english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/42727 How to cite
Title: Robust and unsupervised perceptual grouping of curves of dots
Authors: Lezama, José
Randall, Gregory
Morel, Jean-Michel
Grompone von Gioi, Rafael
Type: Ponencia
Descriptors: Procesamiento de Señales
Issue Date: 2016
Abstract: The Gestalt school of psychology proposed the existence of a short list of grouping laws governing visual perception. Among them, the law of good continuation can be stated as All else being equal, elements that can be seen as smooth continuations of each other tend to be grouped together [6] (Fig. 2). In the computational domain, attention to the Gestalt laws has been given since the early days of computer vision. D. Lowe was among the first to state the importance of incorporating the Gestalt principles of co-linearity, co-curvilinearity and simplicity for perceptual grouping algorithms [5]. Various computational formalizations of the good continuation principle have been proposed ever since, most notably the tensor voting approach [2, 3]. In this work1, we propose a new model and algorithm for the perceptual grouping by good continuation using a simple model that favors local symmetries, and with a detection control based on the non-accidentalness principle. This allows the method to be general in the sense that it can capture smooth curves of any shape and scale, and is robust to outliers and noise. It is also unsupervised because detections are given by their statistical significance, which requires only a single parameter, namely the number of false detections that would be allowed in an image of random noise. The proposed algorithm consists of two main steps: building candidate chains of points, and validating them. Candidate chains of points are built by considering triplets of points formed by joining nearest neighbors. Once valid triplets have been obtained, a graph representation is produced where each node corresponds to a triplet. A classic path finding algorithm is run on this graph to obtain paths between all pairs of triplets. Finally, the paths found are validated as non-accidental or rejected using thresholds obtained with the a contrario approach [1].
Publisher: IEEE
IN: 10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016
Citation: Lezama, J, Randall, G, Morel, J-M, Grompone von Gioi, R. "Robust and unsupervised perceptual grouping of curves of dots" 10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016.
Academic department: Procesamiento de Señales
Investigation group: Tratamiento de Imágenes
License: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Appears in Collections:Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
LRMG16.pdf333,13 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons