english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/38861 How to cite
Title: Finite element approximation of fractional Neumann problems
Authors: Borthagaray, Juan Pablo
Bersetche, Francisco
Type: Preprint
Keywords: Numerical analysis, Neumann boundary condition, Fractional Laplacian
Issue Date: 2022
Abstract: In this paper, we consider approximations of Neumann problems for the integral fractional Laplacian by continuous, piecewise linear finite elements. We analyze the weak formulation of such problems, including their well-posedness and asymptotic behavior of solutions. We address the convergence of the finite element discretizations and discuss the implementation of the method. Finally, we present several numerical experiments in one- and two-dimensional domains that illustrate the method’s performance as well as certain properties of solutions.
Description: Publicado también en: IMA Journal of Numerical Analysis, 2022, 42(4): 3207–3240. DOI: 10.1093/imanum/drab064
Publisher: arXiv
IN: Mathematics (Numerical Analysis). 2022, arXiv: 2008.06129, Dic 2022, pp. 1-29
DOI: 10.48550/arXiv.2105.06079
Citation: Borthagaray, J y Bersetche, F. "Finite element approximation of fractional Neumann problems" [Preprint]. Publicado en: Mathematics (Numerical Analysis). 2022, arXiv: 2008.06129, Dic 2022, pp. 1-29. DOI: 10.48550/arXiv.2105.06079
License: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Appears in Collections:Publicaciones académicas y científicas - Facultad de Ciencias

Files in This Item:
File Description SizeFormat  
2008.06129.pdf1,06 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons