english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/41831 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTacón, Juanes
dc.contributor.authorMelgarejo, Damiánes
dc.contributor.authorRodríguez, Fernandaes
dc.contributor.authorLecumberry, Federicoes
dc.contributor.authorFernández, Aliciaes
dc.date.accessioned2023-12-11T19:57:58Z-
dc.date.available2023-12-11T19:57:58Z-
dc.date.issued2014es
dc.date.submitted20231211es
dc.identifier.citationTacón, J, Melgarejo, D, Rodríguez, F, Lecumberry, F, Fernández, A. "Semisupervised approach to non technical losses detection". Bayro-Corrochano, E., Hancock, E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827. Springer, Cham. https://doi.org/10.1007/978-3-319-12568-8_85es
dc.identifier.isbn978-3-319-12568-8es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/41831-
dc.description.abstractNon-technical electrical losses detection is a complex task, with high economic impact. Due to the diversity and large number of consumption records, it is very important to find an efficient automatic method to detect the largest number of frauds with the least amount of experts hours involved in preprocessing and inspections. This article analyzes the performance of a strategy based on a semisupervised method, that starting from a set of labeled data, extends this labels to unlabeled data, and then allows to detect new frauds at consumptions. Results show that the proposed framework, improves performance in terms of the F measure against manual methods performed by experts and previous supervised methods, avoiding hours of experts/inspection labeling.es
dc.languageenes
dc.publisherSpringeres
dc.relation.ispartofBayro-Corrochano E., Hancock E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectElectricity fraudes
dc.subjectSupport vector machinees
dc.subjectSemisupervised approaches
dc.subjectSVMlightes
dc.subjectTSVMes
dc.subjectUnbalance class problemes
dc.subject.otherProcesamiento de Señaleses
dc.titleSemisupervised approach to non technical losses detectiones
dc.typeCapítulo de libroes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
dc.identifier.doihttps://doi.org/10.1007/978-3-319-12568-8_85es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
TMRLF14.pdf359,56 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons