english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/42706 Cómo citar
Título: Estimating the transmission probability in wireless networks with configuration models
Autor: Bermolen, Paola
Jonckheere, Matthieu
Larroca, Federico
Moyal, Pascal
Tipo: Artículo
Palabras clave: Wireless networks, Medium access probability, Random graphs
Descriptores: Telecomunicaciones
Fecha de publicación: 2016
Resumen: We propose a new methodology to estimate the probability of successful transmissions for random access scheduling in wireless networks, in particular those using Carrier Sense Multiple Access (CSMA). Instead of focusing on spatial configurations of users, we model the interference between users as a random graph. Using configuration models for random graphs, we show how the properties of the medium access mechanism are captured by some deterministic differential equations when the size of the graph gets large. Performance indicators such as the probability of connection of a given node can then be efficiently computed from these equations. We also perform simulations to illustrate the results on different types of random graphs. Even on spatial structures, these estimates get very accurate as soon as the variance of the interference is not negligible.
Descripción: Postprint
Citación: Bermolen, P, Jonckheere, M, Larroca, F, Moyal, P. “Estimating the transmission probability in wireless networks with configuration models”. Publicado en: ACM Transactions on Modeling and Performance Evaluation of Computing Systems, v. 1, no. 2, Article No. 9, pp 1–23, https://doi.org/10.1145/2858795
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
BJLM16.pdf433,11 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons