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We propose a new methodology to estimate the probability of successful transmissions for random access
scheduling in wireless networks, in particular those using Carrier Sense Multiple Access (CSMA). Instead
of focusing on spatial con�gurations of users, we model the interference between users as a random graph.
Using con�guration models for random graphs, we show how the properties of the medium access mechanism
are captured by some deterministic di�erential equations, when the size of the graph gets large. Performance
indicators such as the probability of connection of a given node can then be e�ciently computed from these
equations. We also perform simulations to illustrate the results on di�erent types of random graphs. Even
on spatial structures, these estimates get very accurate as soon as the variance of the interference is not
negligible.

Categories and Subject Descriptors: C4 [Computer System Organization]: Performance of Systems—
Modelling Techniques, Performance Attributes; G3 [Probability and Statistics]: Stochastic Processes

Additional Key Words and Phrases: Wireless Networks, Medium Access Probability, Random Graphs, Park-
ing Process

1. INTRODUCTION
Wireless communications are becoming ubiquitous. Nowadays, virtually every elec-
tronic device includes at least one wireless interface. With the massive expansion of
Wireless Personal Area Networks (WPAN) and Wireless Sensor Networks (WSN), and
the advent of the Internet of Things (IoT), this trend will only intensify. A recent study
performed by Cisco in 2011 [Evans 2011] estimated the number of devices connected to
the internet per person in the world at 1.84 (if only people that are actually connected
to the internet are considered, this number rises to 6.25), and that it would be 6.58 by
2020. These modern networks, decentralized and immense in size, bring along several
challenges regarding performance evaluation.

In the present article, we consider a large set of nodes which communicate with
each other by means of a wireless channel. In this network, a Medium Access Control
(MAC) mechanism based on 802.11’s Distributed Coordination Function (DCF, a form
of CSMA) [IEEE 2012] is in place to allow nodes to effectively share the medium.
Since every node may be either receiver or transmitter, the hidden node problem will
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probably degrade the network’s performance if unattended [Larroca and Rodríguez
2014]. The typical way of dealing with this problem is to use the RTS/CTS four-way
handshake.

With this mechanism in place, every node that intends to send a packet to a tagged
destination first senses the medium, and if idle, it sends a Ready To Send (RTS) frame
addressed to it. This packet contains the duration of the impending transmission, so
all nodes overhearing the packet will refrain from transmitting during this period. If
possible, the destination node will in turn respond with a Clear To Send (CTS) frame,
which also contains the duration, and thus every other node overhearing this frame
will also restrain itself from transmitting. However, if the tagged destination has pre-
viously overheard another CTS frame, or its channel is currently not idle, it will natu-
rally not answer the RTS, and the transmission will not take place.

We are interested in the transmission probability, that is the number of concurrent
successful transmissions that take place in such a network (which is also termed as
the spatial reuse in the literature). In particular, we consider a slotted variant of DCF.
That is to say, time is broken into slots of duration Ts, which in turn are separated in
two periods: the so-called contention period (Tc) and the transmission period (Tt). Dur-
ing the first one, all nodes that have a packet ready to be sent choose a random time
between 0 and Tc, when they send an RTS frame to the destination node. Naturally,
this will happen unless they sensed the medium as busy or they overheard another
RTS or CTS frame first. The destination node will in turn answer with a CTS frame
unless its medium is currently busy, or if it received another RTS or CTS frame first.
After the RTS/CTS handshake successfully took place, the data packet is sent imme-
diately.

Before stating our contributions in more detail, a brief state of the art on wire-
less networks driven by access control mechanisms is in order. The dynamics induced
by randomized decentralized medium access protocols have received a tremendous
amount of attention, due on the one hand to their dominant deployment, and on the
other hand to the great difficulty of their modeling and performance evaluation. Even
the simplest algorithms where users do not use any information on the contents of
their own or their neighbors buffers to access the channel are far from understood. A
realistic model should indeed combine at least the two following interacting sources of
randomness:

(1) Randomness of the media: interference between users competing for communica-
tion (that may depend on the stochastic spatial positions of users as well as on
various sources of noise).

(2) Randomness of the traffic: stochastic arrivals and departures of users.

Moreover, users can be considered saturated (they always have packets to transmit) or
unsaturated (i.e., each user represents an exogenous source of traffic for the network),
while traffic can be modeled as asymmetric and subject to priority mechanisms (tree-
algorithms). These difficulties gave rise to different types of models focusing on specific
aspects and sources of randomness:

— A first class of models does not take into account the spatial diversity and considers
scenarios where every user symmetrically interacts with everyone else. Some au-
thors use the term full interference to describe this situation which might be a very
pessimistic assumption. (In that context for instance, the non-adaptive ALOHA can
be shown to be unstable for almost any traffic parameter [Bremaud 1999].) More ac-
curate models may however focus on possible asymmetric and dynamical stochastic
traffic characteristics. This line of research started with the seminal work of Bianchi
[Bianchi 2000].
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— Another family of models focuses on a fixed graph of interference with unsaturated
users. In this context, the first benchmark of performance is to characterize the
stability of the network which might turn out to be a difficult task. Under Marko-
vian assumptions, a characterization of the stability problems has been obtained in
[Szpankowski 1983; Borst et al. 2008]. More detailed characterizations and approxi-
mations of the stability region were recently obtained in [Cecchi et al. 2014], while it
was shown in [Bordenave et al. 2012] how to approximate the stability region using
mean-field arguments.

— On the other side of the spectrum, some models inspired by stochastic geometry and
point processes focus on the random spatial location of users and aim at estimat-
ing e.g. the probability of connections for a given users’ configuration. A pioneer-
ing application of Matérn’s model can be found in [Nguyen et al. 2007] while more
involved models and computations are considered in [Baccelli and Blaszczyszyn
2009a; 2009b]. Since a partial interference (not all users interfere between each
other) is an important feature of wireless networks, it is crucial to grasp its quanti-
tative influence on performance. To further take into account the stochastic nature
of traffic, a time scale separation assumption might then be called upon to use the
probability of access in a given state of the system as the speed of service of a higher
time scale stochastic network.

This last point of view is close to the one we adopt here. However, the evaluation
of connection probabilities for a given scenario remains a difficult task. This is linked
to the analysis of the dynamics of the so-called parking process, which has received a
tremendous amount of attention in the physics and biology literature (under the name
of random adsorption models) [Penrose 2001; Penrose and Sudbury 2005]. Even in
the case of completely symmetric users, evaluating the probability of connection when
users are spatially located as a Poisson point process in the plane is a difficult problem.

Recently, a characterization of the Laplace transforms of functionals of the park-
ing process dynamics (also called the Matérn-infinity process) were obtained [Viet and
Baccelli 2012b; 2012a]. These are striking results given the complexity of the process.
Unfortunately they do not provide explicit formulas for the probability of a successful
transmission for instance and bounds have to be invoked to obtain easily computable
estimates. Moreover, nodes competing to access the channel in these models may only
transmit. After the decision of which nodes may do so simultaneously, the receiver is
considered as any point at distance less than a given threshold, and the coverage prob-
ability is analyzed (i.e. the context is more adequate for downlink transmissions where
the nodes that compete to access the channel do not communicate between them, and
the RTS/CTS handshake is not considered). On the contrary, in our work all nodes
may be either transmitter or receiver, and the receiver’s availability is also considered
to establish the transmission.

Naturally, some efforts have been carried out in order to consider the receiver. Most
notably, in [Durvy and Thiran 2006] a packing approach of links is considered to calcu-
late the spatial reuse in slotted medium access control of multi-hop ad-hoc networks.
However, with the proposed methodology an explicit formula for the spatial reuse may
be obtained for the line topology only, whereas for the grid or Poisson distribution on
the plane they based their analysis on simulations. The method we propose here may
be used for any topology and in particular, as we will see on the example section, pro-
vides an asymptotically exact approximation for the line topology.

We hence take here an alternative route. Building on some recent results for parking
processes on random graphs, we base our estimation of connection probabilities on
dynamics over random graphs rather than on thinned point processes. Just as models
inspired by stochastic geometry, we consider a single time slot but we forget the spatial
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configurations of users to focus on a random graph of interference. Though this method
might lose in accuracy by ignoring some correlations between users interferences, it
allows to get simple differential equations through which one can easily compute the
probability of connection.

More specifically, we provide a methodology that allows us to calculate the prob-
ability of a successful transmission in an arbitrarily large random network, where
a CSMA-like protocol is in place and the RTS/CTS handshake is active. This is our
main contribution and is achieved by constructing jointly the interference graph and
an associated exploration process, permitting us to define the dynamics of the parking
process as a measure-valued Markov process. Then by means of classical martingale
decomposition of Markov process, we show how the dynamics of the process can be
described by a system of non-linear differential equations when the size of the graph
is large.

The structure of the paper is as follows. After stating our assumptions in the next
section, we describe the parking process on a fixed graph in Sec. 3 and motivate the
need of defining simultaneously the graph and the dynamics. In the same section, we
provide an intuitive description of the definition of the measure-value Markov process
and the large graph limit. Our main result is presented and explained in Sec. 4. This
result is obtained by using and extending our previous work [Bermolen et al. 2013]
which may be regarded as an analysis where the receiver node is not considered. Fi-
nally, in Sec. 6 we will show how to analyze variants of the access mechanism, which
differ in how the transmitter (and the overhearing nodes) reacts to a failed handshake.
Moreover, the usefulness of the presented results is illustrated by studying several ex-
ample scenarios (Sec. 5).

2. CONTEXT AND ASSUMPTIONS
We assume in the sequel a threshold-type channel, where transmissions are either
perfectly received or not received at all. This is sometimes termed protocol model in
the literature [Gupta and Kumar 2000]. In other words, we consider an interference
graph G = (V, E), where an edge exists from node s to node r if the transmission of node
s can be received by node r. We further assume that the channel is symmetric, meaning
that all edges are bidirectional. Practically speaking, this means that all wireless nodes
have relatively similar hardware and transmit at the same power. The last assumption
is that the RTS/CTS handshake takes place instantly. This means that thanks to the
collision avoidance scheduling, no collisions will occur in our model.

Let us now discuss how to model the communication graph. In a planned network,
where all nodes are fixed and the propagation conditions are stable, the graph is given
and does not change significantly over time. This could be the case in a wireless mesh
with line-of-sight between nodes. However, if nodes are mobile and/or the channel
rapidly changes (for instance, a MANET or a urban scenario), the graph may vary sig-
nificantly, thus adding a second level of randomness (that is, in addition to the MAC
layer). We focus on the second scenario, although we will later discuss how our results
may be used in the static case-scenario.

Consider for instance the “most random” graph possible: a scenario where every pair
of nodes are neighbors (i.e. an edge exists between them) with probability p, and the
event of two nodes being neighbors is independent of everything else. This graph mod-
els a totally unplanned and dynamic network, where all we may be able to estimate a
priori is p. In particular, let us denote by N the total number of nodes in the network,
and by ν the average number of neighbors of each node. Then, p(N − 1) = ν, and if N
is big, this amounts to p ≈ pN = ν/N . Thus, the parameter of interest in this scenario
is ν.
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We may however have more information on the communication graph than the mean
number of neighbors. In particular, we assume here that the graph of interference is
characterized by the complete distribution of degrees denoted hN . For example, we
may know that half the nodes have two neighbors, and the other half three, in which
case the counting measures of degrees is such that hN (2) = hN (3) = 1/2, and 0 for the
rest. For the example described in the previous paragraph the degree distribution is
hN (i) = CN−1

i pi(1− p)N−1−i (i.e. a binomial distribution), which may be approximated
by a Poisson distribution with parameter ν when N is large.

Regarding traffic, we assume that all nodes are saturated i.e. have a packet ready
to be sent in every time-slot. We further assume that the destination node for this
packet is a neighbor picked at random. Let us consider a given contention period. At
time 0, every node will choose a random number, uniformly distributed between 0 and
Tc. Consider the node with the minimum such time. It will send a RTS frame to one
of its neighbors, chosen randomly among them. Since this is the first transmission,
the destination node will answer with a CTS frame, thus “blocking” all its neighbors.
The origin node will immediately start transmitting a data frame, also blocking all its
neighbors. In what follows, we will term these two nodes as active, and their neighbors
as blocked. Just like the receiving node, blocked nodes stop competing for the channel.
Let us term the rest of the nodes as unexplored.

We now have to focus solely on this last set, and find the node which has drawn
the minimum number. This node will then send a RTS frame to any of its neighbors.
However, the receiving node may already be blocked by a previous transmission and/or
CTS, in which case the handshake will fail. As a first step in the analysis, and in
the following two sections, we will assume that the origin node realizes this failure
(since no CTS is received), and immediately sends a new RTS frame to another random
neighbor. This is repeated until a CTS is received back, or no more neighbors are left
(i.e. all its neighbors belong to the blocked set). Furthermore, the transmission of the
RTS frames will also be assumed to take place instantly. In addition to allowing us to
illustrate the techniques we will use in the analysis, this scenario is of interest on its
own right, since it models an ideal protocol and may be regarded as an upper bound
for the resulting probability of successful transmission.

Finally, the above procedure is repeated until time Tc, or equivalently, until no more
unexplored nodes are left.

3. PRELIMINARIES
3.1. Random sequential adsorption
We now start the analysis with the objective of estimating the number of successful
transmissions that take place concurrently. That is to say, how many CTS frames are
sent in a single time slot on average. The first step will be to construct the interference
graph G = (V, E). Since our only a priori information is the nodes’ degree distribution
hN (i), we will consider a uniformly chosen graph among those that comply with it.

Having chosen a graph, we proceed to analyze the MAC protocol. Please recall that
each node chooses a random time (uniformly drawn from the interval [0, Tc]) to send its
RTS frame. However, regarding the order at which they will proceed, which ultimately
determines the successful transmissions that will take place, any other continuous
distribution is equivalent. In particular, the exponential distribution with parameter
λ is one that will serve our purposes (with λ any positive number). Let us now denote
by Ut, At and Bt the set of unexplored, active and blocked nodes at time t respectively
(with Ut ∪At ∪Bt = {1, . . . , N} ∀t). At time 0 we have A0 = B0 = ∅ and U0 = {1, . . . , N}.

Please note that, given G, the triplet (Ut,At,Bt) forms a non-homogeneous continu-
ous time Markov chain. Transitions updating the sets Ut, At and Bt occur when RTS
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Fig. 1. An example of Ns and Nr when a r in U
t+n

exists. Nodes with no fill were unexplored at time tn.
Only the connections of s and r are shown.

frames are transmitted, and since only unexplored nodes compete for the channel,
their rate is equal to |Ut|λ. For instance, in our present ideal scenario, a RTS transmis-
sion will be successful if the tagged node has at least one unexplored neighbor. Figure
1 illustrates an example of such a transition, where node s sends a RTS to node r (a
random node from its unexplored neighbors). Thus, both will be transferred from Ut
to At, and all nodes in Ns and Nr (their neighbors) will now belong to Bt (or more
precisely, except r and s, those which were not blocked already). This is repeated until
transition time tn∗ , when Utn∗ = ∅, an absorbing state of this Markov chain.

The algorithm described above belongs to the class of the so-called Parking Pro-
cesses [Penrose 2001]. In this context, the set Atn∗ is termed Jamming limit, and is
related to our ultimate objective: to estimate the number of successful transmissions
in a typical contention period. To this end, one may try to study the Markov chain on
a fixed graph, calculate the Jamming limit given a particular communication graph G,
and then combine these results weighting them by the probability of every particular
graph. Unfortunately, this brute-force approach will quickly be limited by the immense
size of the state space of the Markov chain. This explains the need for an alternative,
more tractable, approach.

3.2. Configuration algorithm and measure-valued Markov process for large graphs
Given the difficulties emphasized above, our approach consists in constructing the ran-
dom graph G jointly with the transmissions’ dynamics, following the so-called con-
figuration model [Bollobas 2001; Molloy and Reed 1995; Durrett 2007]. In this first
approach, the construction focuses only on the unexplored nodes. In fact, we are inter-
ested in how many CTSs have been sent by the time the unexplored set Ut becomes
empty.

To this end, let us recall that at any time t, a node can be an element of either Ut,
At or Bt. Moreover, our only a priori information is the counting measure µ, where
µ(i) is the number of unexplored nodes having i unexplored neighbors at time 0 (i.e,
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µ(i) = hN (i)N ∀ i ∈ N). We then extend this to an arbitrary time t > 0 and denote it as
µt.

It is important to highlight that we do not require the knowledge of which partic-
ular nodes are the neighbors of any given unexplored node. As such, we regard the
edges starting from any node in Ut as unmatched half-edges from an unexplored node
towards either another unexplored node (and we denote them as U → U) or a blocked
node (which will naturally be denoted by U → B). In this sense, µt(i) tells us how many
unexplored nodes have i half-edges of class U → U at time t. As we now discuss, by
characterizing µt alone we will be able to estimate the transmission probability.

Let us denote for all t ≥ 0 and all i ∈ N,

αt(i) =
µt(i)∑
j∈N µt(j)

; (1)

βt(i) =
iµt(i)∑
j∈N jµt(j)

. (2)

The probability measures αt et βt have intuitive interpretations: the first one describes
the degree distributions of a randomly (and uniformly) picked unexplored node at time
t, while the second one is the size biased distribution of αt and represents the degree
distribution of any neighbor of a randomly picked unexplored node or in other words,
the degree of the starting node of a half-edge drawn uniformly at random, among all
half-edges starting from unexplored nodes. This representation will be useful in the
following discussion.

Suppose that at a transition time tn, a formerly unexplored node transmits a RTS
frame, thus becoming active. Let us term this node as TX. Then, the measure µtn has
to be modified according to the following steps:

(1) TX is chosen uniformly among all unexplored nodes. We shall denote by KTX its
degree towards other unexplored nodes. Hence,

P (KTX = i) = αtn(i), i ∈ N. (3)
(Note that we have dropped the dependence on time for KTX to lighten notations
and we shall do the same for other quantities of interest in the sequel.)
Then, as TX becomes active and is no longer unexplored, we have to remove it from
the measure µtn : the quantity µtn(i) is decreased by one in i = kTX, a particular
realization of KTX (for example kTX = 3 in Fig. 1). If kTX = 0, then this transmission
attempt will fail and we proceed to the next transmission attempt, if any.

(2) If kTX > 0, we complete the edges starting from TX using a uniform pairing pro-
cedure, as termed in [Wormald 1995]: each one of the kTX half-edges emanating
from TX is matched with another half-edge, drawn uniformly at random among all
available ones. By doing so, two ‘bad’ situations may occur:

(2a) half-edges emanating from TX are matched together, creating self-loops;
(2b) several half-edges of TX are matched to half-edges emanating from the same

node, hence generating multiple edges between TX and the latter.
However, the probability of such events for a fixed TX becomes arbitrarily small as
N grows large. Indeed, one can show that similarly to Formulas (54) and (56) in
[Bermolen et al. 2013] (for the system without receiver), as long as the quantity
of remaining half-edges remains of order N , the probability that TX has self-loops
and/or multiple edges is of order 1/N . As an alternative argument, one can observe
that the uniform construction of the random graph leads to the configuration model
(see [Wormald 1999], independence property), for which the number of self-loops
(case 2a) and multiple edges (2b) tends in distribution to a Poisson random variable
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whose parameter is independent of N (see e.g. Proposition 7.9 in [van der Hofstad
2013]), hence to an arbitrarily small quantity with respect to N .
As a conclusion, up to this asymptotically negligible events, TX shares its kTX edges
with kTX other nodes. At this point, one of these unexplored neighbors of TX also
becomes active: this node is denoted by RX, the intended destination of TX’s RTS.
If kTX > 1, we also need to block all the unexplored neighbors of TX except RX, and
for this we repeat the same random matching procedure kTX − 1 times. In total,
there are exactly kTX U-nodes changing status at this stage (the new RX and the
other neighbors of TX), and we have to know their respective degrees to update
the measure accordingly. Observe that at tn, precisely iµtn(i) half-edges belong to
a node that has a degree i towards unexplored nodes. Let for any i, Y TX(i) be the
number of neighbors of TX (including RX) having degree i toward the unexplored
vertices just before tn. In view of the previous observation, conditionally on KTX,
Y TX(i) is a hypergeometric random variable with parameters kTX and βtn(i). All in
all, for any i, µtn(i) decreases by the quantity yTX(i), a realization of Y TX(i) (for
example yTX(3) = 2 yTX(4) = 1, and yTX(i) = 0 ∀ i 6= 3, 4 in Fig. 1).

(3) Let us denote by KRX, the number of unmatched U → U half-edges starting
from RX (for example, kRX = 4 in Fig. 1). Set KRX ≡ 0 if kTX = 0. As the random
pairing is uniform, conditionally on {KTX > 0} the distribution of the r.v. KRX is
given by

P (KRX = i) = βtn(i), i ∈ N∗. (4)

Likewise the previous step, if kRX > 1, we now have to block all the unexplored
neighbors of RX, except TX and all its (already blocked) neighbors. Let Y RX(i) be the
number of such neighbors of RX, having degree i toward the unexplored vertices at
tn. The distribution of the latter r.v. depends on the number of neighbors that TX
and RX have in common. Such neighbors may very well exist, as the example in
Fig. 1 illustrates. But using a similar argument as for the case (2a) above, in the
large graph limit, the probability of RX choosing one (or more) of the neighbors of
TX is arbitrarily small, until any given horizon strictly prior to the completion of
the graph (in which case the sum of the degrees of the neighbors of TX remains
negligible with respect to the total choice of half-edges proposed to RX - similarly
to the convergence of the first term in Lemma 5.1 of [Bermolen et al. 2013]) . All
the same, the probability that RX has self-loops, or shares multiple edges with its
neighbors tends to 0 as N grows large (as in (2b)). Therefore, in the limit, Y RX(i) is
a hypergeometric random variable with parameters kRX − 1 and βtn(i). As above,
for any i, µtn(i) additionally decreases by the quantity yRX(i) (in the example of Fig.
1 yRX(2) = 2 and yRX(i) = 0 ∀ i 6= 2 ).

(4) Once we have blocked all the neighbors of both TX and RX, all their formerly
U → U half-edges become either B → A (the ones pointing towards either TX or
RX) or B → U (all the other ones, see the slashed edges in Fig. 1). Consequently,
the same number of U → U half-edges emanating from unexplored nodes now be-
come U → B, thereby creating edges between blocked and unexplored nodes. More
precisely, each blocked node completes its former U → U half-edges with any of
the available ones, uniformly chosen at random. The discussion regarding the case
(2b) above still applies: as N goes to infinity the probability of choosing (i) a half-
edge belonging to another blocked neighbor (hence creating edges between blocked
nodes), or (ii) several half-edges emanating from the same unexplored node (lead-
ing to multiple edges), vanishes as N grows large. (In the example in Fig. 1, five
unexplored nodes will “lose” one U → U half-edge, as each of the five slashed half-
edges point towards a different node.)
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Hence, in terms of the random vectors defined before, and whenever KTX > 0, there
are ZTX =

∑̀
>0

(` − 1)
(
Y TX(`)− 1l{KRX=`}

)
(respectively, ZRX =

∑
`>0(` − 1)Y RX(j))

unexplored nodes neighboring the blocked neighbors of TX (resp., of RX) that lose
one U → U half-edge (in the example of Fig. 1 zTX + zRX = 5). Let us define for all i,
XTX(i) (resp., XRX(i)) the r.v. indicating how many such nodes have a degree i
towards the unexplored nodes. The latter is hypergeometric with parameters
ZTX (resp., ZRX) and βtn(i). Using these definitions, in this last step, for any i, µtn(i)
decreases by xTX(i) + xRX(i) and increases by xTX(i+ 1) + xRX(i+ 1).

The above description shows that (µt) is a measure-valued continuous-time inhomo-
geneous Markov chain (see [D.A. 1991]), admitting the null measure 0 as absorbing
state.

Let us further add another dimension to the process and additionally keep track, for
all t, of the number ct of CTS frames that have been sent up to time t. It is easily seen
that (µt, ct) is still a Markov chain. We are thus interested in ct after the chain reaches
an absorbing state, considering that the following equality holds:

E{Θ} = θ = lim
t→∞

E
{ ct
N

}
,

where Θ is a random variable indicating the number of successful transmissions ob-
tained in a given contention period, divided by the total number of nodes (N ). The next
section shows how the limit above may be obtained by characterizing the dynamics of
µt.

4. LARGE GRAPH LIMIT
As we discussed in the previous section, the probability of a successful transmission
can be described as a function of the Markov process (µt, ct). Though computations on
the defined Markov chain are still a formidable task for large state spaces, the system
dynamics get simpler to understand for large N . In fact, ct can be expressed in the
limit by means of a differential equation (where naturally µt plays a central role).

Let us emphasize the dependence of the measure-valued process on the size N of
the graph by denoting the latter

(
µNt
)
. As N grows large, we consider a scaled process(

µ̄Nt
)

:=
(
µNt /N

)
(thus for all i, µ̄Nt (i) refers to the proportion of unexplored nodes with

i unexplored neighbors at time t for the graph of size N ). We then identify the so-called
large-graph limit µ̄ by letting N go to infinity, thereby obtaining a functional law of
large numbers for the system. This limiting process gives us a representation of the
“mean behavior” of the measure valued process (µt), and performance indicators as a
by-product.

In what follows, for any t, for any fixed measure µ̄t we denote likewise (1) and (2),

ᾱt(i) =
µ̄t(i)∑
j∈N µ̄t(j)

; (5)

β̄t(i) =
iµ̄t(i)∑
j∈N jµ̄t(j)

. (6)

The following result can be seen as an extension of Theorem 4.1 in [Bermolen et al.
2013], which establishes a similar large-graph limit for a measure-valued process rep-
resenting an ideal system, in which only the neighbors of TX are blocked. In particular,
we have to make similar mild assumptions on the initial conditions of the system.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article XXXX, Publication date: December 2015.



XXXX:10 P. Bermolen, M. Jonckheere, F. Larroca, P. Moyal

ASSUMPTION 4.1. Let for any k ≥ 0, χk denote the function x → xk and 〈µ, φ〉 =∑
i µ(i)φ(i). For all bounded functions φ from N to itself,〈

µ̄N0 , φ
〉
−→
N→∞

〈ν, φ〉 in probability, (7)

where ν is a deterministic finite measure on N such that

0 < 〈ν, χ〉 and
〈
ν, χ6

〉
<∞. (8)

We then have the following result.

THEOREM 4.2. Under Assumption 4.1, the sequence of processes {µ̄N} converges in
probability and uniformly on compact time intervals towards the only measure-valued
deterministic function µ̄ of the following infinite dimensional differential system: for all
t ≥ 0 and all i ∈ N,

µ̄0(i) = ν(i);

d

dt
µ̄t(i) = −λ

∑
`

µ̄t(`)

ᾱt(i) + β̄t(i)
(∑

j

jᾱt(j) + (1− ᾱt(0))
∑
j

(j − 1)β̄t(j)
)

+
(

(β̄t(i)− β̄t(i+ 1))
∑
j

(j − 1)β̄t(j)
)(∑

j

jᾱt(j) + (1− ᾱt(0))
∑
j

(j − 2)β̄t(j)
) .
(9)

PROOF. The mathematical steps leading to this fluid limit result are standard in the
theory of weak approximations of Markov processes. They can be obtained similarly to
Theorem 4.1 of [Bermolen et al. 2013], and are not further described in detail. In a few
words, one first considers the process until an instant tε arbitrarily close, but strictly
less than the completion time of the graph, so that the large-graph approximation of
Sec. 3.2 remains valid. Then, until tε, classical martingale arguments entail that the
only limit point µ̄ of (µ̄N ) is the (unique) deterministic flow satisfying for any test
function µ 7→ µ(i), i ∈ N, the ordinary differential equation

dµ̄t(i)

dt
= Ft(i) (µ̄) ,

where the drift Ft(i) is nothing but the limiting expected value of the decay of µN
t (i)
N .

That is to say, the mean number of nodes with i half-edges of type U → U that are
removed at t if a transition occurs at that time, times the normalized transition rate.
In other words, for all i,

d

dt
µ̄t(i) = −λ

∑
`

µ̄t(`)

[
ᾱt(i) + P (KTX > 0)E

{
Y TX(i) +XTX(i)−XTX(i+ 1)|KTX > 0

}
+ P (KTX > 0)

(
E
{
Y RX(i)

}
+ E

{
XRX(i)−XRX(i+ 1)

}) ]
. (10)

In the right hand side of (10), the first term between brackets corresponds to the
transmitter node. If KTX > 0, then additional nodes of degree i may be blocked both by
TX and RX, which correspond to the last terms.

Now, according to the large-graph asymptotics discussed in Section 3.2, the limiting
expected valued of the involved random variables are given by
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Fig. 2. An example comparing several realizations of µ̄Nt (N = 1000) and the solution of (9) (marked as
circles), where µ̄N0 = µ̄0 = (0, 1/3, 1/3, 1/3). The four coordinates of the process are shown superposed.

E
{
Y TX(i)|KTX > 0

}
= β̄t(i)E

{
KTX|KTX > 0

}
= β̄t(i)

1

1− ᾱt(0)

∑
j

jᾱt(j);

E{XTX(i)|KTX > 0} = β̄t(i)E{ZTX|KTX > 0} = β̄t(i)
∑
`>0

(`− 1)E
{
Y TX(`)− 1l{KRX=`}|K

TX > 0
}

= β̄t(i)
∑
l

(l − 1)β̄t(l)
∑
j

j
ᾱt(j)

1− ᾱt(0)
− β̄t(i)

∑
l

(l − 1)β̄t(l);

E{Y RX(i)} = β̄t(i)E
{(
KRX − 1

)}
= β̄t(i)

∑
j

(j − 1)β̄t(j);

E{XRX(i)} = β̄t(i)
∑
`>0

(`− 1)E
{
Y RX(`)

}
= β̄t(i)

∑
l

(l − 1)β̄t(l)
∑
j

(j − 1)β̄t(j).

Then (9) follows by straightforward algebra. The convergence result after tε can be
obtained similarly to Lemma 5.6 in [Bermolen et al. 2013]. �

Example 4.3.
Before discussing how to calculate the probability of connection, let us consider an

example. In particular, assume a large network where all we know is that nodes may
have either 1, 2 or 3 neighbors with the same probability. In this case, µ̄N0 (i) = 1/3
for i = 1, 2, 3, and µ̄N0 (i) = 0 for the rest. It is then straightforward to see that in this
case the infinite dimensional differential equation described by Eq. (9) results in a 4-
dimensional one, where we have to determine µ̄t(i) for i = 0, . . . , 3, and the rest will
be identically zero. In general, if µ̄0(i) = 0 for all i > D, then the system has D + 1
differential equations with D+1 functions to be calculated. In this case, we may resort
to numerical methods to solve the system.

The resulting solution µ̄t and several realizations of µ̄Nt (with N = 1000) for this
particular example are compared in Fig. 2. The graph illustrates how µ̄t effectively
represents the “mean” of the actual process µ̄Nt .
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4.1. Estimating the probability of successful transmission
Let us now discuss how to calculate the transmission probability based on µ̄t. As dis-
cussed before, we may define an auxiliary Markov process (ct), that counts for any
time t, how many CTS frames have been sent up to time t. Its transition times are
the same as that of (µt), and it will increase by one at t only if a CTS is received by
the tagged node (i.e. if it has an unexplored neighbor) which occurs with probabil-
ity 1 − αt(0) = 1 − µt(0)/

∑
j µt(j). Based on the previous result, the process (ct/N)

converges when N goes to infinity, in the same sense as above, to the deterministic
function (c̄t) which is defined by

d

dt
c̄t = λ

∑
j

µ̄t(j)

(
1− µ̄t(0)∑

j µ̄t(j)

)
= λ

∑
j>0

µ̄t(j); t ≥ 0,

where µ̄ is the only solution of (9). Since the transmission probability is simply the
limit of (c̄t) for large t, we have obtained the following result:

PROPOSITION 4.4. Let Θ be a random variable indicating the proportion of success-
ful transmissions that take place in a given contention period, as described in Secs. 3.1
and 3.2. When N goes to infinity the following equality holds:

E{Θ} = θ = λ

∫ ∞
0

∑
j>0

µ̄t(j)dt, (11)

where (µ̄t) is the only solution of (9).

Please note that although Th. 4.2 proves the convergence on a compact interval (un-
til just before the graph’s completion time), Eq. (11) remains valid. Firstly, the solution
of (9) can be extended to R+ by continuity arguments, similarly to the comment before
Lemma 5.6 in [Bermolen et al. 2013] and secondly, its integral after the completion
time can be proved to be negligible, as in the proof of Corollary 4.4 in [ibid.].

Remark 4.5. As expected, the value of θ =
∫∞

0

∑
j>0 µ̄t/λ(j)dt does not depend on λ.

From (9), we obtain that the function µt/λ(i) verifies an ordinary differential equation
of the form d

dtµt/λ(i) = F (µt/λ(i)) where F does not depend on λ. Then, the solution
µ̄t/λ(i) does not depend either on the value of λ.

Remark 4.6. Let ūt =
∑
i µ̄t(i) be the proportion of unexplored nodes at time t and

Pt(CTS), the probability of receiving a CTS at time t (in the present case Pt(CTS) =
1− ᾱt(0)). We may re-write Eq. (11) as

θ = λ

∫ ∞
0

ūtPt(CTS)dt. (12)

We will further discuss this alternative formulation in Sec. 5.2. Moreover, please note
that if the probability of collision (or any other impairment) is not negligible as we
assumed, it may be included in Pt(CTS). Such extension is left for future work.

5. TRANSMISSION PROBABILITY OVER DIFFERENT INTERFERENCE GRAPHS
In this Section, we first look at the accuracy of the approximation of the transmission
probability on configuration models with a finite number of nodes. Later on, we show
how this methodology may be efficiently used to estimate the transmission probability
of more complicated interference graphs stemming from spatial models.
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Fig. 3. The evaluation of Eq. (11) along with the boxplot of the numerical results of 10 simulations for
N = 1000. The initial nodes’ degree is uniformly distributed between 5 − k and 5 + k, where k is indicated
in the abscissa.

5.1. Configuration model with a uniform distribution
As a first illustration of the accuracy of Eq. (11) for finite large N , consider the example
in Fig. 2. More precisely, we suppose that each node in the network has a number of
neighbors ranging from 5 − k to 5 + k (with k varying between 0 and 5), all with the
same probability. Figure 3 compares the limiting value θ (obtained from the solution
of the limiting differential equation) and the simulations of 10 contention periods (in
the form of a boxplot) for N = 1000.

Equation (11) provides an excellent approximation to the mean of Θ. Please note
that the mean number of neighbors of each node is always 5, independently of k, which
may be regarded as a parameter that controls the variance of the initial degree distri-
bution. Interestingly, note that for low values of k the transmission probability seems
independent of k whereas as it reaches 5, this probability significantly decreases. As
intuition tells, this particular example illustrates that the transmission prob-
ability does not depend only on the mean of the degree distribution.

5.2. Configuration model with Poisson distribution
Equation (12) shows that in order to calculate θ we actually need to determine ūt (i.e.∑
i µ̄t(i)), Pt(CTS), and then the integral of their product. Let us then write down the

differential equation that governs ūt by summing Eq. (9) over all i ∈ N. It is easy to
verify that this produces:

d

dt
ūt = −λūt

ᾱt(0) +
∑
j

jᾱt(j) + (1− ᾱt(0))
∑
j

jβ̄t(j)

 . (13)

Again, this amounts to the normalized transition rate at time t times the expected
number of nodes that are removed from the set of the unexplored ones (again, at time
t). If the graph is such that this expected value depends only on the cardinality of this
set (i.e. ūt), then we would have a much simpler task than solving the complete set of
equations (9).

As an example of such graph, let us discuss the graph we mentioned in Sec. 3, where
all we knew was ν, the mean number of neighbors of each node. In the configuration
algorithm described before, consider the moment where a tagged node attempts to
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transmit. The neighbors of this node will be chosen from the complete set of blocked or
unexplored nodes, each one with probability ν/N . WhenN is large, the degree distribu-
tion towards unexplored nodes of this tagged node will then be Poisson with parameter
νūt. That is to say:

ᾱt(i) =
(νūt)

i

i!
e−νūt .

Taking into account that
∑
j jβ̄t(j) =

∑
j j

2ᾱt(j)/
∑
j jᾱt(j) = 1 + νūt, we have that

Eq. (13) in this case may be written as:

d

dt
ūt = −λūt

(
e−νūt + νūt + (1− e−νūt)(1 + νūt)

)
= −λūt

(
1 + 2νūt − e−νūtνūt

)
, (14)

and the transmission probability equals

θ = λ

∫ ∞
0

(1− e−νūt)ūtdt, (15)

where (ūt) solves Eq. (14).
Hence when the degree distribution tends to a Poisson distribution, the limiting

differential equation can be greatly simplified using the strong degree independence
of the Erdös Rényi graph. We indeed showed in [Bermolen et al. 2013] that a state
space collapse does happen in that case since the number of explored nodes is itself
Markov.

Figure 4 shows the corresponding transmission probability for 100 contention peri-
ods (in the form of a boxplot) for different values of both ν and N , along with the es-
timation provided by Eq. (15). Some interesting conclusions may be drawn from these
graphs.

Firstly, when N is large, the estimation is not only an excellent approximation to the
connection probability, but the variance of Θ is very small. Secondly, as N decreases,
and although the variance increases significantly, Eq. (15) still provides an excellent
approximation. This is further illustrated by Fig. 5. Lastly, a comparison between Figs.
3 and 4 shows again that the performance does not depend only on the mean degree:
the present example gives a transmission probability of roughly 0.1 for a mean ν = 5
neighbors and a variance ν = 5. This same variance would be obtained in the uni-
form case (shown in Fig. 3) with k between 3 and 4, which results in a probability of
successful transmission of more than 0.15.

5.3. Comparison with connection probabilities on fixed graphs
We now discuss a scenario falling outside the scope of the initial assumptions to illus-
trate the efficiency of this method for a large class of models. Let us assume that the
communication graph is not random, but fixed. Thus, we may calculate the empirical
distribution of neighbors of the initial graph (i.e. µ0) and calculate (11) by solving Eq.
(9). Though our method would consider a graph which is chosen randomly among all
graphs that comply with the initial degree distribution, instead of a fixed graph, the
resulting performance indicators still give reasonable approximations in many cases.

As a toy example, consider a lattice where every node has exactly k neighbors. Figure
6 shows a portion of these graphs for k = 2, 4. The initial distribution in this case is
µ0(i) = δ(i− k).

For k = 4, simulations indicate a probability of successful transmission of 0.17,
whereas our estimate is 0.185. Note that in the case of k = 2, all random graphs
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Fig. 4. The evaluation of Eq. (15) along with the boxplot of the numerical results of 100 simulations for
N = 1000 (left) and N = 20 (right). The initial nodes’ degree is distributed as a Poisson with parameter ν.
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Fig. 5. The mean of the numerical results of 100 simulations for N = 1000 and N = 20, along with the
evaluation of Eq. (15). The initial nodes’ degree is distributed as a Poisson with parameter ν.
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Fig. 6. The graph lattices considered: a line and a grid.

generated by δ(i − k) are either as in Fig. 6 or several circles of interconnected nodes.
Since as N increases these circles include several nodes, our estimate is asymptotically
exact.

5.4. Comparison with parking on a Poisson point process
As previously emphasized, our approach based on configuration models essentially
ignores correlations between edges of the interference graph that are present when
the graph stems from a spatial model. We numerically show here that this effect is
quantitatively very small as soon as the interference graph has a sufficient amount
of noise in the case of parking processes on a Poisson point process. Consider then
the “classic” model where nodes are randomly and uniformly located in a plane. A
transmission with power P of node s is received at node r with a mean power P ×
L(dsr), where dsr is the distance between s and r, and L(·) is a monotonous decreasing
function (generally termed path loss). This mean is taken over several time-slots. The
receiving power during a given time-slot (which we will denote by P (s, r)) has random
fluctuations around this mean, resulting in:

P (s, r)

P
= L(dsr)×Xsr,

where Xsr (generally termed fading) is a random variable with mean value equal to
one.

Given a realization of the spatial process and the fading between every pair of nodes,
the communication graph is constructed by including an edge between a pair of nodes
s and r if P (s, r) > Pmin. The threshold Pmin is the sensitivity of the receiver, indicating
the minimum power that it requires to correctly decode a frame. We will assume that
fading is symmetrical, so that the resulting channels are also symmetrical.

As an example, consider a path-loss function L(d) = d−a (with a = 2) and log-
normally distributed fading (whose logarithm is normally distributed with mean 0
and variance σ2). Nodes will be positioned in the plane as in a Poisson process with
intensity 1, and P/Pmin will be such that when σ = 0 the mean number of neighbors of
each node will be ν = 2 (i.e. P/Pmin = (π/ν)a/2).

Figure 7 shows the results corresponding to this scenario for different values of σ.
Please note that σ = 0 corresponds to a variant of the so-called Matèrn hard core
process [Stoyan and Stoyan 1985]. Just like in the previous example, in this case con-
sidering only the empirical degrees’ distribution results in a loss of information with
an impact on the resulting performance. For instance, it is very likely that TX and RX
have a neighbor in common. This in turn results in an underestimation of the proba-
bility of success, as shown in Fig. 7. However, as σ increases, this “spatial correlation”
becomes weaker: the event of two nodes being neighbors is relatively less influenced
by their distance. This results in increasingly more precise estimates of our method,
which for a relatively small variance, σ = 1, already provides a very accurate estimate.
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Fig. 7. The evaluation of Eq. (11) along with the boxplot of the numerical results of 10 time-slot simula-
tions for a Poisson process with log-normal fading and a path-loss of the form L(r) = r−2. The value of σ
corresponds to the standard deviation of the underlying normal distribution.

6. MODEL EXTENSIONS
In the previous sections we have analyzed what we termed an ideal case, where the
tagged node sends an RTS to every one of its neighbors until either one of them an-
swers with a CTS or no more neighbors are left. Equivalently, this may be regarded
as a situation where the tagged node’s intended destination is always available. This
could model for instance an opportunistic network where the actual destination of the
RTS is any available node. If this is not the case, we have to analyze what happens
when the RTS/CTS handshake fails.

In the following two subsections we briefly illustrate how our framework may be
adapted with relative ease to study this scenario as well. More in particular, we will
consider two possible situations when the tagged node is only interested in a single
random neighbor. In the first one, if this node does not answer with a CTS, the neigh-
bors of the tagged node (that overheard the RTS frame) will still be blocked for the rest
of the contention period. In the second one, if this event occurs, the neighbors of the
tagged node, realizing that the data transmission did not start, ignore the RTS and
are not blocked by this failed handshake.

6.1. RTS/CTS handshake failure
Let us then consider the first scenario described above. For the sake of clarity, let us
adapt the algorithm presented in Sec. 3.1 (which discussed how the unexplored, active
and blocked set evolved over time) and highlight the differences with the ideal case.
Assume we are in a transition time tn when an unexplored node s sends an RTS frame.
The first step is still to update the active and unexplored sets as follows:

At+n ← Atn ∪ {s}; Ut+n ← Utn \ {s}.

From the set Ns of neighbors of s, we choose a random node r, if any. Then, we are
in the following alternative:

(1) If r /∈ Ut+n (or Ns = ∅), the scenario differs from above. The set of active nodes
remains unchanged and we have to update the set of blocked nodes so as to include
only the neighbors of s: Bt+n ← Btn ∪ Ns. The set of unexplored nodes is updated
accordingly, i.e. Ut+n ← Ut+n \Ns. We then proceed to the next transmission attempt;

(2) If r ∈ Ut+n we proceed exactly as before. That is to say, we include r among the
active nodes (At+n ← At+n ∪ {r}), update the blocked set of nodes (Bt+n ← Btn ∪ (Ns \
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{r}) ∪ (Nr \ {s})) and the unexplored one (Ut+n ← Ut+n \ (Ns ∪Nr)). We then proceed
to the next transmission attempt.

If we aim at a measure-valued representation of the system as above, it appears
clearly that a state involving only the edges between unexplored nodes is not rich
enough to obtain a Markov process. In particular, we now also need to track the num-
ber of blocked neighbors of the unexplored nodes, to calculate the probability of suc-
cessfully completing the RTS/CTS handshake, which in turn defines the number of
nodes that are removed from the measure, and their degree. We then introduce a bi-
dimensional measure-valued process (µt), where for any time t and any pair (i, j) of
integers, µt(i, j) represents the number of unexplored nodes having i half-edges toward
the unexplored set (U → U type), and j half-edges toward the blocked set (U → B type),
at time t.

The initial measure is then defined as follows,

µ0(i, j) =

{
h(i) if j = 0;

0 if j > 0,

that is to say, at t = 0 all nodes point towards unexplored nodes, and the measure
is given by the nodes’ degree distribution. Note that for any t,

∑
j µt(., j) yields the

measure we had in the ideal case.
As we now demonstrate, the planar measure-valued process (µt) suffices to charac-

terize the performance in the present case. For instance, and following the notation we
used in Sec. 3.2, since TX is randomly chosen from all the unexplored nodes, at time t
its degrees towards Ut and Bt have joint probability distribution given by

P (KTX
U = i,KTX

B = j) = αt(i, j) =
µt(i, j)∑
k,l µt(k, l)

, i, j ∈ N,

where we added the subscripts U and B to indicate the type of half-edges, and where
we omit, as above, the dependence on t for the sake of notational simplicity. Moreover,
all the unexplored neighbors of an unexplored node (and in particular, RX) have the
following degree distribution:

P (KRX
U = i,KRX

B = j) = βt(i, j) =
iµt(i, j)∑
k,l kµt(k, l)

, i, j ∈ N.

As in the previous case, each step of the algorithm induces a modification on the
process (µt). If we scale it again, by considering µ̄Nt = µNt /N and take the limit when
N goes to infinity we obtain a limit for the evolution of the process

(
µ̄Nt
)

which is
a deterministic measure-valued function (µ̄t) which, as before, will be the solution
of an infinite dimensional differential equation system. Following the discussion we
presented for the ideal case, the right-hand of the equation for the evolution of (µt(i, j))
for couples (i, j), should be the mean number of nodes with i half-edges of type U → U
and j half-edges of type U → B that are removed at time t, times the normalized total
transition rate. The differential system thus results as follows: for all (i, j),

d

dt
µ̄t(i, j) = −λ

∑
k,l

µ̄t(k, l)

[
ᾱt(i, j)+Pt(CTS

c)E{Y TX(i, j)+XTX(i, j)−XTX(i+1, j−1) |CTSc}

+Pt(CTS)
(
β̄t(i, j) +E{Y TX,RX(i, j) +XTX,RX(i, j)−XTX,RX(i+ 1, j− 1) |CTS}

)]
, t ≥ 0,

(16)
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where CTS refers here to the event described in step 2 above (i.e. the selected receiver
is unexplored), and the superscript c refers to its complement. Thus we have that:

Pt(CTS) =
∑
k,l

Pt(CTS |KTX
U = k,KTX

B = l)ᾱt(k, l) =
∑
k,l

k

k + l
ᾱt(k, l).

Please note that the main difference between Eqs. (16) and (10) lies in the definition
of the event CTS and in the fact that TX blocks its neighbors even when this event
does not occur (the second term between brackets).

The expected value of the rest of the random variables may be obtained analogously
to how we proceeded before. For instance, the degree of the neighbors of TX (Y TX(i, j))
follows a hypergeometric distribution with parameters KTX and β̄t(i, j). Then, the
mean value of Y TX results:

E{Y TX(i, j) |CTSc} = E{KTX
U |CTS

c}β̄t(i, j).

Moreover, the number of nodes whose degree should be updated (the unexplored
“neighbors of the neighbors”) are

ZTX =
∑
k>0,l

(k − 1)Y TX(k, l),

and we thus have that

E{XTX(i, j) |CTSc} = β̄t(i, j)
∑
k>0,l

(k − 1)E{Y TX(k, l) |CTSc}.

All in all, for all t ≥ 0, Eq. (16) may be written in terms of µ̄t, ᾱt and β̄t as follows:

d

dt
µ̄t(i, j) = −λ

∑
k,l

µ̄t(k, l)

ᾱt(i, j) + β̄t(i, j)
∑
k

kᾱt(k) +

∑
k,l

k

k + l
ᾱt(k, l)

 β̄t(i, j)
( ∑
k>0,l

(k − 1)β̄t(k, l)
)

+(β̄t(i, j)− β̄t(i+ 1, j − 1))
∑
k>0,l

(k − 1)β̄t(k, l)

∑
k,l

kᾱt(k, l) +

∑
k,l

k

k + l
ᾱt(k, l)

( ∑
k>2,l

(k − 2)β̄t(k, l)
) .

(17)

It should be clear that the same arguments as for the ideal case can be adopted to
show the uniqueness of a solution µ̄ to (17), and numerically assess µ̄. We can then
estimate the transmission probability as we did in Sec. 4.1, to obtain:

E{Θ} = θ = λ

∫ ∞
0

ūtPt(CTS)dt = λ

∫ ∞
0

∑
k,l

µ̄t(k, l)
∑
k,l

k

k + l
ᾱt(k, l)dt. (18)

All the developments we presented in the previous sections also apply to this case.
For instance, and as example of both the accuracy and the limitations of our approach,
Fig. 8 shows the results for this case in the same scenario as in Sec. 5.4 (Poisson hard
core process). Again, the information lost by considering only the initial nodes’ degree
distribution may have a significant impact (small values of σ in this case). If this is not
the case, our approach yields very precise results.

6.2. RTS/CTS handshake failure with timeout
Let us study the second scenario under a handshake failure. In the previous subsec-
tion, the neighbors of TX were blocked by the RTS and did not compete further for the
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Fig. 8. The evaluation of Eq. (18) along with the boxplot of the numerical results of 10 time-slot simula-
tions for a Poisson process with log-normal fading and a path-loss of the form L(r) = r−2. The value of σ
corresponds to the standard deviation of the underlying normal distribution.

channel, even if no data transmissions ensued. However, a time-out is generally imple-
mented in this kind of access, where the RTS alone blocks the nodes during a certain
time. If no further transmissions are sensed afterwards, the RTS is ignored and the
node starts competing for the medium again. Let us then consider an idealization of
this mechanism, where this realization is instantaneous. As we will discuss later, the
presented extension is also capable of modeling a situation where the tagged node has
no packets to send and acts only as a receiver.

Please note that in this case, nodes whose RTS frame went unanswered will in turn
be able to answer with a CTS if a RTS frame is addressed to them. Thus, they belong
neither to the blocked nor active set of nodes. In this section we define a new class of
nodes: sans-CTS. We will say the node belongs to class S (and the corresponding set St)
if it is available only as a receiver (it has tried to communicate without success).

To highlight the differences with the previous scenario, we discuss here the differ-
ent possibilities that arise when an unexplored node s tries to communicate with a
randomly selected neighbor at time tn. The first step this time is to update only the
set of unexplored nodes Ut+n ← Utn \ {s}. Once we have chosen a random neighbor of s
(r ∈ Ns), the following two cases are possible:

(1) If r /∈ Ut+n ∪ Stn was chosen (or if Ns = ∅), the set of active nodes remains un-
changed. Moreover, the node s is still available as a receiver and its neighbors are
not blocked. That is to say, St+n ← Stn ∪{s} and we proceed to the next transmission
attempt.

(2) If r ∈ Ut+n ∪Stn was chosen (i.e. the neighbor is unexplored or available), we further
update the sets as before, including s in the active set: At+n ← Atn ∪ {s, r}, Bt+n ←
Btn ∪ (Ns \{r})∪ (Nr \{s}) and Ut+n ← Ut+n \ (Ns ∪Nr). Moreover, the involved nodes
that belonged to Stn should be removed from it: St+n ← Stn \ (Ns ∪Nr). We then
proceed to the next transmission attempt.

The measure-valued Markov process approach is more involved in this scenario. To
begin with, we need to define at each time t, a three-dimensional measure µt(i, j, k) to
keep track of the degree of a given unexplored node towards the unexplored, blocked
and sans-CTS nodes. Moreover, we also need the information about the degree of the
sans-CTS nodes towards the unexplored and sans-CTS sets. This is necessary since,
for instance, once a node is chosen as a receiver, it will block its unexplored neighbors.
This receiver may belong either to Ut or St.
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Fig. 9. The evaluation of Eq. (19) along with the boxplot of the numerical results of 10 time-slot simula-
tions for a Poisson process with log-normal fading and a path-loss of the form L(r) = r−2. The value of σ
corresponds to the standard deviation of the underlying normal distribution.

In brief, at time t we need two measures, µt(i, j, k) and νt(i, j). The measure µt(i, j, k)
represents the number of unexplored nodes with i half-edges toward the unexplored
set (U → U type), j half-edges toward the blocked set (U → B type) and k half-edges
toward the sans-CTS set (U → S type). Analogously, νt(i, k) represents the number
of sans-CTS nodes with i half-edges toward the unexplored set (S → U type) and k
half-edges towards the sans-CTS set (S → S type). At time t = 0 these measures are:

µ0(i, j, k) =

{
h(i) if j = k = 0,

0 if j, k > 0,
and ν0(i, k) = 0,

that is, initially all nodes are unexplored and point towards unexplored nodes. Please
note that the half edges of type S → B do not matter since S nodes act only as receivers
(as opposed to U → B half-edges, which are required to calculate Pt(CTS)). In this
sense, we could analyze a situation where some nodes are deployed as receivers only,
by assigning them to the initial measure ν0 (and reflecting this on µ0).

We then analyze a large graph limit when the number of nodes goes to infinity as
we did for the previous cases. The procedure is essentially the same: to write down
the evolution of (µt(i, j, k)) (respectively (νt(i, j))), we identify at each step of the algo-
rithm the mean number of nodes of each type and degree that should be removed from
the measure. The random variables we defined before (notably Y and X) have to be
adapted to this case, but their distribution is essentially the same. For the sake of clar-
ity, and since our objective here is to illustrate possible extensions of our framework,
we do not write the differential equation systems.

Once we have obtained a (numerical) solution of the latter, we can estimate as before
the probability of a successful transmission as:

E{Θ} = θ = λ

∫ ∞
0

ūtPt(CTS)dt, (19)

where for all t ≥ 0, ūt =
∑
i,j,k

µ̄t(i, j, k), Pt(CTS) =
∑
i,j,k

i+k
i+j+k ᾱt(i, j, k) and ᾱt is defined

as before.
Again, and for illustrative purposes, we consider the example of the Poisson hard

core process. The results, presented in Fig. 9, again show that when the initial nodes’
degree distribution is enough to describe the statistics of the resulting communication
graph (corresponding to the higher values of σ), then our method yields very accurate
estimates.
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7. CONCLUSIONS AND FUTURE WORKS
We showed how stochastic dynamics on configuration models can provide powerful per-
formance tools for quantifying the effect of interference on the performance of wireless
networks. Through extensive simulations we have shown under which circumstances
the method yields accurate results. In a nutshell, this is so when neighboring nodes
are not likely to share neighbors between them (for instance, in the presence of fading).
Since this is not always the case, error bounds and stochastic comparison results for
spatial models are future research directions of great practical importance.

Another interesting future research line concerns the channel model we considered.
As data rates increase (for instance, those used in the actual data transmissions),
interference may become the decisive factor in determining the correct reception of
transmissions. This means for instance that a node may seize the channel during the
RTS/CTS exchange, but its data transmission may fail due to the summed interference
of other concurrent transmissions in the receiving node. The analysis of this second
stage and its inclusion in our framework is indeed a challenging task which deserves
further research.

Finally, it would be interesting to verify whether the proposed methodology may be
adapted to other MAC mechanisms. For example, Aloha is used in Wireless Sensor
Networks for certain specific tasks such as neighbor discovery or information propa-
gation. This adaptation is not trivial, since this new context significantly differs from
the one considered here. For instance, in the case of information propagation, traffic
is not saturated and we would be interested in how much time elapses until a certain
information is shared among all nodes.
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