english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/41831 Cómo citar
Título: Semisupervised approach to non technical losses detection
Autor: Tacón, Juan
Melgarejo, Damián
Rodríguez, Fernanda
Lecumberry, Federico
Fernández, Alicia
Tipo: Capítulo de libro
Palabras clave: Electricity fraud, Support vector machine, Semisupervised approach, SVMlight, TSVM, Unbalance class problem
Descriptores: Procesamiento de Señales
Fecha de publicación: 2014
Resumen: Non-technical electrical losses detection is a complex task, with high economic impact. Due to the diversity and large number of consumption records, it is very important to find an efficient automatic method to detect the largest number of frauds with the least amount of experts hours involved in preprocessing and inspections. This article analyzes the performance of a strategy based on a semisupervised method, that starting from a set of labeled data, extends this labels to unlabeled data, and then allows to detect new frauds at consumptions. Results show that the proposed framework, improves performance in terms of the F measure against manual methods performed by experts and previous supervised methods, avoiding hours of experts/inspection labeling.
Editorial: Springer
EN: Bayro-Corrochano E., Hancock E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827.
Citación: Tacón, J, Melgarejo, D, Rodríguez, F, Lecumberry, F, Fernández, A. "Semisupervised approach to non technical losses detection". Bayro-Corrochano, E., Hancock, E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827. Springer, Cham. https://doi.org/10.1007/978-3-319-12568-8_85
ISBN: 978-3-319-12568-8
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
TMRLF14.pdf359,56 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons