Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/45178
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Barcia, Mariana | - |
dc.contributor.author | Sixto, Alexandra | - |
dc.contributor.author | Cerdeiras, Maria Pia | - |
dc.date.accessioned | 2024-08-07T13:39:21Z | - |
dc.date.available | 2024-08-07T13:39:21Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Barcia, M., Sixto, A. y Cerdeiras, M. "Prediction of microbiological non-compliances using a Boosted Regression Trees model: application on the drinking water distribution system of a whole country". Water Supply [en línea] v. 24, n°4, 2024. DOI: 10.2166/ws.2024.057 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/45178 | - |
dc.description.abstract | Universal access to safe drinking water is a fundamental human right and a requirement for a healthy life. Therefore, monitoring the quality of the supplied water is of utmost importance. To achieve this goal, there is a need to develop tools that support monitoring activities and improve efficiency. Forecasting models enable the prediction of pollution levels and facilitate the implementation of action plans. In this study, the Boosted Regression Trees method was employed to investigate the variables influencing water quality failures (WQFs) due to microbial contamination at the delivery point. The dataset used was obtained from localities across the country’s distribution systems. The variables under consideration included physicochemical parameters such as pH, turbidity (NTU), and free chlorine (mg L 1), along with contextual parameters like the year, season, geographic location, and locality population. Indicators of microbial contamination assessed were the presence of total coliforms, Escherichia coli, and Pseudomonas aeruginosa. The most significant variables were geographic location, free chlorine content, and the population of the locality. The model achieved an AUC value of 0.77 and provided adequate predictions in the conducted tests. It enables the exploration of key factors affecting microbiological water quality, allowing for informed action to reduce associated risks. | es |
dc.format.extent | 9 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | IWA | es |
dc.relation.ispartof | Water Supplyv. 24, n°4. -- pp. 1080–1088 | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject.other | ARBOLES DE REGRESION POTENCIADOS | es |
dc.subject.other | AGUA POTABLE | es |
dc.subject.other | APRENDIZAJE AUTOMATICO | es |
dc.title | Prediction of microbiological non-compliances using a Boosted Regression Trees model: application on the drinking water distribution system of a whole country | es |
dc.type | Artículo | es |
dc.contributor.filiacion | Barcia Mariana, Universidad de la República (Uruguay). Facultad de Química. Unidad de Análisis de Agua. | - |
dc.contributor.filiacion | Sixto Alexandra, Universidad de la República (Uruguay). Facultad de Química. Química Analítica. | - |
dc.contributor.filiacion | Cerdeiras Maria Pia, Universidad de la República (Uruguay). Facultad de Química. Área Microbiología. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.2166/ws.2024.057 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Prediction of microbiological non-compliances using a Boosted Regression Trees model.pdf | Artículo | 403,53 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons