ≤ C

(
‖u‖

W̃ s
p (Ω)

+ ‖v‖
W̃ s
p (Ω)

)p−2

‖u− v‖
W̃ s
p (Ω)

.
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Remark 7 (solution operator). The uniform convexity of G yields existence and
uniqueness of weak solutions: given f ∈W−sp′ (Ω), the problem

(2.22) uf ∈ W̃ s
p (Ω) 〈Auf , v〉 = 〈f, v〉 ∀v ∈ W̃ s

p (Ω),

admits a unique solution, where

〈Au, v〉 =

∫∫
Rd×Rd

G̃

(
x, y,

u(x)− u(y)

|x− y|s

)
(u(x)− u(y))(v(x)− v(y))

|x− y|d+2s
dx dy

and G̃(x, y, ρ) := Gρ(x, y, ρ)/ρ. Testing (??) with v = uf (or, equivalently, setting
v ≡ 0 in (??)–(??)), we immediately reach the stability estimate

(2.23) ‖uf‖W̃ s
p (Ω)

≤ 1

α
1
p−1

‖f‖
1
p−1

W−s
p′ (Ω)

.

We now assess the continuity properties of the solution operator f 7→ uf . If we

assume ‖f‖W−s
p′ (Ω) ≤ K, then uf satisfies ‖uf‖W̃ s

p (Ω)
≤
(
K
α

) 1
p−1 in view of (??).

This shows that, denoting

BK := {f ∈W−sp′ (Ω): ‖f‖W−s
p′ (Ω) ≤ K},

and using (??), then the solution operator defined on BK is Lipschitz continuous,

(2.24) ‖uf − ug‖W̃ s
p (Ω)

≤ c(K)‖f − g‖W−s
p′ (Ω)

for p ∈ (1, 2). In contrast, if p ∈ [2,∞), then the solution map is Hölder continuous
on W−sp′ (Ω) because of (??),

(2.25) ‖uf − ug‖W̃ s
p (Ω)

≤ 1

α
1
p−1

‖f − g‖
1
p−1

W−s
p′ (Ω)

.

Fractional (p, s)-Laplacians. For p ∈ (1,∞) we consider G(x, y, ρ) =
Cd,s,p

2p |ρ|
p

in (??), which gives rise to (??). It is clear that the parameter p in this definition
corresponds to the parameter p in Hypothesis ??, and therefore the convexity and
p-growth conditions (??) hold. Moreover, because G is independent of the space
variables, it is trivially symmetric with respect to x, y, and we can take β = 1 in
(??). The monotonicity and continuity assumptions are satisfied because of the
following auxiliary identities [?, §5]: for all a, b ∈ R, we have

∣∣|a|p−2a− |b|p−2b
∣∣ ≤ { C|a− b|p−1 if 1 < p ≤ 2,

C|a− b|(|a|+ |b|)p−2 if 2 ≤ p <∞,

and (
|a|p−2a− |b|p−2b

)
(a− b) ≥

{
α|a− b|2(|a|+ |b|)p−2 if 1 < p ≤ 2,

α|a− b|p if 2 ≤ p <∞.

Therefore, the Hypothesis ?? covers fractional (p, s)-Laplace operators (??).
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2.5. Regularity of functionals. Inspired by [?], we introduce a notion of reg-
ularity of functionals that measures their sensitivity with respect to a family of
perturbations.

Definition 2.2 ((T,D, σ)-regularity). Let V be a Banach space, K ⊂ V and σ > 0.
Given a family of maps Th : K → K, with h varying on a given set D ⊂ Rd, we say
that a functional F is (T,D, σ)-regular on K if, for all v ∈ K,

ω(v) = ω(v;F , T,D, σ) := sup
h∈D

F(Thv)−F(v)

|h|σ
<∞.

Remark 8 (subadditivity). The modulus ω of (T,D, σ)-regularity is subadditive
with respect to the F-argument:

(2.26) ω(v;F1 + F2, T,D, σ) ≤ ω(v;F1, T,D, σ) + ω(v;F2, T,D, σ).

Thus, in order to prove the (T,D, σ)-regularity of F1 + F2, it suffices to show the
regularity of each of the two functionals separately.

A key consequence of the monotonicity assumption in Hypothesis ?? is the
following estimate [?, Theorem 1, Corollary 1, and E3].

Lemma 2.4 (regularity and minimizers). Let x0 ∈ Rd, ρ > 0 and h ∈ Oρ(x0).

Consider translation operators Th : W̃ s
p (Ω) → W̃ s

p (Ω) as in (??). If u solves (??)
weakly, the functional F defined in (??) satisfies Hypotheses ?? and it is (T,D, σ)-

regular on W̃ s
p (Ω) for some σ > 0, then the following hold:

• If p ≥ 2, then

(2.27) α‖u− Thu‖p
W̃ s
p (Ω)

≤ pω(u)|h|σ.

• If 1 < p < 2, then

(2.28) α‖u− Thu‖2W̃ s
p (Ω)

≤ C(p)
(
‖u‖

W̃ s
p (Ω)

+ ‖Thu‖W̃ s
p (Ω)

)2−p
ω(u)|h|σ.

Let us explain the crucial role of Lemma ?? in the proof of regularity of solutions,
and how localized translations come into play. Let Dρ(x0) be a ball with center
x0 ∈ Ω and radius ρ satisfying ?? (uniform cone property), and letD = Cρ(n(x0), θ).
For p ∈ [2,∞) we combine ?? (reiteration of Besov seminorms) with (??) to obtain

|u|p
B
s+σ/p
p,∞ (Dρ(x0))

. sup
h∈D

|u− uh|pW s
p (Dρ(x0))

|h|σ

. sup
h∈D

‖u− Thu‖p
W̃ s
p (Ω)

|h|σ
. ω(u;F , T,D, σ),

(2.29)

for σ ∈ (0, 1]. Instead for p ∈ (1, 2), combining ?? with (??) yields

|u|2
B
s+σ/2
p,∞ (Dρ(x0))

. sup
h∈D

‖u− Thu‖2W̃ s
p (Ω)

|h|σ

.
(
‖u‖

W̃ s
p (Ω)

+ ‖Thu‖W̃ s
p (Ω)

)2−p
ω(u;F , T,D, σ).

(2.30)

This shows that proving that F satisfies ?? ((T,D, σ)-regularity) for some σ ∈ (0, 1]
gives rise to local regularity of solutions.
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3. Regularity

In this section we obtain regularity estimates for solutions to (??). For that
purpose, we analyze the regularity of the functional F in (??) in the sense of
Definition ??, and exploit the crucial property that the operator Th (??) is locally

a translation and Thv ∈ W̃ s
p (Ω) for all v ∈ W̃ s

p (Ω).
We split the energy in (??) as F = FG −F1, with

FG(u) :=

∫∫
Rd×Rd

G

(
x, y,

u(x)− u(y)

|x− y|s

)
1

|x− y|d
dydx,

F1(u) := 〈f, u〉
(3.1)

and recall that, by the subadditivity property (??), we can treat the two terms
separately.

3.1. Regularity of the functionals. As a first step towards deriving regularity
estimates for minimizers of (??), we prove the regularity of F1 and FG with respect
to the family of admissible outward vectors, cf. ??. We begin with an estimate on
the linear part of the functional.

Proposition 3.1 (regularity of F1). Let q ∈ (1,∞], p ∈ (1,∞), p′ = p/(p − 1),
σ ∈ (0, 1] and t ∈ (−1, σ). If f ∈ Btp′,q′(Ω), then F1 is (T,Oρ(x0), σ)-regular in

Ḃσ−tp,q (Ω) for all x0 ∈ Ω, ρ > 0. Namely, for all v ∈ Ḃσ−tp,q (Ω)

(3.2) sup
h∈Oρ(x0)

F1(Thv)−F1(v)

|h|σ
. ‖f‖Bt

p′,q′ (D2ρ(x0)∩Ω)‖v‖Bσ−tp,q (D2ρ(x0)).

Proof. We split the proof into three steps depending on the range of t. Let σ ∈ (0, 1],

r ≥ 0, and v ∈ Ḃr+σp,q (Ω).

1. Case t ∈ (−1, 0]: We use (??) to write Thv = v ◦Sh with Sh = I+hφ, and recall

that supp(φ) ⊂ D2ρ(x0), so that v − Thv ∈ Ḃrp,q(D2ρ(x0)). We thus obtain

F1(Thv)−F1(v) = 〈f, Thv − v〉 ≤ ‖f‖B−r
p′,q′ (D2ρ(x0)∩Ω)‖Thv − v‖Ḃrp,q(D2ρ(x0)).

Next, we resort to (??) to deduce

‖Thv − v‖Brp,q(D2ρ(x0)) ≤ |h|σ‖v‖Br+σp,q (D2ρ(x0)),

which implies for all v ∈ Ḃr+σp,q (Ω)

(3.3) |F1(Thv)−F1(v)| . |h|σ‖f‖B−r
p′,q′ (D2ρ(x0)∩Ω)‖v‖Br+σp,q (D2ρ(x0)).

This establishes (??) upon setting r = −t.
2. Case t = σ < 1: Next, we prove an inequality similar (??), but having t =
σ in the left-hand side and the Lp-norm of v in the right-hand side. Let f ∈
Bσp′,q′(D2ρ(x0) ∩ Ω) and change variables to write∫

Ω

f(x) v(Sh(x)) dx =

∫
Sh(Ω)

f(S−1
h (x))v(x)|det∇S−1

h (x)| dx,
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whence,

|F1(Thv)−F1(v)| =

∣∣∣∣∣
∫
D2ρ(x0)∩Ω

[
f(S−1

h (x))|det∇S−1
h (x)| − f(x)

]
v(x) dx

∣∣∣∣∣
. ‖v‖Lp(D2ρ(x0))‖(1− | det∇S−1

h |)(f ◦ S
−1
h )‖Lp′ (D2ρ(x0)∩Ω)

+ ‖v‖Lp(D2ρ(x0))‖f ◦ S−1
h − f‖Lp′ (D2ρ(x0)∩Ω),

because (1 − |det∇S−1
h |)(f ◦ S

−1
h ) and f ◦ S−1

h − f vanish on D2ρ(x0)c. We use

Remark ?? (properties of Sh and S−1
h ) and ?? (moduli of continuity) to deduce

(3.4) |F1(Thv)−F1(v)| . |h|σ‖f‖Bσ
p′,q′ (D2ρ(x0)∩Ω)‖v‖Lp(D2ρ(x0))

3. Case t ∈ (0, σ), σ < 1: Since the mapping (f, v)→ F1(Thv)− F1(v) is bilinear,
we may interpolate between (??) with r = 0 and (??), with the same p and q in
both expressions, to infer that (??) holds as well in this case.

4. Case t ∈ (0, σ), σ = 1: We proceed as in Step 2. to derive the bound

|F1(Thv)−F1(v)| . |h|‖f‖W 1
p′ (D2ρ(x0)∩Ω)‖v‖Lp(D2ρ(x0))

and interpolate between this inequality and

|F1(Thv)−F1(v)| . |h|‖f‖Lp′ (D2ρ(x0)∩Ω)‖v‖W 1
p (D2ρ(x0))

to conclude. �

Next, we prove the regularity of the non-linear term FG, defined in (??).

Proposition 3.2 (regularity of FG). Let s ∈ (0, 1) and assume that G satis-
fies Hypothesis ?? for some p ∈ (1,∞) and β ∈ (0, 1]. Then, the functional

FG : W̃ s
p (Ω)→ R defined in (??) is (T,Oρ(x0), β)-regular in W̃ s

p (Ω) for all x0 ∈ Ω,

ρ > 0. Namely, for all v ∈ W̃ s
p (Ω) it holds that

(3.5) sup
h∈Oρ(x0)

FG(Thv)−FG(v)

|h|β
.
∫∫

QD2ρ(x0)

|v(x)− v(y)|p

|x− y|d+sp
dydx,

where QD2ρ(x0) := (D2ρ(x0)× Rd) ∪ (Rd ×D2ρ(x0)).

Proof. The change of variables (x, y) 7→ (S−1
h (x), S−1

h (y)) =: (xh, yh) leads to

FG(Thv)−FG(v) =

∫∫
Rd×Rd

G
(
x, y, Thv(x)−Thv(y)

|x−y|s

)
−G

(
x, y, v(x)−v(y)

|x−y|s

)
|x− y|d

dydx

=

∫∫
Rd×Rd

G
(
xh, yh,

v(x)−v(y)
|xh−yh|s

)
|xh − yh|d

J(x, y)dydx

−
∫∫

Rd×Rd
G

(
x, y,

v(x)− v(y)

|x− y|s

)
1

|x− y|d
dydx,

where J(x, y) := |det(∇S−1
h (x)) det(∇S−1

h (y))| for conciseness. We further split

FG(Thv)−FG(v) = I + II + III,
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with

I :=

∫∫
Rd×Rd

G
(
xh, yh,

v(x)−v(y)
|xh−yh|s

)
−G

(
xh, yh,

v(x)−v(y)
|x−y|s

)
|xh − yh|d

J(x, y) dydx,

II :=

∫∫
Rd×Rd

G
(
xh, yh,

v(x)−v(y)
|x−y|s

)
−G

(
x, y, v(x)−v(y)

|x−y|s

)
|xh − yh|d

J(x, y) dydx,

III :=

∫∫
Rd×Rd

G

(
x, y,

v(x)− v(y)

|x− y|s

)(
J(x, y)

|xh − yh|d
− 1

|x− y|d

)
dydx.

We observe that, because Sh is a one-to-one mapping on Rd that coincides with
the identity over D2ρ(x0)c, all the integrals above need to be computed on the set
QD2ρ(x0) = (D2ρ(x0)× Rd) ∪ (Rd ×D2ρ(x0)).

We first estimate I. Using (??), we have |J(x, y)| . 1. Applying the Mean Value

Theorem we have, for some t ∈ (0, 1) and w := (v(x)− v(y))
(

t
|xh−yh|s + 1−t

|x−y|s

)
,∣∣∣∣G(xh, yh, v(x)− v(y)

|xh − yh|s

)
−G

(
xh, yh,

v(x)− v(y)

|x− y|s

)∣∣∣∣ ≤
|Gρ(xh, yh, w)||v(x)− v(y)|

∣∣∣∣ 1

|xh − yh|s
− 1

|x− y|s

∣∣∣∣ .
Using (??), we deduce

|w| . |v(x)− v(y)|
|x− y|s

,
1

|xh − yh|d
.

1

|x− y|d
, and

∣∣∣∣ 1

|xh − yh|s
− 1

|x− y|s

∣∣∣∣ . |h|
|x− y|s

.

By the growth condition (??), we have

|Gρ(xh, yh, w)| . |w|p−1 .
|v(x)− v(y)|p−1

|x− y|s(p−1)
,

and putting together these estimates, it follows that

(3.6) |I| . |h|
∫∫

QD2ρ(x0)

|v(x)− v(y)|p

|x− y|d+sp
dydx.

Next, we resort to the β-Hölder continuity of G with respect to the space variables
(??), use (??) and (??), and obtain

(3.7)

|II| .
∫∫

QD2ρ(x0)

(
|xh − x|β + |yh − y|β

) |v(x)− v(y)|p

|x− y|d+sp
dydx

. |h|β
∫∫

QD2ρ(x0)

|v(x)− v(y)|p

|x− y|d+sp
dydx.

Finally, we bound III. By (??), we have J(x, y) = 1 +O(|h|) and, as above, (??)

yields
∣∣∣ 1
|xh−yh|d −

1
|x−y|d

∣∣∣ . |h|
|x−y|d . Thus, we derive∣∣∣∣ J(x, y)

|S−1
h (x)− S−1

h (y)|d
− 1

|x− y|d

∣∣∣∣ . |h|
|x− y|d

.
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Therefore, combining this with (??), that gives
∣∣∣G(x, y, v(x)−v(y)

|x−y|s

)∣∣∣ . |v(x)−v(y)|p
|x−y|sp ,

we obtain

(3.8) |III| . |h|
∫∫

QD2ρ(x0)

|v(x)− v(y)|p

|x− y|d+sp
dydx.

Collecting (??), (??), and (??), we deduce

|FG(Thv)−FG(v)| . |h|β
∫∫

QD2ρ(x0)

|v(x)− v(y)|p

|x− y|d+sp
dydx

and conclude the proof. �

Remark 9 (translation operator). The estimate (??) depends crucially on the struc-
ture of the translation operator (??). Indeed, localizing through a composition en-
abled us to perform a simple argument based on change of variables. In contrast,
if one aims to exploit the convexity of the functional FG by using a translation

operator of the form T̃h = φvh + (1− φ)v for a suitable cutoff φ, as in [?, ?], then
one obtains a less accurate estimate where the right-hand side involves higher-order
norms of u [?, Proposition 3.2].

3.2. Regularity of solutions. We are now in position to prove the regularity
of minimizers of the energy (??) under Hypothesis ??. We first prove estimates
in the Besov scale, and afterwards derive estimates in Sobolev norms by using
embeddings. Finally, we show how to accommodate the theory to include finite-
horizon operators. In the sequel, we use the word maximal to refer to estimates
that yield the highest regularity one can expect via our variational approach. As
we commented in the introduction, our maximal estimates are optimal for p ≥ 2,
albeit suboptimal for p < 2.

Theorem 3.1 (maximal Besov regularity). Let Ω be a bounded Lipschitz domain,
s ∈ (0, 1), G : Rd × Rd × R → (0,∞) satisfy Hypothesis ??, with p ∈ (1,∞),

β ∈ (0, 1], and u ∈ W̃ s
p (Ω) be a weak solution to (??).

If p ≥ 2 and f ∈ B
−s+ β

p′

p′,1 (Ω), then u ∈ Ḃs+
β
p

p,∞ (Ω) and

(3.9) ‖u‖
Ḃ
s+

β
p

p,∞ (Ω)
. ‖f‖

1
p−1

B
−s+ β

p′
p′,1 (Ω)

.

If p < 2 and f ∈ B−s+
β
2

p′,1 (Ω), then u ∈ Ḃs+
β
2

p,∞ (Ω) and

(3.10) ‖u‖
Ḃ
s+

β
2

p,∞ (Ω)
. ‖f‖

2−p
p−1

W−s
p′ (Ω)

‖f‖
B
−s+ β

2
p′,1 (Ω)

.

The hidden constants in (??) and (??) depend on d, s, p,Ω, and G.

Proof. Let γ = β
p′ if p ≥ 2 and γ = β

2 if p < 2. We first observe that problem (??)

is well-posed, because f ∈ B−s+γp′,1 (Ω) ⊂W−sp′ (Ω) and, according to (??), we have

(3.11) ‖u‖
W̃ s
p (Ω)

. ‖f‖
1
p−1

W−s
p′ (Ω)

. ‖f‖
p′
p

B−s+γ
p′,1 (Ω)

.

We split the proof into three steps.

1. Because Ω is a Lipschitz domain, by Proposition ?? (uniform cone property)
there exist ρ, ϕ such that Cρ(n(x), ϕ) ⊂ Oρ(x) for all x ∈ Rd. We consider a finite
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covering of Ωρ by balls Dj = D(xj , ρ) of radius ρ, j = 1, . . . , J . By the localization
estimate (??), it suffices to bound Besov seminorms over each of the balls Dj .

We consider one of the balls Dj in the covering and set Cj = Cρ(n(xj), ϕ).

Importantly, if h ∈ Cj we can guarantee that Thu ∈ W̃ s
p (Ω).

Let σ ∈ (0, β] and t ∈ (−1, σ); our proof will use suitable bounds on the (T, Cj , σ)-
regularity modulus of F . We exploit the subadditivity of this functional, and
Propositions ?? (regularity of F1) with q =∞ and ?? (regularity of FG)):

(3.12)

ω(u;F , T, Cj , σ) ≤ ω(u;FG, T, Cj , σ) + ω(u;F1, T, Cj , σ)

.
∫∫

QD2ρ(xj)

|u(x)− u(y)|p

|x− y|d+sp
dydx+ ‖f‖Bt

p′,1(D2ρ(xj)∩Ω)‖u‖Bσ−tp,∞(D2ρ(xj))
.

In view of (??) and (??), using (??) we deduce

(3.13) |u|q
B
s+σ/q
p,∞ (Dj)

. ‖f‖
q−p
p−1

W−s
p′ (Ω)

ω(u;F , T, Cj , σ)

provided q := max{2, p}. We next distinguish between p ∈ [2,∞) and p ∈ (1, 2),
and employ (??) and (??) with t = −s+ β/q′.

2. Case p ∈ [2,∞). Upon choosing q = p in (??), we deduce

|u|p
B
s+σ/p
p,∞ (Dj)

.
∫∫

QD2ρ(xj)

|u(x)− u(y)|p

|x− y|d+sp
dydx+‖f‖Bt

p′,1(D2ρ(xj)∩Ω)‖u‖Bσ−tp,∞(D2ρ(xj))
.

Adding over j for 1 ≤ J , and using ?? (localization), specifically (??) for the
right-hand side and (??) for the left-hand side, we obtain

‖u‖p
Ḃ
s+σ/p
p,∞ (Ω)

. ‖u‖p
W̃ s
p (Ω)

+ ‖f‖Bt
p′,1(Ω)‖u‖Ḃσ−tp,∞(Ω)

for all σ ∈ (0, β], t ∈ (−1, σ), where the hidden constant depends on J . We now
replace the first term on the right-hand side via the stability bound (??). This

suggests the choices t = −s+ β
p′ < σ ≤ β and yields the bound

(3.14) ‖u‖p
Ḃ
s+σ/p
p,∞ (Ω)

≤ C1‖f‖p
′

B
−s+β/p′
p′,1 (Ω)

+ C2‖f‖B−s+β/p′
p′,1 (Ω)

‖u‖
Ḃ
σ+s−β/p′
p,∞ (Ω)

for suitable constants C1, C2 > 0 depending on d, s, p,Ω, J and G. We observe that
the differentiability index σ+s−β/p′ of u on the right-hand side gives a larger index
s + σ/p on the left-hand side provided σ ≤ β. We thus view (??) as a recursion
relation and set σ0 = 0, and for k ≥ 0 let σ = σk+1 ∈ (0, β] and

s+
σk
p

= σ + s− β

p′
⇒ σk+1 :=

σk
p

+
β

p′
.

This implies σk = β
(

1− 1
pk

)
and shows that σk ∈ (0, β) and σk−t = σk+s−β/p′ ≥

s > 0 for all k ≥ 1, as desired. We claim that

(3.15) ‖u‖
Ḃ
s+σk/p
p,∞ (Ω)

≤ Λk‖f‖
1
p−1

B
−s+ β

p′
p′,1 (Ω)

for some uniformly bounded constants Λk for k ≥ 0. We argue by induction. We

first note that (??) and the continuity of the embedding W̃ s
p (Ω) ⊂ Ḃsp,∞(Ω) yield

‖u‖Ḃsp,∞(Ω) ≤ Λ0‖f‖
1
p−1

B
−s+ β

p′
p′,1 (Ω)

,
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for some Λ0 := Λ0(d, s, p,Ω); hence (??) is true for k = 0. We next set σ = σk+1 in
(??) to arrive at

‖u‖p
Ḃ
s+σk+1/p
p,∞ (Ω)

≤
(
C1‖f‖

1
p−1

B
−s+β/p′
p′,1 (Ω)

+ C2‖u‖Ḃs+σk/pp,∞ (Ω)

)
‖f‖

B
−s+β/p′
p′,1 (Ω)

≤ (C1 + C2Λk) ‖f‖p
′

B
−s+β/p′
p′,1 (Ω)

.

This shows that (??) holds for Λk+1 := (C1 + C2Λk)1/p; it remains to prove that

such a sequence is bounded. Let Λ := max{Λ0, (p
′C1 + Cp

′

2 )1/p}. We obviously
have Λ0 ≤ Λ and, if Λk ≤ Λ, applying Young’s inequality we obtain

Λpk+1 = C1 + C2Λk ≤ C1 + C2Λ ≤ C1 +
Cp
′

2

p′
+

Λp

p

≤ 1

p′

(
p′C1 + Cp

′

2

)
+

Λp

p
≤ Λp.

Thus, replacing Λk by Λ and letting k → ∞, we have σk → β and deduce the
desired estimate (??) for p ∈ [2,∞).

3. Case p ∈ (1, 2). We choose q = 2 in (??) and t = −s + β/2 in (??). After
squaring, summing up over j for 1 ≤ j ≤ J , and ?? (localization), we end up with

‖u‖2
Ḃ
s+σ/2
p,∞ (Ω)

. ‖f‖
2−p
p−1

W−s
p′ (Ω)

(
|u|p

W̃ s
p (Ω)

+ ‖f‖
B
−s+β/2

p′,1 (Ω)
‖u‖

Ḃ
σ+s−β/2
p,∞ (Ω)

)
for all σ ∈ (0, β] such that σ+ s− β/2 > 0; the hidden constant depends on J . We
next resort to (??) to obtain the following counterpart of (??):
(3.16)

‖u‖2
Ḃ
s+σ/2
p,∞ (Ω)

≤
(
C1‖f‖p

′

W−s
p′ (Ω)

+ C2‖f‖B−s+β/2

p′,1 (Ω)
‖u‖

Ḃ
σ+s−β/2
p,∞ (Ω)

)
‖f‖

2−p
p−1

W−s
p′ (Ω)

for all σ ∈ (0, β] and with constants C1 and C2 that do not depend on u or f .
We now proceed as in Step 2 to exploit the improvement of the differentiability

index from the right-hand side to the left one in (??). To this end, we set σ0 =
0, σk+1 = σ ∈ (0, β] and rewrite

σ + s− β

2
= s+

σk
2

⇒ σk+1 =
β + σk

2
∀ k ≥ 0.

This yields σk = β(1 − 2−k), which satisfies the restrictions σk ∈ (0, β), σk − t =

σk + s− β
2 ≥ s > 0 for all k ≥ 1, and σk → β. We prove by induction that

(3.17) ‖u‖
Ḃ
s+

σk
2

p,∞ (Ω)
≤ Λk‖f‖

2−p
p−1 +2−k

W−s
p′ (Ω)

‖f‖1−2−k

B
−s+ β

2
p′,1 (Ω)

∀k ≥ 0,

with a uniformly bounded constant Λk. We first note that, according to (??) and

the continuity of the embedding W̃ s
p (Ω) ⊂ Ḃsp,∞(Ω), we have

‖u‖Ḃsp,∞(Ω) ≤ Λ0‖f‖
1
p−1

W−s
p′ (Ω)
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for some Λ0 := Λ0(d, s, p,Ω), whence (??) is true for k = 0. Suppose that (??)
holds for some k, and set σ = σk+1 in (??) to obtain

‖u‖2
Ḃ
s+σk+1/2
p,∞ (Ω)

≤
(
C1‖f‖p

′

W−s
p′ (Ω)

+ C2‖f‖B−s+β/2

p′,1 (Ω)
‖u‖

Ḃ
s+σk/2
p,∞ (Ω)

)
‖f‖

2−p
p−1

W−s
p′ (Ω)

≤
(
C1‖f‖2−2−k

W−s
p′ (Ω)

+ C2Λk‖f‖2−2−k

B
−s+β/2

p′,1 (Ω)

)
‖f‖

2(2−p)
p−1 +2−k

W−s
p′ (Ω)

≤
(
C1C

2−2−k

3 + C2Λk

)
‖f‖2−2−k

B
−s+β/2

p′,1 (Ω)
‖f‖

2(2−p)
p−1 +2−k

W−s
p′ (Ω)

,

where C3 := C3(Ω, d, s, p, β) is the constant of the continuous embeddingW−sp′ (Ω) ⊂
B
−s+β/2
p′,1 (Ω). Since 1 ≤ 2− 2−k ≤ 2, we have C2−2−k

3 ≤ max{C3, C
2
3} =: C4 which

gives rise to (??) with constant

Λk+1 := (C1C4 + C2Λk)
1/2

.

It only remains to show that Λk ≤ Λ for some Λ > 0 and all k ≥ 0. Let Λ :=
max{Λ0, (2C1C4 + C2

2 )1/2}, then the same argument as in Step 2 is also valid in
this setting. Finally, estimate (??) follows by letting k →∞. �

Theorem ?? gives the maximal Besov regularity one can expect via our varia-
tional approach for solutions to problem (??). We recall that (??) is optimal while
(??) is suboptimal for the 1d profile (1 − x2)s+ in Ω = (−1, 1). This is due to
the Hypothesis ?? (monotonicity) for p ∈ (1, 2), which cannot be improved for a
function ρ 7→ G(·, ·, ρ) convex and differentiable [?, Remark 2.1].

One can immediately deduce Sobolev regularity by combining ?? with Lemma
?? (embedding). Even though such a lemma is stated for the spaces Bσ+ε

p,∞ (Ω) and

Wσ
p (Ω), the proof for the zero-extension spaces Ḃσ+ε

p,∞ (Ω) and W̃σ
p (Ω) follows by the

same arguments.

Corollary 3.1 (maximal Sobolev regularity). Let the assumptions of ?? be satis-

fied. For p ∈ [2,∞) and f ∈ B−s+β/p
′

p′,1 (Ω) then

(3.18) ‖u‖
W̃
s+

β
p
−ε

p (Ω)
. ε−

1
p ‖f‖

1
p−1

B
−s+ β

p′
p′,1 (Ω)

is valid provided ε ∈ (0, s+ β/p). If p ∈ (1, 2) and f ∈ B−s+β/2p′,1 (Ω) then

(3.19) ‖u‖
W̃
s+

β
2
−ε

p (Ω)
. ε−

1
p ‖f‖

2−p
p−1

W−s
p′ (Ω)

‖f‖
B
−s+ β

2
p′,1 (Ω)

holds provided ε ∈ (0, s+ β/2).

Remark 10 (interior Sobolev regularity). Estimates (??) and (??) are valid up to the
boundary of the domain. The obstruction to higher regularity is due to boundary
behavior. In the superquadratic case p ≥ 2, and for the (p, s)-fractional Laplacian
(??) –that gives rise to β = 1 in Hypothesis ??– reference [?] derives the following
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higher-order interior regularity provided f ∈W s
p′(Ω):

if s ≤ p− 1

p+ 1
, then u ∈

⋂
ε>0

W
s p+1
p−1−ε

p,loc (Ω),

if s >
p− 1

p+ 1
, then u ∈W 1

p,loc(Ω) and ∇u ∈
⋂
ε>0

W
s p+1
p −

p−1
p −ε

p,loc (Ω).

We point out that if s < 1
2 −

1
2p , estimate (??) is actually stronger than the first

statement above.
The recent reference [?] sharpens the results from [?] and obtains Calderón-

Zygmund-type estimates for problems with coefficients with vanishing mean oscil-
lation near the diagonal x = y. Succinctly, in our setting, the results from [?] yield
the implication

f ∈ Lp
′
(Ω) ⇒ u ∈

⋂
ε>0

W
min{sp′,1}−ε
p,loc (Ω) (p ≥ 2).

When β = sp′ ≤ 1, this is close to our estimate (??). If in addition sp′ < β ≤ 1, then

the case p ≥ 2 with θ = sp′/β in ?? below yields the regularity u ∈ W̃ sp′

p (Ω). While
[?] considers a broader class of coefficients than we do, our results also concern
boundary regularity; we also refer to [?] for Hölder regularity estimates up to the
boundary for quasilinear operators with measurable coefficients.

The technique in Theorem ?? also allows one to derive regularity estimates in
Besov spaces with a lower-order differentiability index whenever f is less regular
than in such a theorem. We shall not consider this procedure, but rather prove a
lower regularity pickup by using interpolation theory. For that purpose, we need
the following nonlinear interpolation estimate (cf. [?, Théorème I.1]).

Proposition 3.3 (nonlinear interpolation). Let A0 ⊂ A1, B0 ⊂ B1 be Banach
spaces, U ⊂ A1 a nonempty open set and T : U → B1 be a a function that maps
A0 ∩ U into B0. Let us assume that there exist constants c0, c1 such that

‖Tf‖B0
≤ c0‖f‖α0

A0
, ∀f ∈ A0 ∩ U,

‖Tf − Tg‖B1
≤ c1‖f − g‖α1

A1
, ∀f, g ∈ U

for some α0 > 0, α1 ∈ (0, 1]. Then, if θ ∈ (0, 1) and q ∈ [1,∞], T maps (A0, A1)θ,q
into (B0, B1)η,r, where 1−η

η = α1

α0

1−θ
θ and r = max{1, q

(1−η)α0+ηα1
}.

Corollary 3.2 (regularity pickup for rough data). Let Ω be a bounded Lipschitz
domain, G : Rd×Rd×R→ (0,∞) satisfy Hypothesis ??, with p ∈ (1,∞), β ∈ (0, 1],
and let θ ∈ (0, 1). Then, the solution operator f 7→ u is bounded between the
following spaces

if p ≥ 2 and f ∈W
−s+θ β

p′

p′ (Ω) ⇒ u ∈ W̃ s+θ βp
p (Ω);

if 1 < p < 2 and f ∈W−s+θ
β
2

p′ (Ω) ⇒ u ∈ W̃ s+θ β2
p′ (Ω).

Proof. The proof follows by a direct application of Proposition ??. For p ≥ 2, we
combine (??) and (??), while for 1 < p < 2 we combine (??) and (??). �
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3.3. Operators with finite horizon. Thus far, we have obtained regularity es-
timates under Hypothesis ??. In particular, that hypothesis dictates the smooth-
ness, growth and behavior at x = y of G(x, y, ρ). However, such global behavior
constraints can be significantly relaxed to incorporate, for instance, finite-horizon
operators. For simplicity, we now assume G takes the form

(3.20) G(x, y, ρ) =
1

2p
ψ

(
|x− y|
δ

)
|ρ|p,

where 1 < p <∞ and ψ : [0,∞)→ [0,∞) is a given function. In case ψ is supported
in the unit interval [0, 1], the parameter δ > 0 above is the horizon of the resulting
operator

(3.21) Aδu(x) :=

∫
Rd
ψ

(
|x− y|
δ

)
|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|d+sp
dy.

Let us assume that ψ ∈ L∞(Rd). Then, the choice (??) trivially fulfills con-
ditions convexity, p-growth, and continuity; moreover, we note it satisfies the
symmetry condition. The only two missing assumptions from Hypothesis ?? in
this setting are space continuity and monotonicity. At this point, we can define
the energy norm induced by G,

|||v||| := 〈Aδv, v〉
1
p =

(
1

2

∫∫
Rd×Rd

ψ

(
|x− y|
δ

)
|v(x)− v(y)|p

|x− y|d+sp
dydx

) 1
p

and realize it satisfies

(3.22) |||v||| ≤
(‖ψ‖L∞(Rd)

Cd,s,p

) 1
p

‖v‖
W̃ s
p (Ω)

∀v ∈ W̃ s
p (Ω),

where Cd,s,p is the constant given in (??).
Some form of non-degeneracy is needed in order to have a reverse inequality to

(??). We assume there exists some r > 0 such that ψ ≥ ψ0 > 0 on the interval
[0, r]. This implies the following property:

4’. Local monotonicity. There exists α > 0 such that for all x, y ∈ Rd with
|x− y| ≤ rδ and all ρ, ρ′ ∈ R,

(Gρ(x, y, ρ)−Gρ(x, y, ρ′))(ρ− ρ′) ≥ α|ρ− ρ′|p if p ≥ 2,

(Gρ(x, y, ρ)−Gρ(x, y, ρ′))(ρ− ρ′) ≥ α|ρ− ρ′|2||ρ|+ |ρ′||p−2 if 1 < p < 2.

Lemma 3.1 (non-degeneracy). Let ψ ≥ ψ0 > 0 on the interval [0, r]. Then, there
exists a constant C = C(d, p, s,Ω, r, ψ0, δ) such that

(3.23) ‖v‖
W̃ s
p (Ω)

≤ C |||v||| ∀v ∈ W̃ s
p (Ω).

Proof. We invoke the localization estimate of [?, Lemma 7], which reads∫∫
DR(0)×DR(0)

|v(x)− v(y)|p

|x− y|d+sp
dydx

≤
(

3R

rδ

)p(1−s) ∫∫
DR(0)×DR(0)

|v(x)− v(y)|p

|x− y|d+sp
χ{|x−y|≤rδ} dydx,

and is valid for all R > rδ > 0 and s ∈ (0, 1). This implies∫∫
DR(0)×DR(0)

|v(x)− v(y)|p

|x− y|d+sp
dydx ≤ 2(3R)p(1−s)

(rδ)p(1−s)ψ0
|||v|||p.
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regardless of whether or not the support of ψ is compact. Given v ∈ W̃ s
p (Ω), we use

this bound with R > 0 sufficiently large so that Ω ⊂ DR(0) and dist(Ω, ∂DR(0)) ≥
R
2 , exploit the fact that |x− y| ≥ R

2 for all x ∈ Ω and y ∈ DR(0)c and integrate in
polar coordinates to get

‖v‖p
W̃ s
p (Ω)

=
Cd,s,p

2

∫∫
DR(0)×DR(0)

|v(x)− v(y)|p

|x− y|d+sp
dydx

+ Cd,s,p

∫∫
DR(0)×DR(0)c

|v(x)|p

|x− y|d+sp
dydx

≤ (3R)p(1−s)Cd,s,p
(rδ)p(1−s)ψ0

|||v|||p +
2spCd,s,pωd−1

spRsp
‖v‖pLp(Ω),

where ωd−1 = |Sd−1| denotes the (d − 1)-dimensional measure of the unit sphere
Sd−1 = ∂D1(0) in Rd. We next use the well-known Poincaré inequality

‖v‖Lp(Ω) ≤ C(Ω, p)‖v‖
W̃ s
p (Ω)

∀v ∈ W̃ s
p (Ω),

and take R > 0 sufficiently large such that

2spCd,s,pωd−1

spRsp
‖v‖pLp(Ω) ≤

1

2
‖v‖p

W̃ s
p (Ω)

∀v ∈ W̃ s
p (Ω),

to obtain a constant C = C(d, p, s,Ω, r, ψ0, δ) such that (??) holds. �

By combining (??) and (??), we deduce that the energy norm |||·||| is equivalent to

the W̃ s
p (Ω)-norm. Consequently, the Dirichlet problem for the operator Aδ defined

in (??) is well-posed in W̃ s
p (Ω) uniformly in s: if f ∈W−sp′ (Ω), there exists a unique

u ∈ W̃ s
p (Ω) satisfying

〈Aδu, v〉 = 〈f, v〉 ∀v ∈ W̃ s
p (Ω),

and we have the stability bound ‖u‖
W̃ s
p (Ω)

. ‖f‖W−s
p′ (Ω).

Another consequence of the equivalence between the energy norm |||·||| and the

W̃ s
p (Ω)-norm is that the variational approach of Sections ?? and (??) hinges on the

regularity of F1 and FG and still applies in this context regardless of the support
of ψ. We state this next.

Corollary 3.3 (operator with Hölder continuous ψ). Let ψ in (??) be globally β-
Hölder continuous with β ∈ (0, 1] and satisfy ψ ≥ ψ0 > 0 on the interval [0, r] for
r > 0. Then the maximal regularity estimates (??) for 2 ≤ p < ∞ and (??) for
1 < p < 2 are valid regardless of the support of ψ.

Remark 11 (tempered fractional Laplacians). Besides being applicable to finite-
horizon operators with β-Hölder continuous kernel, the previous result is valid for
a family of tempered fractional p-Laplacians. Concretely, we let λ = 1

δ > 0 and

ψ(ρ) = e−λρ to obtain

Aλu(x) :=

∫
Rd

|u(x)− u(y)|p−2(u(x)− u(y))

eλ|x−y| |x− y|d+sp
dy.

In the linear setting (p = 2), this operator arises from the study of tempered Lévy
flights and has been investigated for example in [?]. For the homogeneous Dirichlet
problem associated to the operator Aλ above, the regularity estimates in Theorem
?? are valid with β = 1.
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Finite-horizon operators in practice usually involve a discontinuous function ψ
such as the characteristic function of [0, r]. This does not fit within the preceding
theory but maximal Besov regularity is still valid, at least for linear operators, pro-
vided ψ is Hölder in a neighborhood of the origin. We explore this next, but before
we point out that even local regularity seems excessive, an interesting question to
investigate.

We need to make the following local regularity assumption to compensate for
the lack of space continuity hypothesis of G:

2’. Local regularity. There exists r > 0 such that ψ is of class Cβ on the interval
[0, r] for some β ∈ (0, 1], and ψ ≥ ψ0 > 0 on [0, r].

Theorem 3.2 (linear finite-horizon operator with discontinuous ψ). Let ψ satisfy
the previous local regularity assumption with some β ∈ (0, 1]. If G(x, y, ρ) is of the
form (??) with p = 2, then the following maximal regularity holds

(3.24) ‖u‖
Ḃ
s+

β
2

2,∞ (Ω)
. ‖f‖

B
−s+ β

2
2,1 (Ω)

.

Proof. We resort to a perturbation argument. We proceed in several steps.

1. Perturbation: Let ψ̃ ∈ Cβ [0,∞) coincide with ψ on [0, r] and rewrite the equation
Aδu = f with u = 0 in Ωc as

Ãδu = f +
(
Ãδu−Aδu

)
= f̃ .

The operator Bδ := Ãδ−Aδ is a convolution operator that reads as follows in terms

of the function ϕ := ψ̃ − ψ, which vanishes on [0, r]:

Bδu(x) =

∫
Rd
ϕ
( |z|
δ

)u(x)− u(x− z)
|z|d+2s

dz = Ku(x) + k ∗ u(x).

Above, k(z) = ϕ
( |z|
δ

)
|z|−d−2s and K =

∫
Rd k(z)dz <∞ because ψ ∈ L∞(Rd).

2. Properties of Bδ: Bδ : Ḃt2,∞(Ω)→ Bt2,∞(Rd) is a linear bounded operator

‖Bδu‖Ḃt2,∞(Ω) . ‖u‖Ḃt2,∞(Ω) ∀ 0 < t < 1.

It suffices to examine k ∗ u which, using its linear structure and Young’s inequality
with K = ‖k‖L1(Rd), yields

‖k ∗ u(·+ h)− k ∗ u‖L2(Rd) ≤ K‖u(·+ h)− u‖L2(Rd) ∀h ∈ Rd.

Consequently, we deduce the asserted estimate from

‖Bδu(·+ h)− Bu‖L2(Rd)

|h|t
≤ K

‖u(·+ h)− u‖L2(Rd)

|h|t
∀ 0 < t < 1.

3. Regularity of functionals: Combining the local estimate (??) of Proposition ??

(regularity of F1) for f̃ , the argument of Theorem ?? (maximal regularity) leading
to (??) and (??) yields the following estimate for any σ ∈ (0, β] and t ∈ (−s, σ)

‖u‖2
Ḃ
s+σ/2
2,∞ (Ω)

. ‖f‖2Bt2,1(Ω) + ‖f‖Bt2,1(Ω)‖u‖Bσ−t2,∞(Ω) + ‖Bδu‖Bt2,1(Ω)‖u‖Bσ−t2,∞(Ω),

where we have used the definition of f̃ and Step 2 to obtain the last term. To be able
to iterate this estimate we observe that ‖Bδu‖Bt2,1(Ω) . ‖Bδu‖Bt+2ε

2,∞ (Ω) for any ε > 0
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and to simplify the subsequent derivation we take ε = s
2 so that t+ 2ε = t+ s > 0.

We thus have ‖Bδu‖Bt2,1(Ω) . ‖u‖Bt+2ε
2,∞ (Ω) and

(3.25) ‖u‖2
Ḃ
s+σ/2
2,∞ (Ω)

. ‖f‖2Bt2,1(Ω) + ‖f‖Bt2,1(Ω)‖u‖Bσ−t2,∞(Ω) + ‖u‖Bt+s2,∞(Ω)‖u‖Bσ−t2,∞(Ω).

4. Preliminary regularity: We now claim that u ∈ Ḃ
β
2
2,∞(Ω) with

(3.26) ‖u‖
Ḃ
β
2
2,∞(Ω)

. ‖f‖
B
−s+ β

2
2,1 (Ω)

.

If s ≥ β
2 this is straightforward, because of the stability bound ‖u‖H̃s(Ω) . ‖f‖H−s(Ω)

and the continuity of the embedding H̃s(Ω) ⊂ Ḃβ/22,∞(Ω).

In the case s < β
2 , we iterate (??). We set σ0 := 0 and

(3.27) σk+1 := σk +
s

2
.

In the first few iterations we could have 0 < σk ≤ −s + β
2 , in which case we set

σ := 2σk+1 = s + 2σk ∈ [s, β − s] ⊂ (0, β] and t := σk = σ−s
2 ∈ [0, σ2 ) ⊂ (−s, σ).

This choice of parameters yields σ − t = t+ s = s+ σk, whence (??) reads

‖u‖2
Ḃ
s+σk+1
2,∞ (Ω)

. ‖f‖2Bt2,1(Ω) + ‖f‖Bt2,1(Ω)‖u‖Bs+σk2,∞ (Ω)
+ ‖u‖2

B
s+σk
2,∞ (Ω)

.

Additionally, continuity of the embedding B
−s+ β

2
2,1 (Ω) ⊂ Bt2,1(Ω), gives

‖u‖2
Ḃ
s+σk+1
2,∞ (Ω)

. ‖f‖2
B
−s+ β

2
2,1 (Ω)

+ ‖u‖2
B
s+σk
2,∞ (Ω)

,

and the bound ‖u‖
Ḃ
s+σk
2,∞ (Ω)

. ‖f‖
B
−s+ β

2
2,1 (Ω)

valid for k = 0 implies

‖u‖
Ḃ
s+σk+1
2,∞ (Ω)

. ‖f‖
B
−s+ β

2
2,1 (Ω)

,

for as long as σk ≤ −s+ β
2 . Moreover, because σk+1 = σk + s

2 , we have a regularity
improvement by the fixed amount s

2 in each iteration. Therefore, after a finite

(but s-dependent) number k∗ of iterations, we reach σk∗ > −s+ β
2 and deduce the

validity of the regularity bound (??).

5. Final regularity: We now assume (??) and define the new sequence

σ0 := 0, σk+1 :=
β

4
+
σk
2

⇒ σk =
β

2

(
1− 1

2k

)
→ β

2
.

We fix σ = σk + β
2 ∈ (0, β] and t = −s + β

2 ∈ (−s, σ) in (??), and note that

s+ σ/2 = s+ σk+1, σ − t = s+ σk, and t+ s = β
2 , to arrive at

‖u‖2
Ḃ
s+σk+1
2,∞ (Ω)

. ‖f‖2
B
−s+ β

2
2,1 (Ω)

+‖f‖
B
−s+ β

2
2,1 (Ω)

‖u‖
B
s+σk
2,∞ (Ω)

+‖u‖
B
β
2
2,∞(Ω)

‖u‖
B
s+σk
2,∞ (Ω)

.

Using (??), we get

‖u‖2
Ḃ
s+σk+1
2,∞ (Ω)

≤

(
C1‖f‖

B
−s+ β

2
2,1 (Ω)

+ C2‖u‖Bs+σk2,∞ (Ω)

)
‖f‖

B
−s+ β

2
2,1 (Ω)

,
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with constants C1, C2 depending on Ω, d and s. We finally proceed as in the proof
of Theorem ?? (maximal Besov regularity) to show

‖u‖
Ḃ
s+σk+1
2,∞ (Ω)

≤ Λ‖f‖
B
−s+ β

2
2,1 (Ω)

for a finite number Λ > 0. We trivially have ‖u‖
Ḃ
s+σ0
2,∞ (Ω)

≤ Λ0‖f‖B−s+β/2
2,1 (Ω)

for

some Λ0(d, s,Ω) > 0. We define Λk+1 := (C1 + C2Λk)1/2 and realize that

‖u‖
Ḃ
s+σk+1
2,∞ (Ω)

≤ Λk+1‖f‖
B
−s+ β

2
2,1 (Ω)

.

Since Λk+1 ≤ max{Λ0, (2C1+C2)1/2} =: Λ, passing to the limit k →∞, the desired
estimate (??) follows immediately. �

Remark 12 (quasi-linear operators with discontinuous ψ). Theorem ?? is limited
to the linear setting p = 2. Our proof consists in regarding the operator Aδ as a

linear perturbation of an operator Ãδ with a globally regular kernel. However, for
p 6= 2, the nonlinear nature of the problem implies that the difference between Aδ
and Ãδ is not a convolution operator and hence our approach must be adjusted.
Nevertheless, we expect a similar regularity to hold.

Remark 13 (truncated fractional Laplacians). Estimate (??) holds whenever ψ is
locally β-Hölder continuous at the origin. Consequently, it applies with β = 1 to
(linear) truncated fractional Laplacians [?]

Au(x) := C(d, s, δ)

∫
Dδ(x)

u(x)− u(y)

|x− y|d+2s
dy,

for which ψ(ρ) = χ[0,1](ρ).

In the same fashion as ??, the following maximal Sobolev regularity holds for op-
erators of the form (??) and, in particular, for linear truncated fractional Laplacians
and tempered fractional p-Laplacians.

Corollary 3.4 (maximal Sobolev regularity). Under the hypothesis of either ?? for
any p ∈ (1,∞) or of ?? for p = 2, for all ε > 0 sufficiently small and q = max{2, p}
there holds

‖u‖
W̃
s+

β
q
−ε

p (Ω)
. ε−

1
p ‖f‖

q−p
p−1

W−s
p′ (Ω)

‖f‖
1
q−1

B
−s+ β

q′
p′,1 (Ω)

.

4. Approximation

As an application of our regularity estimates, we consider discretizations of the
problem (??) by means of the finite element method with piecewise linear contin-
uous functions. From now on, we assume that G satisfies Hypothesis ??.

Let h0 > 0; for h ∈ (0, h0], we let Th denote a triangulation of Ω, i.e., Th = {T} is
a partition of Ω into simplices T of diameter hT and h = maxT∈Th hT . We assume
the family {Th}h>0 to be shape-regular, namely,

σ := sup
h>0

max
T∈Th

hT
ρT

<∞,

where ρT is the diameter of the largest ball contained in T . We take elements to
be closed sets.
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Let Nh be the set of interior vertices of Th, N be its cardinality and {ϕi}Ni=1

be the standard piecewise linear Lagrangian basis, with ϕi associated to the node
xi ∈ Nh. With this notation, the set of discrete functions is

Ṽh :=

{
v : Rd → R : v ∈ C0(Rd), v =

N∑
i=1

viϕi

}
,

where v is trivially extended by zero outside Ω. It is clear that Ṽh ⊂ W̃ s
p (Ω) for all

s ∈ (0, 1), p ∈ (1,∞). Therefore, we consider a direct finite element discretization

and seek uh ∈ Ṽh such that
(4.1)∫∫

Rd×Rd
G̃

(
x, y,

uh(x)− uh(y)

|x− y|s

)
(uh(x)− uh(y))(vh(x)− vh(y))

|x− y|d+2s
dx dy = 〈f, vh〉

for all vh ∈ Ṽh, where we recall that G̃(x, y, ρ) = Gρ(x, y, ρ)/ρ. Clearly, uh solves
(??) if and only if it is the minimizer of the restriction of the convex functional

F from (??) over the linear space Ṽh; existence of discrete solutions follows im-
mediately. Moreover, if we take vh = uh in (??), then we immediately obtain the
discrete stability bound

(4.2) ‖uh‖W̃ s
p (Ω)

. ‖f‖
1
p−1

W−s
p′ (Ω)

.

4.1. Localization and interpolation estimates. The seminorm | · |W s
p (Rd) is

nonlocal and, consequently, is non-additive with respect to domain partitions. To
localize it, we first define the star (or patch) of a set A ∈ Ω by

S1
A :=

⋃{
T ∈ Th : T ∩A 6= ∅

}
.

Given T ∈ Th, the star S1
T of T is the first ring of T and the star S2

T of S1
T is the

second ring of T . We have the following localization estimate, that can be proved
with the same arguments as in [?, ?]:

(4.3) |v|pW s
p (Ω) ≤

∑
T∈Th

[∫
T

∫
S1
T

|v(x)− v(y)|p

|x− y|d+sp
dy dx+ C(d, σ)

2p

sphspT
‖v‖pLp(T )

]
for all v ∈W s

p (Ω).
This localization of fractional-order seminorms implies that, in order to prove

global interpolation estimates inW s
p (Ω), it suffices to produce over the set of patches

{T × S1
T }T∈Th plus local, zero-order contributions.

We point out, however, that clearly if one wants to have a zero-extension norm
on the left hand side in (??), then interactions between Ω and Ωc must be accounted
for in the right hand side. For that purpose, following [?], we introduce the extended
stars

S̃1
T :=

{
S1
T if T ∩ ∂Ω = ∅,

DT otherwise,

where DT = DChT (xT ) is the ball of center xT and radius ChT , with xT being the
barycenter of T , and C = C(σ) a shape regularity dependent constant such that

S1
T ⊂ DT . The extended second ring S̃2

T of T is given by

S̃2
T :=

⋃{
S̃1
T ′ : T

′ ∈ Th, T ′ ∩ S1
T 6= ∅

}
.
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The localization of the W s
p (Rd)-seminorm reads [?, Lemma 4.1]:

(4.4)

‖v‖p
W̃ s
p (Ω)

= |v|p
W s
p (Rd)

≤
∑
T∈Th

[∫
T

∫
S̃1
T

|v(x)− v(y)|p

|x− y|d+sp
dy dx+ C(d, σ)

2p

sphspT
‖v‖pLp(T )

]

for all v ∈ W̃ s
p (Ω).

Our use of (??) will be restricted to v being an interpolation error; in such a
case, v has vanishing means over elements and thus we can estimate the scaled Lp

contributions in terms of local W s
p seminorms by using Poincaré inequalities. We

consider a suitable (such as Clément or Scott-Zhang) quasi-interpolation operator,

Πh : W̃ s
p (Ω)→ Vh,

which is stable in W s
p (Ω) and for which one can prove the following local approxi-

mation estimates (see, for example, [?, ?, ?]):

‖v −Πhv‖Lp(T ) ≤ C hprT |v|
p
W r
p (S1

T )
,∫

T

∫
S̃1
T

|(v −Πhv)(x)− (v −Πhv)(y)|p

|x− y|d+sp
dy dx ≤ C hp(r−s)T |v|p

W r
p (S̃2

T )
,

(4.5)

for all T ∈ Th, s ∈ (0, 1), r ∈ (s, 2], v ∈W r
p (S̃2

T ), where C = C(Ω, d, s, σ).
Combining (??) and (??), we deduce localized interpolation error estimates.

Proposition 4.1 (localized interpolation estimates). Let s ∈ (0, 1), p ∈ (1,∞),

r ∈ (s, 2], and Πh : W̃ s
p (Ω) → Vh be a quasi-interpolation operator as above. If

v ∈ W̃ r
p (Ω), then

(4.6) ‖v −Πhv‖p
W̃ s
p (Ω)

≤ C

(∑
T∈Th

h
p(r−s)
T |v|p

W r
p (S̃2

T )

) 1
p

,

where C = C(Ω, d, s, σ).

4.2. Error estimates in W̃ s
p (Ω). We next derive some error estimates for the

finite element solutions discussed in §??. We borrow techniques from the finite
element analysis of classical (local) quasi-linear problems. The technique presented
in [?] or [?, §5.3] exploits the continuity and monotonicity of the operator, but not
the fact that u and uh solve respective minimization problems. Compared to those
works, Chow [?] obtains improved rates for the classical p-Laplacian. The following
theorem adapts the approach from [?] to the non-local setting.

Theorem 4.1 (error estimates). Let Ω be a bounded Lipschitz domain, assume
that G satisfies Hypothesis ??, let p ∈ (1,∞), β ∈ (0, 1] be as in such assumptions

and let p′ = p
p−1 . Assume f ∈ B−s+γp′,1 (Ω), where γ = max{β/p′, β/2}. Let u and

uh be the respective solutions of (??) and (??). Then, if p ∈ (1, 2] it holds that

(4.7) ‖u− uh‖W̃ s
p (Ω)

. inf
vh∈Vh

‖u− vh‖p/2
W̃ s
p (Ω)

. h
βp
4 | log h| 12 .

On the other hand, if p ∈ [2,∞), we have the error bound

(4.8) ‖u− uh‖W̃ s
p (Ω)

. inf
vh∈Vh

‖u− vh‖2/p
W̃ s
p (Ω)

. h
2β

p2 | log h|
2
p2 .
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Proof. For any v ∈ W̃ s
p (Ω), using either (??) or (??), we write

F(v)−F(u) =

∫ 1

0

〈F ′(u+ t(v − u))−F ′(u), v − u〉 dt

=

∫ 1

0

〈A(u+ t(v − u))−Au, t(v − u)〉 dt
t

≥

 C
p ‖u− v‖

2
W̃ s
p (Ω)

(
‖u‖

W̃ s
p (Ω)

+ ‖u− v‖
W̃ s
p (Ω)

)p−2

, if p ∈ (1, 2],
α
p ‖u− v‖

p

W̃ s
p (Ω)

, if p ∈ [2,∞).

In addition, if we use either (??) or (??), we obtain

F(v)−F(u) =

∫ 1

0

〈A(u+ t(v − u))−Au, t(v − u)〉 dt
t

≤


C
p ‖u− v‖

p

W̃ s
p (Ω)

, if p ∈ (1, 2],

C
p (‖u‖

W̃ s
p (Ω)

+ ‖u− v‖
W̃ s
p (Ω)

)p−2‖u− v‖2
W̃ s
p (Ω)

, if p ∈ [2,∞).
.

The proof now follows easily. Indeed, for any vh ∈ Vh ⊂ W̃ s
p (Ω), we have, for

p ∈ (1, 2],

c(‖u‖
W̃ s
p (Ω)

+ ‖u− uh‖W̃ s
p (Ω)

)p−2‖u− uh‖2W̃ s
p (Ω)

≤ F(uh)−F(u)

≤ F(vh)−F(u) ≤ c‖u− vh‖p
W̃ s
p (Ω)

.

By the stability estimates (??) and (??), we have

‖u‖
W̃ s
p (Ω)

+ ‖u− uh‖W̃ s
p (Ω)

. ‖f‖
1
p−1

W−s
p′ (Ω)

. ‖f‖
1
p−1

B−s+γ
p′,1 (Ω)

and therefore

‖u− uh‖W̃ s
p (Ω)

. ‖u− vh‖p/2
W̃ s
p (Ω)

, ∀vh ∈ Vh,

which proves the first inequality in (??).
Similar considerations yield, for p ∈ [2,∞),

‖u− uh‖p
W̃ s
p (Ω)

. (‖u‖
W̃ s
p (Ω)

+ ‖u− vh‖W̃ s
p (Ω)

)p−2‖u− vh‖2W̃ s
p (Ω)

, ∀vh ∈ Vh,

and thus the first inequality in (??) holds.

We now set vh = Πhu, use the stability of Πh in W̃ s
p (Ω), the quasi-interpolation

estimate (??) and the regularity bounds (??) or (??), to conclude:

‖u− uh‖W̃ s
p (Ω)

.

 ‖u− vh‖
p/2

W̃ s
p (Ω)

. h
βp
4 −

εp
2 ε−

1
2 , if p ∈ (1, 2],

‖u− vh‖2/p
W̃ s
p (Ω)

. h
2β

p2− 2ε
p ε
− 2
p2 , if p ∈ [2,∞).

for ε > 0 sufficiently small. The result follows by setting ε = | log h|−1. �

5. Computational exploration

This section presents several numerical experiments for the Dirichlet problem
(??). We use the finite element discretization discussed in Section ?? on either
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quasi-uniform or shape-regular graded meshes Th with grading parameter µ ≥ 1
satisfying

(5.1) hT ≈
{
C(σ)hµ, T ∩ ∂Ω 6= ∅
C(σ)h dist(T, ∂Ω)(µ−1)/µ, T ∩ ∂Ω = ∅

for every T ∈ Th. We refer to [?] for further details on this grading strategy and
additional computational experiments.

5.1. Fractional (p, s)-Laplacians. Along this section, we consider the energy

minimization problem (??) with G(x, y, ρ) =
Cd,s,p

2p |ρ|
p for p ∈ (1,∞), that gives

rise to the fractional (p, s)-Laplace operator (??).

Example 5.1 (boundary behavior). We let Ω = (−0.5, 0.5)2\[0, 0.5)×(−0.5, 0] be an
L-shaped domain and f = 1, and investigate the boundary behavior of numerical
solutions. From the analytical results for the linear problem (p = 2), we expect the
solution to have a boundary behavior of the type

u(x) ≈ dist(x, ∂Ω)α(s,p).

We estimate the power α(s, p) near different points on ∂Ω: the mid-point of one
of the edges (0, 0.5), a convex corner (−0.5, 0.5) and the reentrant corner (0, 0).
We compute the numerical solutions on the graded mesh with µ = 2 and 9467
free nodes, and fit the power α(s, p) using mesh points near the boundary points
mentioned above, specifically along the normal direction near the edge mid-point
and along the bisectors of the angles near the corners. We report the results we
obtain in ?? and ?? for p = 3 and p = 1.75, respectively.

Despite the limited mesh resolution, near the edge mid-point, we observe α(s, p) ≈
s for both p = 3 and p = 1.75. This is consistent with the behavior shown in
[?, ?] for domains satisfying an exterior ball condition. In addition, we notice that
α(s, p) > s near the convex corner, α(s, p) < s near the reentrant corner, and the
deviation from s is larger when p = 1.75 compared to p = 3.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge mid-point 0.11 0.21 0.31 0.41 0.51 0.61 0.70 0.80 0.90
Convex corner 0.09 0.22 0.35 0.49 0.64 0.79 0.94 1.11 1.29

Reentrant corner 0.06 0.16 0.24 0.31 0.39 0.46 0.54 0.62 0.70

Table 1. Example (??): Exponents α = α(s, p) of boundary
asymptotics u(x) ≈ dist(x, ∂Ω)α for p = 3, different values of frac-
tional order s, and three qualitatively distinct boundary points.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge mid-point 0.10 0.21 0.31 0.41 0.51 0.60 0.70 0.79 0.89
Convex corner 0.11 0.27 0.46 0.66 0.86 1.07 1.29 1.51 1.76

Reentrant corner 0.07 0.12 0.17 0.23 0.29 0.35 0.42 0.49 0.57

Table 2. Example (??): Exponents α = α(s, p) of boundary
asymptotics u(x) ≈ dist(x, ∂Ω)α for p = 1.75, different values of
fractional order s, and three qualitatively distinct boundary points.
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Example 5.2 (convergence rates). Consider the square domain Ω = (−0.5, 0.5)2 and

f = 1. Since f is smooth, ?? (maximal Sobolev regularity) gives u ∈ W̃ s+1/p−ε
p (Ω)

for p ≥ 2 and u ∈ W̃ s+1/2−ε
p (Ω) for 1 < p ≤ 2. We compute numerical solutions

for p = 3, p = 1.75 and different values of s on quasi-uniform meshes, and examine
convergence rates in the energy norm. Since the exact solutions u are unknown, we
use ‖uh − uh/2‖W̃ s

p (Ω)
as a proxy for ‖uh − u‖W̃ s

p (Ω)
. ?? summarizes our findings.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p = 3 0.326 0.335 0.333 0.329 0.328 0.329 0.335 0.357 0.494
p = 1.75 0.558 0.552 0.555 0.561 0.569 0.583 0.607 0.658 0.790

Table 3. ??: Convergence rates on uniform meshes for p = 1.75, 3
and different values of s. They indicate that the theoretical rates
in ?? (error estimates) might be suboptimal.

The rates are approximately 1/p ≈ 0.33 for p = 3 except for the case s = 0.9,
where we believe the discrepancy is due to the proxy solution not being sufficiently
refined in comparison to the rest of the experiments. Although the rate 1/p is larger
than the theoretical rate 2/p2 of (??) in ?? (error estimates), we point out that it
is consistent with the best approximation error

inf
vh∈Vh

‖u− vh‖W̃ s
p (Ω)

. h1/p| log h|1/p.

This indicates that, instead of the regularity of u, the suboptimal rates in the theory
might be a consequence of the suboptimal power 2/p in the error estimate of (??)

‖u− uh‖W̃ s
p (Ω)

. inf
vh∈Vh

‖u− vh‖2/p
W̃ s
p (Ω)

.

Similarly, for p = 1.75, we observe that the rates are approximately 1/p ≈ 0.57
except for s = 0.7, 0.8, 0.9, where we believe the meshes are not fine enough to de-

liver accurate rates. This indicates that instead of the regularity u ∈ W̃ s+1/2−ε
p (Ω)

proved in ??, the solution u in this example might satisfy u ∈ W̃ s+1/p−ε
p (Ω). In

addition, the power p/2 in the error estimate (??) of ??,

‖u− uh‖W̃ s
p (Ω)

. inf
vh∈Vh

‖u− vh‖p/2
W̃ s
p (Ω)

,

might not be optimal as well. These two reasons together lead to the theoretical
suboptimal rate p/4 of (??).

5.2. Linear operators with finite horizon. We consider the operator Aδu de-
fined in (??) and let p = 2, that gives rise to the linear fractional Laplacian with
finite horizon and variable diffusivity.

Example 5.3 (truncated fractional Laplacian in 1D). Consider Ω = (−1, 1), p =

2, δ = 0.2, f = δ2−2s

1−s and ψ = χ[0,1] where χI is the characteristic function of I.
The resulting operator is the truncated fractional Laplacian we discussed in ??. We
first compute numerical solutions for different s using a mesh graded according to
(??) with h = 2−12, µ = 2 to investigate the boundary behavior of solutions. ??
displays the solutions we obtained for several values of s.

Assuming the solutions have an algebraic boundary behavior

u(x) ≈ dist(x, ∂Ω)α(s),



32 J.P. BORTHAGARAY, W. LI, AND R.H. NOCHETTO

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.1. Example ??: Numerical solutions of linear operator
with finite horizon for different values of s.

we estimate α(s) numerically in ??. We clearly observe α(s) ≈ s; this is the same
as for the fractional Laplacian (−∆)s.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α(s) 0.10 0.19 0.29 0.39 0.49 0.60 0.70 0.80 0.90

Table 4. Example ??: Boundary exponents α(s) for different val-
ues of s. They confirm u(x) ≈ dist(x, ∂Ω)s.

Next, we measure convergence rates for different s on uniform meshes for h from
2−8 to 2−12. Since we do not know a closed formula for the solution u, we use
‖uh − uh/2‖H̃s(Ω) as a proxy for ‖uh − u‖H̃s(Ω) and present the rates in terms of

h in ??. We observe the convergence rates are about 0.5 for all s, in agreement

with the regularity u ∈ H̃s+ 1
2−ε(Ω) proved in ?? (maximal Sobolev regularity) and

a standard best-approximation argument.

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate 0.530 0.508 0.500 0.498 0.497 0.498 0.498 0.498 0.501

Table 5. ??: Optimal convergence rates on uniform meshes for
different values of s.
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