Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/41157
Cómo citar
Título: | Automatic load shedding calculated with genetic algorithms – DAC-CMAG |
Autor: | Guichon, Michelle Melo, Magdalena Nieto, Ana Carolina Vignolo, Mario Yedrzejewski, Nicolás |
Tipo: | Ponencia |
Palabras clave: | DC load flow, Load shedding, Genetic algorithm |
Descriptores: | Potencia |
Fecha de publicación: | 2012 |
Resumen: | This paper presents an optimization tool based on Genetic Algorithms, DAC-CMAG (Automatic Load Shedding Calculated Through Genetic Algorithms), developed in Matlab and applied to the calculation of load shedding in Electric Power Systems. This application calculates the optimal load shed necessary to eliminate overloading of any series element of an electrical network. It includes a module that runs DC load flow to calculate the power flow for each branch or transformer and verifies there are no current violations in any equipment. The results are analyzed using this tool applied to the calculation of optimum load shed required for the worst contingencies in the 500kV power system of Uruguay. |
Editorial: | Power Engineering Society and IEEE Uruguay Section |
EN: | Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T D-LA). Montevideo, Uruguay, 2-5 set. 201|2 |
Citación: | Guichon, M, Melo, M, Nieto, A,Vignolo, M, Yedrzejewski, N. "Automatic load shedding calculated with genetic algorithms – DAC-CMAG" Proceedings of the Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T D-LA). Monte video, Uruguay, 3-5 set. 2012. |
Departamento académico: | Potencia |
Grupo de investigación: | Redes Eléctricas |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
GMNVY12.pdf | 345,62 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons