Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12008/38861
How to cite
Title: | Finite element approximation of fractional Neumann problems |
Authors: | Borthagaray, Juan Pablo Bersetche, Francisco |
Type: | Preprint |
Keywords: | Numerical analysis, Neumann boundary condition, Fractional Laplacian |
Issue Date: | 2022 |
Abstract: | In this paper, we consider approximations of Neumann problems for the integral fractional Laplacian by continuous, piecewise linear finite elements. We analyze the weak formulation of such problems, including their well-posedness and asymptotic behavior of solutions. We address the convergence of the finite element discretizations and discuss the implementation of the method. Finally, we present several numerical experiments in one- and two-dimensional domains that illustrate the method’s performance as well as certain properties of solutions. |
Description: | Publicado también en: IMA Journal of Numerical Analysis, 2022, 42(4): 3207–3240. DOI: 10.1093/imanum/drab064 |
Publisher: | arXiv |
IN: | Mathematics (Numerical Analysis). 2022, arXiv: 2008.06129, Dic 2022, pp. 1-29 |
DOI: | 10.48550/arXiv.2105.06079 |
Citation: | Borthagaray, J y Bersetche, F. "Finite element approximation of fractional Neumann problems" [Preprint]. Publicado en: Mathematics (Numerical Analysis). 2022, arXiv: 2008.06129, Dic 2022, pp. 1-29. DOI: 10.48550/arXiv.2105.06079 |
License: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Appears in Collections: | Publicaciones académicas y científicas - Facultad de Ciencias |
Files in This Item:
File | Description | Size | Format | ||
---|---|---|---|---|---|
2008.06129.pdf | 1,06 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License