Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41831
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Tacón, Juan | es |
dc.contributor.author | Melgarejo, Damián | es |
dc.contributor.author | Rodríguez, Fernanda | es |
dc.contributor.author | Lecumberry, Federico | es |
dc.contributor.author | Fernández, Alicia | es |
dc.date.accessioned | 2023-12-11T19:57:58Z | - |
dc.date.available | 2023-12-11T19:57:58Z | - |
dc.date.issued | 2014 | es |
dc.date.submitted | 20231211 | es |
dc.identifier.citation | Tacón, J, Melgarejo, D, Rodríguez, F, Lecumberry, F, Fernández, A. "Semisupervised approach to non technical losses detection". Bayro-Corrochano, E., Hancock, E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827. Springer, Cham. https://doi.org/10.1007/978-3-319-12568-8_85 | es |
dc.identifier.isbn | 978-3-319-12568-8 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/41831 | - |
dc.description.abstract | Non-technical electrical losses detection is a complex task, with high economic impact. Due to the diversity and large number of consumption records, it is very important to find an efficient automatic method to detect the largest number of frauds with the least amount of experts hours involved in preprocessing and inspections. This article analyzes the performance of a strategy based on a semisupervised method, that starting from a set of labeled data, extends this labels to unlabeled data, and then allows to detect new frauds at consumptions. Results show that the proposed framework, improves performance in terms of the F measure against manual methods performed by experts and previous supervised methods, avoiding hours of experts/inspection labeling. | es |
dc.language | en | es |
dc.publisher | Springer | es |
dc.relation.ispartof | Bayro-Corrochano E., Hancock E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Electricity fraud | es |
dc.subject | Support vector machine | es |
dc.subject | Semisupervised approach | es |
dc.subject | SVMlight | es |
dc.subject | TSVM | es |
dc.subject | Unbalance class problem | es |
dc.subject.other | Procesamiento de Señales | es |
dc.title | Semisupervised approach to non technical losses detection | es |
dc.type | Capítulo de libro | es |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
dc.identifier.doi | https://doi.org/10.1007/978-3-319-12568-8_85 | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
TMRLF14.pdf | 359,56 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons