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1 Introduction

The Gestalt school of psychology proposed the existence of a short list of
grouping laws governing visual perception. Among them, the law of good
continuation can be stated as “All else being equal, elements that can be
seen as smooth continuations of each other tend to be grouped together” [6]
(Fig. 2). In the computational domain, attention to the Gestalt laws has been
given since the early days of computer vision. D. Lowe was among the first
to state the importance of incorporating the Gestalt principles of co-linearity,
co-curvilinearity and simplicity for perceptual grouping algorithms [5]. Var-
ious computational formalizations of the good continuation principle have
been proposed ever since, most notably the tensor voting approach [2, 3].

In this work1, we propose a new model and algorithm for the percep-
tual grouping by good continuation using a simple model that favors local
symmetries, and with a detection control based on the non-accidentalness
principle. This allows the method to be general in the sense that it can
capture smooth curves of any shape and scale, and is robust to outliers and
noise. It is also unsupervised because detections are given by their statistical
significance, which requires only a single parameter, namely the number of
false detections that would be allowed in an image of random noise.

The proposed algorithm consists of two main steps: building candidate
chains of points, and validating them. Candidate chains of points are built
by considering triplets of points formed by joining nearest neighbors. Once
valid triplets have been obtained, a graph representation is produced where
each node corresponds to a triplet. A classic path finding algorithm is run
on this graph to obtain paths between all pairs of triplets. Finally, the paths
found are validated as non-accidental or rejected using thresholds obtained
with the a contrario approach [1].

2 Mathematical Model

Let us consider a set of N planar points. The aim is to find a mathematical
model that can predict when an ordered subset of points lies on a smooth
curve that is perceptually salient relative to the background of the other
points, Fig. 1(a). Each ordered subset of points (a sequence of points) will
be called a chain; each set of three consecutive points in a chain will be
called a triplet. The proposed model is based on the simple idea that the
better the symmetry of the triplets, the better the saliency of the sequence.

The evaluation of a chain of points is based on the non-accidentalness
principle, proposed as the rationale underlying perceptual thresholds. In a
nutshell, an observed structure is relevant if it would rarely occur by chance.

1A previous version of this work was presented in [4].
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Figure 1: Definition of the good continuation event. (a) A candidate chain
is defined by an ordered sequence of points. (b) Three consecutive points in
a chain define a triplet. The ideal symmetric point is represented by X . (c)
The symmetry precision of a triplet is measured by the distance r from the
third point c to the ideal point X , relative to the area of the local observation
window R.

Figure 2: Result of our unsupervised perceptual grouping algorithm. Left:
80 points forming the word “POCV” plus 100 random points. Right: De-
tected sets of points in “good continuation”. The method automatically dis-
covers the number of salient structures, and is able to distinguish structure
from noise.

Quoting D. Lowe, “we need to determine the probability that each relation
in the image could have arisen by accident, P(a). Naturally, the smaller this
value is, the more likely the relation is to have a causal interpretation” [5].
The a contrario framework [1], a formalization of this principle, is used to
provide automatic detection thresholds, compatible with perception, and to
handle noise points. Given a random model for the data, the a contrario
methodology consists in evaluating the expectation of the occurrence of an
error as small as the one observed, relative to an ideal structure. If this
expectation is small, the event is considered perceptually meaningful.

The probability of observing a chain of points where all of its triplets
have a given degree of symmetry is evaluated in a random background
model assuming that the points in the image were randomly distributed. The
imperfection of a triplet translates into the distance r between the observed
third point and its ideal symmetric position, given the local context. To pro-
vide scale-invariance, the local context is given by a circular local window
L with radius R, where R = λ · |a− b| is proportional to the triplet size,
Fig. 1(c).

Given that n points were observed in L (not counting the two points
defining the triplet), the a contrario model assumes that the n points result
from a spatial uniform Poisson process in L. Under these assumptions, the
error of each triplet is translated into probabilistic terms. Let us call ρ the
distance between the ideal point X and its nearest point in L under H0. The
error associated to a triplet is

e =P(ρ ≤ r) = 1−
(

1− r2

R2

)n

. (1)

Consider a chain C of k points a1,a2, . . . ,ak. The error ei of each of the
k−2 triplets (ai,ai+1,ai+2) can be evaluated by Eq. (1), and the worst case
value, emax = max{e1,e2, . . . ,ek−2}, is associated to the whole chain. The
probability of all errors being lower than emax is P(Emax ≤ emax) = ek−2

max.
Notice that this is not the probability of observing the exact chain C, but the
probability of observing, under H0, chains whose triplets have all error emax
or less relative to ideal symmetric triplets.

The Number of False Alarms (NFA) [1] for a chain of points in good
continuation is defined as

NFA(C) = Ntests ·P(Emax ≤ emax) = bN
√

N · ek−2
max. (2)

The NFA is an upper bound on the expected number of chains with the
same error as C or smaller, to be observed by chance in the a contrario
model H0. A large NFA means that such an event is to be expected under
the a contrario model and therefore is irrelevant. On the other hand, a small



NFA corresponds to a rare event and therefore arguably a meaningful one.
The number of tests Ntests counts the chains considered as potential good
continuations. Given an observed candidate chain of points, the algorithm
considers the latter event as an ε-meaningful good continuation when the
corresponding NFA is lower than ε = 1 .

3 Algorithm

For each of the N input points, its b nearest neighbors are explored to form
a pair. For each of the N ·b pairs, the symmetric point is computed. The two
points closest to the symmetric point are used to form candidate triplets.

To find the grouping of triplets into chains, a graph representation of the
triplets is constructed where a pair of triplets is considered adjacent when
they share two points in such a way that they can form a chain of four points.
The Floyd-Warshall algorithm is used to find the shortest path joining every
pair of triplets. Each path found is a candidate chain that is finally evaluated
using the NFA, Eq. (2). Chains with an NFA lower than a meaningfulness
threshold ε = 1 are kept as detections.

Once all the good continuation events are found, we are interested in
keeping only non-redundant detections. Note that a good continuation event
might mask another smaller event contained in itself (e.g. a subset of the
points in a meaningful chain can be also meaningful). We shall say that an
event A masks an event B, if NFAA < NFAB and the chains share at least
two points. A non-redundant list of detections is obtained by ordering the
detections by NFA and discarding the masked detections.

The algorithm requires two parameters. The number of nearest neigh-
bors b used for exploration, and λ , the ratio of the local window size to a
triplet’s size2.

4 Evaluation

Figure 3 presents example results of the algorithm. A first experiment is to
verify that under the a contrario hypothesis the detector finds no meaningful
structure. To this aim, the first two rows show the result of applying the
detector to images with randomly distributed points. The second experiment
presents normally distributed random points. This experiment suggests that
the a contrario hypothesis of a local Poisson process is general enough to
model points that are unstructured at a local scale.

The last four experiments show figures where curvilinear point struc-
tures are present and the algorithm correctly detects them. Note how the
algorithm automatically determines the number of structures in each figure,
is robust to noise, and handles the different scales, even when changes of
scale occur inside a structure.

5 Conclusion

We propose a new model for the perceptual grouping law of good contin-
uation based on local symmetries. Concatenations of triplets are validated
as perceptually relevant by considering their expectation of occurrence in
a random image. Our method is unsupervised, robust to noise and scale
invariant, and it requires no parameter tuning.
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2All the results shown in this abstract use b = 5 and λ = 4.

Figure 3: Example results. Left: input. Right: detected perceptually rele-
vant curves in red. Note how the algorithm can detect any number of curves
at different scales while producing no false detections in noise.
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