english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/42727 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLezama, Josées
dc.contributor.authorRandall, Gregoryes
dc.contributor.authorMorel, Jean-Micheles
dc.contributor.authorGrompone von Gioi, Rafaeles
dc.date.accessioned2024-02-26T19:52:48Z-
dc.date.available2024-02-26T19:52:48Z-
dc.date.issued2016es
dc.date.submitted20240223es
dc.identifier.citationLezama, J, Randall, G, Morel, J-M, Grompone von Gioi, R. "Robust and unsupervised perceptual grouping of curves of dots" 10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/42727-
dc.description.abstractThe Gestalt school of psychology proposed the existence of a short list of grouping laws governing visual perception. Among them, the law of good continuation can be stated as All else being equal, elements that can be seen as smooth continuations of each other tend to be grouped together [6] (Fig. 2). In the computational domain, attention to the Gestalt laws has been given since the early days of computer vision. D. Lowe was among the first to state the importance of incorporating the Gestalt principles of co-linearity, co-curvilinearity and simplicity for perceptual grouping algorithms [5]. Various computational formalizations of the good continuation principle have been proposed ever since, most notably the tensor voting approach [2, 3]. In this work1, we propose a new model and algorithm for the perceptual grouping by good continuation using a simple model that favors local symmetries, and with a detection control based on the non-accidentalness principle. This allows the method to be general in the sense that it can capture smooth curves of any shape and scale, and is robust to outliers and noise. It is also unsupervised because detections are given by their statistical significance, which requires only a single parameter, namely the number of false detections that would be allowed in an image of random noise. The proposed algorithm consists of two main steps: building candidate chains of points, and validating them. Candidate chains of points are built by considering triplets of points formed by joining nearest neighbors. Once valid triplets have been obtained, a graph representation is produced where each node corresponds to a triplet. A classic path finding algorithm is run on this graph to obtain paths between all pairs of triplets. Finally, the paths found are validated as non-accidental or rejected using thresholds obtained with the a contrario approach [1].es
dc.languageenes
dc.publisherIEEEes
dc.relation.ispartof10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subject.otherProcesamiento de Señaleses
dc.titleRobust and unsupervised perceptual grouping of curves of dotses
dc.typePonenciaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señales-
udelar.investigation.groupTratamiento de Imágenes-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
LRMG16.pdf333,13 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons