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Abstract. In this paper we consider approximations of Neumann problems

for the integral fractional Laplacian by continuous, piecewise linear finite el-
ements. We analyze the weak formulation of such problems, including their

well-posedness and asymptotic behavior of solutions. We address the conver-

gence of the finite element discretizations and discuss the implementation of
the method. Finally, we present several numerical experiments in one- and

two-dimensional domains that illustrate the method’s performance as well as
certain properties of solutions.

1. Introduction and problem setting

Let Ω ⊂ Rd be a bounded Lipschitz domain, s ∈ (0, 1), α ≥ 0, and two given
functions f : Ω→ R and g : Ωc → R, where Ωc = Rd \ Ω. In this work, we propose
and study the convergence of a finite element scheme for the following problem:
find u : Rd → R such that

(1.1)

{
(−∆)su+ αu = f in Ω,

Nsu = g in Ωc.

Above, (−∆)s denotes the integral fractional Laplacian of order s,

(1.2) (−∆)sv(x) := Cd,s p.v.

∫
Rd

v(x)− v(y)

|x− y|d+2s
dy, Cd,s :=

22ssΓ
(
s+ d

2

)
πd/2Γ(1− s)

.

and Ns is the nonlocal Neumann operator

(1.3) Nsv(x) := Cd,s

∫
Ω

v(x)− v(y)

|x− y|d+2s
dy.

The fractional Laplacian (−∆)s is a nonlocal operator: the evaluation of (−∆)sv(x)
at any point x ∈ Ω involves the values of v at the whole space Rd. Therefore, bound-
ary conditions in problem (1.1) need to be imposed on the complement of Ω. The
operator Ns depends on the domain Ω, and can be interpreted as a nonlocal flux
density between Ωc and Ω. We remark that there is no widely accepted definition
of a Neumann condition for operator (1.2) and refer the interested reader to [30,
Section 2.3.2] and to [24, Section 7] for discussion on this aspect. The definition
that we are using in this manuscript, that was proposed in [24, 26], gives rise to
the following integration by parts formula.
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Proposition 1.1 (integration by parts formula [24, 25]). Let u, v : Rd → R be
smooth enough functions, then

(1.4)

Cd,s
2

∫∫
(Rd×Rd)\(Ωc×Ωc)

(u(x)− u(y))(v(x)− v(y))

|x− y|d+2s
dx dy

=

∫
Ω

v(x)(−∆)su(x) dx+

∫
Ωc
v(x)Nsu(x) dx.

To better illustrate the nonlocal derivative operator we are dealing with, let
us mention a probabilistic interpretation for (1.3). Consider the fractional heat
problem with homogeneous Neumann condition on Ω. Namely, suppose u : Ω ×
[0, T ]→ R satisfies

(1.5)

 ut + (−∆)su = 0 in Ω× (0, T ],
Nsu = 0 in Ωc × (0, T ],

u(·, 0) = u0 in Ω,

for some T > 0, and u0 ∈ L2(Ω). In this context, the function u can be understood
as the probability density of the position of a particle moving randomly inside Ω
according to a random walk with arbitrarily long jumps. The condition Nsu = 0
refers to how the particle behaves when it jumps outside the domain: if it reaches
a point y ∈ Ωc then it may immediately come back to any point x ∈ Ω, with a
probability density proportional to 1/|x− y|d+2s.

Problem (1.1) has a variational structure, which mimics the one for the standard
Laplacian. Actually, solutions to (1.1) are critical points of the functional
(1.6)

F(v) =
Cd,s

4

∫∫
(Rd×Rd)\(Ωc×Ωc)

|v(x)− v(y)|2

|x− y|d+2s
dx dy +

α

2
‖v‖2L2(Ω) −

∫
Ω

fv −
∫

Ωc
gv.

Such critical points are minima: in case α > 0 there is a unique minimizer, while if
α = 0 minimizers are uniquely defined up to an additive constant, and one requires a
compatibility condition on the data in order to guarantee the existence of solutions.
The well-posedness of problem (1.1) in case α = 0 is studied in [24]. Here we shall
focus on the case α > 0, although the finite element scheme we propose can be
straightforwardly adapted to the former case.

In recent years, finite element methods have been proposed and studied for
a variety of equations involving the fractional Laplacian (1.2), such as Dirichlet
[2, 4, 5, 6, 12, 13], time-fractional evolution [3], phase field [1, 7, 31], optimal
control [8, 9, 11, 23, 29], and obstacle [14, 18, 19, 28] problems. Most of these
references consider either Dirichlet or periodic boundary conditions; reference [8]
deals with Neumann and Robin conditions, but does not address the convergence
of finite element discretizations of such problems. The recent preprint [20] studies
Neumann problems closely related to (1.1) in one-dimensional domains by means
of finite difference schemes. However, it proves convergence by assuming solutions
to be of class C4, and such a condition cannot be guaranteed in general.

Indeed, a crucial aspect in the numerical analysis of differential equations is the
regularity of solutions. Reference [10] studies the Hölder regularity of solutions to
(1.1) whenever α = 0 and g ≡ 0. However, to the best of our knowledge, there are no
Sobolev regularity estimates for Neumann problems involving the integral fractional
Laplacian in the literature. For that reason, we aim to prove the convergence
of the finite element discretizations without assuming regularity of solutions (cf.
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Theorem 4.1 below). Nevertheless, in our numerical experiments we have computed
convergence rates whenever explicit solutions were available.

Throughout the paper we denote by C any nonessential constant, and by A ' B
we mean that A ≤ CB and B ≤ CA. Whenever we want to express the dependence
of C on A, we write it as CA.

This manuscript has been organized in the following way. In Section 2 we set
the weak formulation of problem (1.1), prove a nonlocal trace theorem for func-
tions in a suitable variational space, and derive asymptotic estimates for solutions.
Section 3 is devoted to the description of the finite element method, while its con-
vergence is treated in Section 4 along with several interpolation estimates. Section
5 exhibits several numerical experiments. Not only do these experiments illustrate
the convergence of the finite element discretizations but also their capability of
capturing certain properties of solutions, such as limits at infinity and exponential
convergence to the mean of the initial datum for the fractional heat equation with
homogeneous Neumann conditions. Finally, Appendices A and B offer some details
about the implementation of the method.

2. Weak Formulation

The integration by parts formula (1.4) allows us to set a weak formulation for
problem (1.1). For that purpose, we first need to define a suitable variational space.

Definition 2.1 (variational space). We set

V := {v : Rd → R measurable : ‖v‖V <∞},
where

(2.1) ‖v‖V :=
(
‖v‖2L2(Ω) + |v|2X

)1/2

,

and

(2.2) |v|X :=

(
Cd,s

2

∫∫
(Rd×Rd)\(Ωc×Ωc)

|v(x)− v(y)|2

|x− y|d+2s
dx dy

)1/2

.

The space V introduced above is motivated by [24] and coincides with the space
Hs

Ω,0 in that reference. In particular, from [24, Proposition 3.1], it follows that V
is a Hilbert space. We shall denote by 〈·, ·〉X : X× X→ R the bilinear form

〈u, v〉X :=
Cd,s

2

∫∫
(Rd×Rd)\(Ωc×Ωc)

(u(x)− u(y))(v(x)− v(y))

|x− y|d+2s
dx dy

and by (·, ·)L2(Ω) the standard inner product in L2(Ω) or any duality pairing using

L2(Ω) as pivot space. The variational space V is also related to fractional-order
Sobolev spaces; when necessary, we shall adopt the notation from [2] regarding such
spaces. We point out that, unlike the fractional Sobolev space Hs(Ω), the space
V takes into account interactions between Ω and Ωc; moreover, unlike the space
Hs(Rd), the space V does not take into account interactions between Ωc and Ωc.

Using the variational space and notation we have just introduced and (1.4), the
weak formulation of our problem reads as follows: find u ∈ V such that

(2.3) 〈u, v〉X + α(u, v)L2(Ω) = (f, v)L2(Ω) + (g, v)L2(Ωc) ∀v ∈ V.

In order to study the well-posedness of this weak formulation, we need to make
sense of the right hand side in (2.3). Specifically, we need some control of the
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behavior in Ωc of functions in V; we shall accomplish this by proving an inequality
in the spirit of a nonlocal trace theorem.

It seems clear from (2.1) and (2.2) that one cannot hope to have control of
the smoothness of a function within Ωc in terms of its V-norm. Thus, one might
try instead to bound a Lp(Ωc)-norm in terms of the V-norm. However, because
|Ωc| = ∞ and any constant function belongs to V, it is apparent that one cannot
expect the inequality ‖v‖Lp(Ωc) ≤ C‖v‖V to hold for any 1 ≤ p <∞.

Remark 1 (blow up at infinity). Given a fixed number R > diam(Ω) let us define

(2.4) ΛR := {x ∈ Rd : d(x, ∂Ω) ≤ R}
and consider a smooth, locally bounded function v : Rd → R such that

(2.5) v ≡ 1 in ΛR, v(x) ' |x|α in ΛcR,

for some α ∈ (0, s). Then, exploiting that

(2.6)

∫
Ω

1

|x− y|d+2s
dx ' |y|−d−2s for y ∈ ΛcR

and the equivalence ∫
ΛcR

|y|−d−2(s−α)dy ' R−2(s−α),

which follows by integration in polar coordinates, we obtain

|v|2X ≤ C

(
1 +

∫∫
Ω×ΛcR

|v(y)|2

|x− y|d+2s
dydx

)
≤ C

(
1 +

∫
ΛcR

|y|−d−2(s−α)dy

)
<∞.

In consequence, this function satisfies v ∈ V, although it is unbounded at infinity.

It seems therefore natural to consider weighted norms, that allow functions to
have some growth at infinity. We consider the following spaces.

Definition 2.2. Let p ∈ [1,∞] and γ ∈ R. Then, we define the space

Lpγ(Rd) :=
{
v : Rd → R measurable : ‖v‖Lpγ(Rd) <∞

}
,

where

‖v‖Lpγ(Rd) :=


(∫

Rd
|v(x)|p

1+|x|d+γp dx
)1/p

if 1 ≤ p <∞,
supx∈Rd

|v(x)|
1+|x|γ if p =∞.

Remark 2 (relations between the spaces Lpγ(Rd)). From the definition above, it

follows immediately that Lpγ1(Rd) ⊂ Lpγ2(Rd) if γ1 ≤ γ2. Also, an application of

Hölder’s inequality gives that if p1 > p2 and γ1 < γ2, then Lp1γ1(Rd) ⊂ Lp2γ2(Rd).
Let us focus on the exponent p = 2. Remark 1 guarantees that, in order to

have V ⊂ L2
γ(Rd), the weight exponent γ cannot be too small. We now make more

precise such an assertion.

Lemma 2.1 (admissible exponents). If γ < s, then V 6⊆ L2
γ(Rd).

Proof. Let γ < s and set α = γ < s. We take a function v as in (2.5), which
satisfies v ∈ V. However, our choice of α trivially yields

‖v‖2L2
γ(Rd) ≥ C

∫
ΛcR

|x|−ddx.

Because the integral in the right hand side above is divergent, v /∈ L2
γ(Rd). �
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The following trace-type inequality asserts that the value γ = s is indeed critical.

Proposition 2.1 (trace-type inequality). Let γ ≥ s. There exists a constant C > 0
such that, for all v ∈ V,

(2.7) ‖v‖L2
γ(Rd) ≤ C‖v‖V.

Thus, the embedding V ⊂ L2
γ(Rd) is continuous for all γ ≥ s.

Proof. We split Rd = ΛR ∪ ΛcR, and compute the L2-norms on each subset sepa-
rately. Let x ∈ ΛR. Given y ∈ Ω, because |x− y| ≤ 3R we can write

|v(x)|2 ≤ 2(3R)d+2s |v(x)− v(y)|2

|x− y|d+2s
+ 2|v(y)|2.

We integrate the inequality above over ΛR × Ω to obtain

|Ω|
∫

ΛR

|v(x)|2dx ≤ C
(
Rd+2s

∫∫
ΛR×Ω

|v(x)− v(y)|2

|x− y|d+2s
dydx+Rd

∫
Ω

|v(y)|2dy
)
.

Because 1 + |x|d+2γ ≥ 1, we deduce that

(2.8)

∫
ΛR

|v(x)|2

1 + |x|d+2γ
dx ≤ C

(
Rd+2s|v|2X +Rd‖v‖2L2(Ω)

)
.

On the other hand, because γ ≥ s, if x ∈ ΛcR then we have

(2.9)

∫
Ω

dy

|x− y|d+2s
' (1 + |x|d+2s)−1 ≥ C(1 + |x|d+2γ)−1R2(γ−s).

Therefore, we obtain∫
ΛcR

|v(x)|2

1 + |x|d+2γ
dx ≤ CR2s−2γ

∫∫
ΛcR×Ω

|v(x)|2

|x− y|d+2s
dydx

≤ CR2s−2γ

(∫∫
ΛcR×Ω

|v(x)− v(y)|2

|x− y|d+2s
dydx+

∫∫
ΛcR×Ω

|v(y)|2

|x− y|d+2s
dydx

)
.

The first integral in the right hand side above is bounded by |v|2X. In order to bound
the second one, we observe that

(2.10)

∫
ΛcR

dx

|x− y|d+2s
' R−2s for y ∈ Ω.

Using this identity, we immediately get∫∫
ΛcR×Ω

|v(y)|2

|x− y|d+2s
dydx ≤ CR−2s‖v‖2L2(Ω).

Thus, we have shown that∫
ΛcR

|v(x)|2

1 + |x|d+2γ
dx ≤ C

(
R2s−2γ |v|2X +R−2γ‖v‖2L2(Ω)

)
,

and combining this estimate with (2.8), we conclude that (2.7) holds. �

The trace-type inequality we have just proved yields the boundedness of the
operator V 3 v 7→ (g, v)L2(Ωc), which in turn gives rise to the well-posedness of the

weak formulation. Let us denote by [L2
γ(Ωc)]′ the dual space to L2

γ(Ωc). We shall
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assume that the nonlocal flux density g belongs to [L2
γ(Ωc)]′ for some γ ≥ s, so that

it satisfies the condition

(2.11) ‖g‖2[L2
γ(Ωc)]′ =

∫
Ωc
|g(x)|2(1 + |x|d+2γ) dx. <∞

Combining this hypothesis with Proposition 2.1 gives

(2.12)

∫
Ωc
g(x)v(x) dx ≤ ‖g‖[L2

γ(Ωc)]′‖v‖V.

Lemma 2.2 (well-posedness). Let s ∈ (0, 1), α > 0, f ∈ L2(Ω) and g ∈ [L2
s(Ω

c)]′,
so that (2.11) holds with γ = s. Then, there exists a unique u ∈ V that solves the
weak problem (2.3).

Proof. The proof follows immediately by the Lax-Milgram lemma. On the one
hand, because α > 0 the bilinear functional

V× V 3 (u, v) 7→ 〈u, v〉X + α(u, v)L2(Ω)

is trivially continuous and coercive.
On the other hand, the continuity of the map

V 3 v 7→ (f, v)L2(Ω) + (g, v)L2(Ωc)

follows because |v|Hs(Ω) ≤ ‖v‖V and by (2.12):∣∣∣∣∫
Ω

f(x)v(x) dx+

∫
Ωc
g(x)v(x) dx

∣∣∣∣ ≤ (‖f‖L2(Ω) + ‖g‖[L2
s(Ω

c)]′
)
‖v‖V.

�

Remark 3 (energy minimizer). Using standard arguments, one can show that u ∈ V
solves (2.3) if and only if u is a critical point of the energy F in (1.6) and, in turn,
that such an energy admits a unique minimizer:

F(v) = F(u) +
1

2
|v − u|2X +

α

2
‖v − u‖2L2(Ω), ∀v ∈ V.

Remark 4 (case α = 0). Naturally, in case α = 0 one requires the compatibility
condition ∫

Ω

f = −
∫

Ωc
g

to guarantee the well-posedness of the weak problem, whose solution is unique up
to an additive constant. We refer to [24, Theorem 3.9] for details. We point out
that such a Theorem has the less restrictive decay hypothesis g ∈ L1(Ωc), but it
additionally requires the existence of some ψ of class C2 such that Nsψ = g in Ωc.

2.1. Decay of solutions. When performing finite element discretizations of (2.3),
we shall need to truncate Ωc and compute solutions over a family of computational
domains {ΛH} with finite diameter. We shall allow the finite element solutions
not to vanish over ΛcH but rather to be constant on this set. While this adds an
additional degree of freedom in our computations, it gives an improvement in the
approximation of solutions (cf. Remark 7 below).

This is particularly useful if the exact solution was known to be bounded at
infinity, which a priori may not be the case. As we discussed in Remark 1, functions
in V may blow up like |x|α for α ∈ (0, s). Because u ∈ V is the solution of (2.3),
one can prove further decay of u by assuming further decay on the flux density g.
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Proposition 2.2 (decay of solutions). Let s ∈ (0, 1), α > 0, f ∈ L2(Ω) and
g ∈ [L2

s+β(Ωc)]′ for some β ∈ (0, s). Then, the unique solution u ∈ V of (2.3)

belongs to the space L2
s−β(Rd), and it satisfies

‖u‖L2
s−β(Rd) ≤ C

(
‖g‖[L2

s+β(Ωc)]′ + ‖u‖V
)
.

Proof. Let R > 0. Using the notation (2.4) and taking into account the first part

of the proof of Proposition 2.1, we only need to estimate

∥∥∥∥ u√
1+|·|d+2(s−β)

∥∥∥∥
L2(ΛcR)

.

For that purpose, we exploit that for a.e. x ∈ ΛcR it holds

g(x) = Nsu(x) = Cd,s

∫
Ω

u(x)− u(y)

|x− y|d+2s
dy,

and therefore

(2.13) u(x)Cd,s

∫
Ω

1

|x− y|d+2s
dy = g(x) + Cd,s

∫
Ω

u(y)

|x− y|d+2s
dy.

We use (2.9), the Cauchy-Schwarz inequality to obtain

|u(x)|
1 + |x|d+2s

≤ C
(
|g(x)|+

‖u‖L2(Ω)

1 + |x|d+2s

)
,

and multiplying both sides by 1 + |x|d/2+s+β , taking squares and integrating over
ΛcR, we deduce∫

ΛcR

|u(x)|2

1 + |x|d+2(s−β)
dx ≤ C

(
‖g‖2[L2

s+β(ΛcR)]′ +R−2(s−β)‖u‖2L2(Ω)

)
.

The result follows. �

Remark 5 (optimality). A simple example shows that the open-endedness of the
range β < s in Proposition 2.2 is optimal. Indeed, assume that g ≡ 0 and f ≡
α in (2.3). Then, the solution to such a problem is u ≡ 1, that satisfies u ∈
∩β<sL2

s−β(Ωc) but u /∈ L2
0(Ωc).

Corollary 2.1 (Neumann conditions with strong decay). Let s ∈ (0, 1), α ≥ 0,
f ∈ L2(Ω) and g be such that

(2.14) g(x)|x|d+2s → 0 as |x| → ∞.
Then, the unique solution u ∈ V of (2.3) satisfies

lim
|x|→∞

u(x) =
1

|Ω|

∫
Ω

u =
1

α|Ω|

(∫
Ω

f +

∫
Ωc
g

)
.

Proof. We exploit formula (2.13). In first place, arguing as in [24, Proposition 3.13]
one derives that

lim
|x|→∞

∫
Ω

u(y)
|x−y|d+2s dy∫

Ω
1

|x−y|d+2s dy
=

1

|Ω|

∫
Ω

u.

Additionally, from the decay hypothesis (2.14) and (2.9), we have

lim
|x|→∞

g(x)∫
Ω

1
|x−y|d+2s dy

= 0.

Finally, using the test function v ≡ 1 in (2.3) we deduce that 1
|Ω|
∫

Ω
u = 1

α|Ω| (
∫

Ω
f+∫

Ωc
g). �
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Remark 6 (Neumann conditions with weaker decay). In a similar fashion as in
Corollary 2.1, it follows that if g ≥ 0 is such that g(x)|x|d+2s → ∞ as |x| → ∞,
then the solution u ∈ V of (2.3) verifies u(x)→ +∞ as |x| → ∞. More in general,
if g(x)|x|d+2s → κ as |x| → ∞ for some κ ∈ R, then

u(x)→ κ

Cd,s|Ω|
+

1

|Ω|

∫
Ω

u, as |x| → ∞.

2.2. Interior regularity. Besides decay of solutions at infinity, another important
aspect we need to take into account is their interior regularity within Ω. We make
use of a local regularity estimate from [22, Theorem 2.1]. Such a result requires
the condition u ∈ L1

2s(Rd); because of the continuity of the embedding L2
s(Rd) ⊂

L1
2s(Rd), this assumption holds whenever the Neumann datum verifies g ∈ [L2

s(Ω
c)]′.

Theorem 2.1 (interior regularity). Under the same conditions as Lemma 2.2, the
unique solution u ∈ V of (2.3) satisfies u ∈ ∩ε>0H

2s−ε
loc (Ω), and for every ε > 0

and Ω′ b Ω,

‖u‖H2s−ε(Ω′) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω) + ‖u‖L1

2s(Rd)

)
.

3. Discretization

We approximate (2.3) by means of the finite element method. For that purpose,
we consider a mesh-size number h > 0 and, for H = H(h) > 0 we take a computa-
tional domain ΛH according to (2.4). We consider admissible triangulations Th of
ΛH , which we assume that mesh Ω exactly. Additionally, the family {Th} is set to
be shape-regular, namely,

σ := sup
h>0

max
T∈Th

hT
ρT

<∞,

where hT = diam(T ) and ρT is the diameter of the largest ball contained in T . As
usual, the subindex h denotes the mesh size, h = maxT∈Th hT ; moreover, we take
elements to be closed sets.

We make use of continuous, piecewise linear functions over Th. Let Nh be the
set of vertices of Th, N be its cardinality, and {ϕi}Ni=1 the standard piecewise linear
Lagrangian basis, with ϕi associated to the node xi ∈ Nh. In order to better
capture the behavior of solutions at infinity, we additionally make use of constant
functions over ΛcH . That is, we define ϕN+1 := χΛcH

and set

Vh :=

{
vh ∈ C0(ΛH) : vh =

N+1∑
i=1

viϕi

}
.

We emphasize that, in principle, the computational-domain size H could be
related to the mesh size number h. To prove the convergence of the finite element
scheme we need H →∞ when h→ 0.

With the notation we just have defined, we seek a function uh ∈ Vh such that

(3.1) 〈uh, vh〉X + α(uh, vh)L2(Ω) = (f, vh)L2(Ω) + (g, vh)L2(Ωc)

for all vh ∈ Vh. If we set uh =
∑N+1
i=1 Uiϕi, we can write the weak formulation as

a linear system of equations,

(3.2) (K + αM)U = F +G,
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where

Kij = 〈ϕi, ϕj〉X, Mij = (ϕi, ϕj)L2(Ω), Fj = (f, ϕj)L2(Ω) Gj = (g, ϕj)L2(Ωc).

The stiffness matrix K is symmetric and semidefinite positive, and because α > 0
the matrix αM is symmetric and definite positive. Therefore, the system (3.2)
admits a unique solution.

Since we are using discrete functions over ΛH and a constant basis function on
ΛcH , our discretizations are conforming: it holds that Vh ⊂ V for all h > 0. By
Galerkin orthogonality, we immediately deduce that

|u− uh|2X + α‖u− uh‖2L2(Ω) = min
vh∈Vh

(
|u− vh|2X + α‖u− vh‖2L2(Ω)

)
,

from which the estimate

(3.3) ‖u− uh‖V ≤ max{
√
α,
√
α
−1} min

vh∈Vh
‖u− vh‖V.

follows.

Remark 7 (averages of finite element solutions). Because the constant function
vh ≡ 1 belongs to the discrete spaces Vh for all h,H > 0, we may use them as test
functions in (3.1). Therefore, it follows that the finite element solutions have the
same averages over Ω as the solutions of (2.3),

1

|Ω|

∫
Ω

uh =
1

α|Ω|

(∫
Ω

f +

∫
Ωc
g

)
=

1

|Ω|

∫
Ω

u.

We point out that this property would not hold in general if we had not included
the additional degree of freedom corresponding to ϕN+1.

4. Interpolation and Convergence

Here we study the convergence of the finite element scheme proposed in Section
3. For that purpose, we first introduce a quasi-interpolation operator and analyze
its stability and approximation properties. We afterwards combine these results
with the best approximation properties of the finite element solution to prove the
convergence of the method for locally bounded solutions but without any additional
smoothness assumption.

4.1. Interpolation. We define the star of a set A ∈ Ω by

S1
A :=

⋃
{T ∈ Th : T ∩A 6= ∅} .

Given T ∈ Th, the star S1
T of T is the first ring of T . Recursively, we define the

higher-order rings of T : Sk+1
T = S1

SkT
, k ∈ N. The star of the node xi ∈ Nh is

Si := supp(ϕi). We denote by Bi the maximal ball, centered at xi, and contained
in Si. If ρi is the radius of Bi, and hi = diam(Si) by shape regularity of the mesh
we have the equivalences ρi ' hi ' hT , for all T ⊂ Si.

A detailed proof of the following observation, which is due to Faermann [27], can
be found in [16, Lemma 3.2].

Lemma 4.1 (symmetry). For any v, w ∈ L1(Λ), and ρ : R+ → R+ bounded, there
holds∑
T∈Th : T∩Λ6=∅

∫
T

∫
(S1
T )c∩Λ

v(y)w(x) ρ(|x−y|)dydx =
∑

T∈Th : T∩Λ6=∅

∫
T

∫
(S1
T )c∩Λ

v(x)w(y) ρ(|x−y|)dydx.
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We split the mesh nodes into two disjoint sets, consisting of either vertices in Ω
and in Ωc,

N ◦h =
{
xi : xi ∈ Ω

}
, N c

h = {xi : xi ∈ Ωc} =
{
xi : Si ⊂ Ωc

}
.

We shall construct a quasi-interpolation (averaging) operator that, within Ω,
considers averages over Ω only. For that purpose, given a mesh node xi, we define
the region

Ri :=

{
Bi if xi ∈ Rd \ ∂Ω,

Bi ∩ Ω if xi ∈ ∂Ω.

This definition guarantees that the broken quasi-interpolation operator defined be-
low only takes averages within Ω for nodes in N ◦h and within Ωc for nodes in N c

h .
We remark that shape regularity implies |Ri| ' hdT for all T ⊂ Si.

Definition 4.1 (quasi-interpolation operator). Let the broken quasi-interpolation
operator Ih : L1(Ω)→ Vh be defined by

Ihv =
∑

xi∈Nh

(
1

|Ri|

∫
Ri

v(x)dx

)
ϕi.

We remark that the definition above implies that Ihv ≡ 0 over the non-meshed
region ΛcH . As long as one takes H → ∞ as h → 0, one can guarantee that the
interpolation error tends to zero.

The operator Ih is based on the positivity-preserving operator from [21]; indeed,
it coincides with such an operator everywhere except in the discrete boundary layer

{T ∈ Th : T ∩ ∂Ω 6= ∅}.
We shall therefore exploit some of the properties of that operator documented in
[18, 21]. For instance, because for every xi ∈ Ω the ball Bi is symmetric with
respect to xi, the operator Ih satisfies

Ihv(xi) = v(xi), ∀v ∈ P1(Bi),

where by P1(E) we denote the space of polynomials of degree one over the set E.
However, this operator is not a projection: in general Ihvh 6= vh for vh ∈ Vh even
in the interior of the domain [32].

Let T ∈ Th and consider its modified ring of order k ∈ N,

S̃kT =

{
SkT if T ⊂ Ωc,

SkT ∩ Ω if T ⊂ Ω.

Using standard arguments, one can prove the following estimates:

(4.1) ‖v − Ihv‖L2(T ) ≤ Cht|v|Ht(S̃1
T ),

(4.2)

∫
T

∫
S1
T

|(v − Ihv)(x)− (v − Ihv)(y)|2

|x− y|d+2s
dydx ≤ Ch2(t−s)|v|2

Ht(S̃2
T )
,

These interpolation estimates are satisfactory to deal with functions that are
locally smoother than Hs. However, we only know the solution u of our problem to
have such a regularity in the interior of the domain (cf. Theorem 2.1). The method
we shall pursue to prove the convergence of Ihu towards u as h → 0 relies on the
stability of Ih. We now develop various stability estimates that will be employed
to prove the convergence of our finite element scheme.
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Lemma 4.2 (stability w.r.t. to averages). Let s ∈ (0, 1) and T, T ′ ∈ Th. There is a
constant C, depending only on the dimension d and the shape regularity parameter
σ of the mesh, such that the estimate∫∫

T×T ′

|Ihv(x)− Ihv(y)|2

|x− y|d+2s
dydx ≤ C

1− s
hd−2s
T

∑
i:xi∈T∪T ′

(
1

|Ri|

∫
Ri

v(z)dz

)2

holds for all v ∈ L1(ΛH).

Proof. In case Ri = Bi, a proof of the proposition above can be found in [18], and
the same argument is valid in case Ri = Bi ∩ Ω. �

The right hand side in Lemma 4.2 may not be the most appropriate to express
the stability of the operator Ih because it does not involve a seminorm of v. To
obtain an expression better suited to deal with elements contained in Ω, we make
two simple observations. In first place, that the quasi-interpolation operator Ih pre-
serves constant functions; secondly, that fractional-order seminorms are invariant
under sums.

Lemma 4.3 (local Hs-stability). Let s ∈ (0, 1) and T, T ′ ∈ Th with T ⊂ Ω and
T ′ ⊂ S1

T . Then, there is a constant C such that the estimate
(4.3)∫∫

T×T ′

|Ihv(x)− Ihv(y)|2

|x− y|d+2s
dydx ≤ C

[
|v|2

Hs(S̃1
T )

+

∫∫
S̃1
T×S̃1

T ′

|v(x)− v(y)|2

|x− y|d+2s
dydx

]
holds for all v ∈ V. Moreover, the following estimate holds:

(4.4)

∫∫
T×S1

T

|Ihv(x)− Ihv(y)|2

|x− y|d+2s
dydx ≤ C

∫∫
S̃1
T×S2

T

|v(x)− v(y)|2

|x− y|d+2s
dydx.

Proof. Let T and T ′ be any two elements as in the hypothesis, v ∈ V and c ∈ R
a constant to be determined. Because ∪xi∈T∪T ′Ri ⊂ S̃1

T ∪ S̃1
T ′ and |Ri| ' hdT for

every node xi ∈ T ∪ T ′, applying the Jensen’s inequality we have∑
i:xi∈T∪T ′

(
1

|Ri|

∫
Ri

v − c
)2

≤ C

hdT

∫
S̃1
T∪S̃1

T ′

(v − c)2.

Combining this bound with Lemma 4.2 and the fact that Ih(v−c)(x)−Ih(v−c)(y) =
Ihv(x)− Ihv(y) for all x ∈ T, y ∈ T ′, we get

(4.5)

∫∫
T×T ′

|Ihv(x)− Ihv(y)|2

|x− y|d+2s
dydx ≤ C

h2s
T

∫
S̃1
T∪S̃1

T ′

(v − c)2.

We now choose c = |S̃1
T |−1

∫
S̃1
T
v, so that we can apply the Poincaré inequality

(4.6)

∫
S̃1
T

(v − c)2 ≤ Ch2s
T |v|2Hs(S̃1

T )
.

The constant C above depends on the chunkiness of S̃1
T (see for example [15, Propo-

sition 1.2.6]). Our choice of c yields∫
S̃1
T ′

(v−c)2 =

∫
S̃1
T ′

(
1

|S̃1
T |

∫
S̃1
T

v(x)− v(y)dy

)2

dx ≤ 1

|S̃1
T |

∫∫
S̃1
T ′×S̃

1
T

|v(x)−v(y)|2dydx
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and therefore, since |x−y| ≤ ChT for all x ∈ S̃1
T ′ , y ∈ S̃1

T and |S̃1
T | ' hdT , we obtain

(4.7)

∫
S̃1
T ′

(v − c)2 ≤ Ch2s
T

∫∫
S̃1
T×S̃1

T ′

|v(x)− v(y)|2

|x− y|d+2s
dydx.

.
We obtain estimate (4.3) by combining (4.5), (4.6) and (4.7). Summing up (4.3)

over the elements T ′ ⊂ S1
T , whose total number is less than Cσ, we immediately

obtain (4.4). �

Remark 8 (averages). One can readily verify that, given any two sets A and B and
v ∈ L1(A ∪B),

1

|A|

∫
A

v(x)dx− 1

|B|

∫
B

v(y)dy =
1

|A||B|

∫
A

∫
B

(v(x)− v(y))dydx.

We now express the stability of Ih in a way that shall be convenient to deal with
elements away from one another.

Lemma 4.4 (stability on non-touching elements). Let T and T ′ be any two ele-
ments such that T ∩ T ′ = ∅. Then, for every v ∈ L2(S1

T ∪ S1
T ′) it holds that

(4.8)

∫
T

∫
T ′
|Ihv(x)− Ihv(y)|2dydx ≤ C

∫
S1
T

∫
S1
T ′

|v(x)− v(y)|2dydx.

As a consequence, given T ∈ Th it holds that∫
T

∫
(S1
T )c

|Ihv(x)− Ihv(y)|2

|x− y|d+2s
dydx ≤ C

∫
S1
T

∫
Rd

|v(x)− v(y)|2

|x− y|d+2s
dydx ∀v ∈ L2

loc(Rd).

Proof. Let T, T ′ be any two disjoint elements. Thus, #{xi ∈ T ∪ T ′} = 2(d +
1), and we can consider a local node numbering such that x1, . . . , xd+1 ∈ T and
xd+2, . . . , x2(d+1) ∈ T ′. We write, for x ∈ T and y ∈ T ′,

Ihv(x)− Ihv(y) =

d+1∑
i=1

(
1

|Ri|

∫
Ri

v

)
ϕi(x)−

2(d+1)∑
i=d+2

(
1

|Ri|

∫
Ri

v

)
ϕi(y)

=

d+1∑
i=1

(
1

|Ri|

∫
Ri

v − 1

|S1
T ′ |

∫
S1
T ′

v

)
ϕi(x)−

2(d+1)∑
i=d+2

(
1

|Ri|

∫
Ri

v − 1

|S1
T |

∫
S1
T

v

)
ϕi(y)

+
1

|S1
T ′ |

∫
S1
T ′

v − 1

|S1
T |

∫
S1
T

v.

Therefore, we can bound

(4.9) |Ihv(x)− Ihv(y)|2 ≤ 3(A2
1 +A2

2 +A2
3),

with

A1 =

d+1∑
i=1

(
1

|Ri|

∫
Ri

v − 1

|S1
T ′ |

∫
S1
T ′

v

)
ϕi(x), A2 =

2(d+1)∑
i=d+2

(
1

|Ri|

∫
Ri

v − 1

|S1
T |

∫
S1
T

v

)
ϕi(y),

A3 =
1

|S1
T ′ |

∫
S1
T ′

v − 1

|S1
T |

∫
S1
T

v.
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Because |ϕi| ≤ 1, |Ri| ' hdT ' |S1
T | for all i = 1, . . . , d + 1 and ∪d+1

i=1Ri ⊂ S1
T ,

and by using Remark 8 and the Jensen’s inequality, we can bound

A2
1 ≤ C

d+1∑
i=1

(
1

|Ri|

∫
Ri

v − 1

|S1
T ′ |

∫
S1
T ′

v

)2

≤ C

|S1
T ||S1

T ′ |

∫
S1
T

∫
S1
T ′

|v(t)− v(w)|2dtdw.

In the same fashion, one readily obtains

A2
2, A

2
3 ≤

C

|S1
T ||S1

T ′ |

∫
S1
T

∫
S1
T ′

|v(w)− v(t)|2dtdw,

and collecting the bounds for the Aj ’s and integrating (4.9) over T ×T ′, we readily
obtain (4.8).

Naturally, T ∩T ′ = ∅ is equivalent to T ′ ∈ (S1
T )c or d(T, T ′) > 0. Thus, we have

|x− y| ≥ d(T, T ′) > 0, |t− w| ≤ Cd(T, T ′) ∀x ∈ T, y ∈ T ′, t ∈ S1
T , w ∈ S1

T ′ ,

and we can use (4.8) to write∫
T

∫
T ′

|Ihv(x)− Ihv(y)|2

|x− y|d+2s
dydx ≤ d(T, T ′)−(d+2s)

∫
T

∫
T ′
|Ihv(x)− Ihv(y)|2dydx

≤ Cd(T, T ′)−(d+2s)

∫
S1
T

∫
S1
T ′

|v(w)− v(t)|2dtdw

≤ C
∫
S1
T

∫
S1
T ′

|v(w)− v(t)|2

|w − t|d+2s
dtdw.

Estimate (4.8) follows by summing on elements T ′ ⊂ (S1
T )c∩ΛH and recalling that

Ih vanishes on ΛcH . �

We shall also require the following auxiliary result, that is proved by means of
the same kind of arguments as in [17, Proposition 3.4]

Lemma 4.5 (local L2 interpolation error). Assume v ∈ L∞loc(Rd). Then, if the
computational domains {ΛH} are taken according to (2.4) with H →∞ as h→ 0,
we have

‖v − Ihv‖L2
loc(Rd) → 0, as h→ 0.

Proof. Let K ⊂ Rd be a bounded set and x ∈ K. Then, there exists h0 sufficiently
small such that K ⊂ ΛH for all h < h0. Thus, we may assume that x ∈ T for some
T ∈ Th. Furthermore, let us assume that x is a Lebesgue point of v. Then, we have

v(x)−Ihv(x) = v(x)−
∑

i : xi∈T

(
1

|Ri|

∫
Ri

v(y)dy

)
ϕi(x) =

∑
i : xi∈T

(
1

|Ri|

∫
Ri

(v(x)− v(y))dy

)
ϕi(x).

We exploit that for all i, |ϕi| ≤ 1, |Ri| ' |T | ' hdT by shape regularity. Also, the
definition of the region Ri gives Ri ⊂ Si ⊂ S1

T and, in turn, we have S1
T ⊂ Br(x)

with a radius r = ChT . We get

|v(x)− Ihv(x)| ≤ C

hdT

∫
∪iRi
|v(x)− v(y)|dy ≤ C

hdT

∫
BChT (x)

|v(x)− v(y)|dy

≤ C

|BChT (x)|

∫
BChT (x)

|v(x)− v(y)|dy → 0 as h→ 0,

because x is a Lebesgue point of v. Therefore, by the Lebesgue Differentiation
Theorem we deduce that Ihv → v a.e. in K.
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Moreover, because v ∈ L∞loc(Rd) we have |Ihv| ≤ ‖v‖L∞(K) and since |K| is finite
we apply the Dominated Convergence Theorem to conclude that

lim
h→0

∫
K

|Ihv(x)− v(x)|2dx = 0.

This finishes the proof. �

Finally, we have some estimates at infinity.

Lemma 4.6 (tail of interpolation error). Let R > 0 be sufficiently large. Then, if
H > R and h ≤ 1, we have∫

Ω

∫
ΛcR

|(v − Ihv)(x)− (v − Ihv)(y)|2

|x− y|d+2s
dydx ≤ C

(
‖v − Ihv‖2L2(Ω)

R2s
+

∫
ΛcR−1

|v(y)|2

|y|d+2s
dy

)
Proof. We split∫

Ω

∫
ΛcR

|(v − Ihv)(x)− (v − Ihv)(y)|2

|x− y|d+2s
dydx ≤ 2

∫
Ω

∫
ΛcR

|(v − Ihv)(x)|2

|x− y|d+2s
dydx

+ 2

∫
Ω

∫
ΛcR

|v − Ihv)(y)|2

|x− y|d+2s
dydx.

Using (2.10), the first integral in the right hand side can be bounded by∫
Ω

∫
ΛcR

|(v − Ihv)(x)|2

|x− y|d+2s
dydx ≤ C

R2s
‖v − Ihv‖2L2(Ω).

As for the second one, we now use (2.6) to obtain∫
Ω

∫
ΛcR

|(v − Ihv)(y)|2

|x− y|d+2s
dydx ≤ C

∫
ΛcR

|(v − Ihv)(y)|2

|y|d+2s
dy ≤ C

(∫
ΛcR

|v(y)|2

|y|d+2s
dy +

∫
ΛcR

|Ihv(y)|2

|y|d+2s
dy

)
,

and because Ihv vanishes on ΛcH , we have∫
ΛcR

|Ihv(y)|2

|y|d+2s
dy =

∫
ΛH\ΛR

|Ihv(y)|2

|y|d+2s
dy.

Take any element T ∈ Th such that T ∩ (ΛH \ ΛR) 6= ∅. For y ∈ T we thus have

|Ihv(y)|2 ≤ C
∑

i : xi∈T

(
1

|Bi|

∫
Bi

v2

)
,

and because |Bi| ' hdT and |z| ' |y| for all y ∈ T , z ∈ S1
T , we can write∫

T∩(ΛH\ΛR)

|Ihv(y)|2

|y|d+2s
dy ≤ C

∫
S1
T

|v(z)|2

|z|d+2s
dz.

Summing up in all the elements and using that h ≤ 1, we conclude that∫
ΛcR

|Ihv(y)|2

|y|d+2s
dy ≤ C

∫
ΛcR−1

|v(y)|2

|y|d+2s
dy.

�
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4.2. Convergence. We next prove the convergence of the finite element approx-
imations by combining the various interpolation estimates derived in last section
with the regularity of solutions. We require solutions to be locally bounded.

Theorem 4.1 (convergence). Let s ∈ (0, 1), α > 0, f ∈ L2(Ω), g ∈ [L2
s(Ω

c)]′

for some β ∈ (0, s) and u be the solution to (2.3). Let uh be the finite element
solution computed on a mesh with size h = maxT∈Th hT . Then, if the computational
domains {ΛH} are taken according to (2.4) with H → ∞ as h → 0 and assuming
u ∈ L∞loc(Ωc), it holds that

lim
h→0
‖u− uh‖V = 0.

Proof. Because of the best approximation property (3.3), it suffices to estimate
the interpolation error. Clearly, using (4.1), we immediately deduce that the L2-
interpolation error over Ω tends to zero. Namely,

‖u− Ihu‖2L2(Ω) =
∑
T⊂Ω

‖u− Ihu‖2L2(T )

≤ C
∑
T⊂Ω

h2s
T |u|2Hs(S1

T∩Ω) ≤ Ch
2s|u|2Hs(Ω) → 0, as h→ 0,

(4.10)

where we recall that the family {Th} is assumed to mesh Ω exactly.
In order to estimate the interpolation error in the X-seminorm, we let ε > 0 be

any positive number. Because u ∈ V, there exist δ > 0 and R > 0 such that∫
Ω\Ω2δ

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dydx < ε,∫

Ω

∫
ΛcR−1

|u(x)− u(y)|2

|x− y|d+2s
dydx < ε,

(4.11)

where we introduced the notation

Ωr = {x ∈ Ω: d(x, ∂Ω) ≥ r}, r > 0.

For convenience, we shall denote T rh = {T ∈ Th : T ∩ Ωr 6= ∅} and, without loss of
generality, assume that h ≤ δ/8 ≤ 1 and H > R. We decompose the X-seminorm
as

(4.12) |u−Ihu|2X ≤ 2

∫
Ω

∫
Rd

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx = 2I1+2I2+2I3,

where

I1 =

∫
Ωδ

∫
ΛR

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx,

I2 =

∫
Ωδ

∫
ΛcR

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx,

I3 =

∫
Ω\Ωδ

∫
Rd

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx.
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Let us first consider the term I1 above, that can be bounded as

(4.13)

I1 ≤
∑
T∈T δh

∫
T

∫
S1
T

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx

+
∑
T∈T δh

∫
T

∫
(S1
T )c∩ΛR

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx.

By Theorem 2.1, we have u ∈ ∩σ>0H
2s−σ
loc (Ω). Therefore, fixing some σ ∈ (0, s)

and applying (4.2), we obtain
(4.14)∑
T∈T δh

∫
T

∫
S1
T

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx ≤ C

∑
T∈T δh

h
2(s−σ)
T |u|2H2s−σ(S2

T )

≤ Ch2(s−σ)|u|2H2s−σ(Ωδ/2) → 0, as h→ 0.

To deal with the second sum in (4.13), we split it as
(4.15)∑
T∈T δh

∫
T

∫
(S1
T )c∩ΛR

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx

≤ 2
∑
T∈T δh

∫
T

∫
(S1
T )c

|(u− Ihu)(x)|2

|x− y|d+2s
dy dx+ 2

∑
T∈T δh

∫
T

∫
(S1
T )c∩ΛR

|(u− Ihu)(y)|2

|x− y|d+2s
dy dx,

and also remark that, for every T ∈ Th and x ∈ T ,

(4.16)

∫
(S1
T )c

1

|x− y|d+2s
dy ≤ C

h2s
T

.

For the first sum in the right hand side in (4.15), we exploit (4.16), apply (4.1)
and use the interior H2s−σ-regularity of u from Theorem 2.1 to deduce∑
T∈T δh

∫
T

∫
(S1
T )c

|(u− Ihu)(x)|2

|x− y|d+2s
dy dx ≤ C

∑
T∈T δh

‖u− Ihu‖2L2(T )

h2s
T

≤ C
∑
T∈T δh

h
2(s−σ)
T |u|2H2s−σ(S2

T ) → 0, as h→ 0.

We can deal with the last sum in (4.15) by using Lemma 4.1. Indeed, by applying
it and using (4.16), we get
(4.17)∑
T∈T δh

∫
T

∫
(S1
T )c∩ΛR

|(u− Ihu)(y)|2

|x− y|d+2s
dy dx ≤

∑
T∈Th : T∩ΛR 6=∅

∫
T

∫
(S1
T )c∩ΛR

|(u− Ihu)(y)|2χΩ3δ/4
(x)

|x− y|d+2s
dy dx

=
∑

T∈Th : T∩ΛR 6=∅

∫
T

∫
(S1
T )c∩ΛR

|(u− Ihu)(x)|2χΩ3δ/4
(y)

|x− y|d+2s
dy dx

≤ C
∑

T∈Th : T∩ΛR 6=∅

‖u− Ihu‖2L2(T )

d(T, (S1
T )c ∩ Ω3δ/4)2s

.

We now distinguish three cases in the last sum above. For the elements contained
in Ωc, we use Lemma 4.5 and the fact that d(T, (S1

T )c ∩Ω3δ/4) ≥ δ/4 if T ⊂ Ωc, to
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deduce that
(4.18) ∑
T∈Th : T⊂Ωc,T∩ΛR 6=∅

‖u− Ihu‖2L2(T )

d(T, (S1
T )c ∩ Ω3δ/4)2s

≤ C
‖u− Ihu‖2L2(ΛR+1)

δ2s
→ 0, as h→ 0.

The elements in T δh can be treated by using Theorem 2.1 and (4.1),
(4.19)∑
T∈T δh

‖u− Ihu‖2L2(T )

d(T, (S1
T )c ∩ Ω3δ/4)2s

≤ C
∑
T∈T δh

‖u− Ihu‖2L2(T )

h2s
T

≤ C
∑
T∈T δh

h
2(s−σ)
T |u|2H2s−σ(S1

T ) → 0,

as h→ 0.
For those elements contained in Ω but not belonging to T δh , we also use (4.1),

but now we critically exploit the choice of δ in (4.11),

(4.20)

∑
T∈Th\T δh : T⊂Ω

‖u− Ihu‖2L2(T )

d(T, (S1
T )c ∩ Ω3δ/4)2s

≤ C
∑

T∈Th\T δh : T⊂Ω

‖u− Ihu‖2L2(T )

h2s
T

≤ C
∑

T∈Th\T δh : T⊂Ω

|u|2Hs(S1
T∩Ω)

≤ C|u|2Hs(Ω\Ω2δ)
< Cε.

Substituting (4.18), (4.19) and (4.20) in (4.17), we deduce that

∑
T∈T δh

∫
T

∫
(S1
T )c∩ΛR

|(u− Ihu)(y)|2

|x− y|d+2s
dy dx ≤ Cε+O(1),

and in turn, combining this estimate with (4.14) and going back to (4.13), we obtain

(4.21) I1 ≤ Cε+O(1).

Next, we analyze the term I2 in (4.12), which involves interactions between Ωδ
and the unbounded set ΛcR. For that purpose, we combine Lemma 4.6 with (4.10)
and (4.11)

(4.22) I2 ≤ C

(
‖u− Ihu‖2L2(Ω)

R2s
+

∫
ΛcR−1

|u(y)|2

|y|d+2s
dy

)
≤ O(1) + Cε.

Let us finally consider the term I3 in (4.12), which accounts for interactions
between Ω \ Ωδ –a boundary layer of width δ in Ω– and Rd. Our argument needs
to be of a different nature to the one that we performed for I1 and I2: now we
cannot exploit interior regularity. Nevertheless, I3 is expected to be small because
it involves integration over a region whose contribution to the X-seminorm of u is
roughly ε (cf. (4.11)). Thus, to deal with I3 it suffices to exploit local stability
properties of the interpolation operator Ih.
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Accordingly, we split I3 as the sum of two integrals, one involving u and another
involving Ihu:
(4.23)

I3 =

∫
Ω\Ωδ

∫
Rd

|(u− Ihu)(x)− (u− Ihu)(y)|2

|x− y|d+2s
dy dx

≤ 2

∫
Ω\Ωδ

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dy dx+ 2

∫
Ω\Ωδ

∫
Rd

|Ihu(x)− Ihu(y)|2

|x− y|d+2s
dy dx

≤ 2ε+ 2

∫
Ω\Ωδ

∫
Rd

|Ihu(x)− Ihu(y)|2

|x− y|d+2s
dy dx.

We need to bound the last integral in the right hand side above. For that

purpose, we observe that Ω \ Ωδ ⊂ {T ∈ Th \ T 3δ/2
h : T ⊂ Ω} and decompose∫

Ω\Ωδ

∫
Rd

|Ihu(x)− Ihu(y)|2

|x− y|d+2s
dy dx ≤

∑
T∈Th\T 3δ/2

h : T⊂Ω

∫
T

∫
S1
T

|Ihu(x)− Ihu(y)|2

|x− y|d+2s
dy dx

+
∑

T∈Th\T 3δ/2
h : T⊂Ω

∫
T

∫
(S1
T )c

|Ihu(x)− Ihu(y)|2

|x− y|d+2s
dy dx.

We exploit Lemma 4.3 and the assumption h ≤ δ/8 to treat the first sum:
(4.24)∑
T∈Th\T 3δ/2

h : T⊂Ω

∫
T

∫
S1
T

|Ihu(x)− Ihu(y)|2

|x− y|d+2s
dy dx ≤ C

∫
Ω\Ω2δ

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dy dx < Cε.

Next, we apply Lemma 4.4 to deduce that
(4.25)∑
T∈Th\T 3δ/2

h : T⊂Ω

∫
T

∫
(S1
T )c

|Ihu(x)− Ihu(y)|2

|x− y|d+2s
dy dx ≤ C

∑
T∈Th\T 3δ/2

h : T⊂Ω

∫
S1
T

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dy dx

≤ C
∫

Ω\Ω2δ

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dy dx < Cε.

Substituting (4.24) and (4.25) in (4.23), we obtain

(4.26) I3 ≤ Cε.

Finally, collecting (4.21), (4.22), (4.26) and (4.12), we conclude that

|u− Ihu|2X ≤ Cε+O(1).

The result follows because ε > 0 is arbitrary. �

Remark 9 (convergence rates under regularity assumptions). If, besides the hy-
potheses from Theorem 4.1, we assume that the solution u belongs to Hr

loc(Rd) for
some r ∈ (s, 2], then it is clear (cf. (4.2)) that the local interpolation error is of
the order of hr−s. Furthermore, if u ∈ L2

s−β(Rd) for some β ∈ (0, s) –which is

guaranteed by Proposition 2.2 as long as g ∈ [L2
s+β(Ωc)]′– then using (2.9) we have∫

Ω

∫
ΛcH

|u(y)− Ihu(y)|2

|x− y|d+2s
dydx ≤ CH−2β‖u‖2L2

s−β(Rd).
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Therefore, if we take the computational domain diameter so that it satisfies

H−β ≤ Chr−s, namely H ≥ Ch
s−r
β , a direct calculation shows that we have con-

vergence with order hr−s with respect to the mesh size:

‖u− uh‖V ≤ Chr−s.

5. Numerical experiments

In this section we perform numerical experiments that illustrate the convergence
of the finite element discretizations and the effect of truncating the computational
domain. We also present an example in a two-dimensional setting in which the
value of s dictates the behavior of solutions at infinity. As an application of our
finite element scheme, we discretize the heat equation for the fractional Laplacian
and display the convergence as t → ∞ of the discrete solution towards the mean
value of the initial condition.

5.1. Explicit non-trivial solutions. As we discussed in Remark 5, a trivial ex-
plicit solution of (1.1) can be obtained by taking f ≡ α and g ≡ 0. In such a
case, the solution u ≡ 1 is approximated in an exact form by our numerical scheme.
In order to test our method, we construct some non-trivial solutions as follows:
assume that w : Rd → R is a solution of the nonhomogeneous Dirichlet problem

(5.1)

{
(−∆)sw = fD in Ω,

w = h in Ωc,

where fD and h are some known functions. Then, defining

g(x) := h(x)Cd,s

∫
Ω

1

|x− y|d+2s
dy − Cd,s

∫
Ω

w(y)

|x− y|d+2s
dy,

for all x ∈ Ωc, and using relation (2.13), it follows that w also solves{
(−∆)su+ αu = fD + αw in Ω,

Nsu = g in Ωc.

Thus, we can construct explicit examples by building from known solutions of (5.1)
for which the computation of g can be numerically handled.

5.2. Convergence order. Following the former ideas, we consider Ω = (−1, 1),
α = 1, and

(5.2) w(x) =

{
cs(1− x2)s in Ω,

0 in Ωc,

with

cs =

√
π

22sΓ( 1+2s
2 )Γ(1 + s)

.

This function w is a well-known solution of (5.1) with fD ≡ 1 and h ≡ 0. We

thereby set f = 1 +w, and g(x) = −C1,s

∫ 1

−1
w(y)

|x−y|1+2s dy in the Neumann problem

(1.1). Note that here C1,s is the constant defined in (1.2).
We point out that in this case the function g has a singularity on −1 and 1.

More precisely, for δ > 0, both g(1 + δ) and g(−1 − δ) are of order O(δ−s) near
the interval endpoints (see [15, Remark 5.2.5] for details). Thus, the nonlocal flux
density satisfies g ∈ L2(Ωc) only when s < 1/2 and, in this example, two numerical
challenges arise in the assembly of the right hand side. Namely, the computation
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of
∫

Ωc
gϕi when supp(ϕi) ⊂ Ωc with supp(ϕi) ∩ ∂Ω 6= ∅, and the computation of∫

Ωc
gϕN+1, where ϕN+1 is the constant basis function over ΛcH . In the first case we

have to deal with a singular integrand, while in the second one we need to compute
an integral over an unbounded domain.

Since g(x) ' |x|−1−2s for large values of |x|, the integral∫
Ωc
gϕN+1 =

∫ +∞

H

g(x) dx+

∫ −H
−∞

g(x) dx = 2

∫ +∞

H

g(x) dx,

can be approximated by means of standard techniques. On the other hand, we deal
with the first difficulty by a careful treatment of the singularity in order to avoid
numerical issues. This is detailed in Appendix A.

We display convergence orders for several values of s in Figure 5.1. Because
g 6∈ L2(Ωc) for s ≥ 1/2, we restrict ourselves to the range s ≤ 1/2. Although
we emphasize that the condition H → ∞ as h → 0 is needed in general, in these
experiments the choice of H = diam(ΛH) does not seem to affect the convergence
rate. This is possibly due to the fact that the solution w is constant in Ωc and
therefore it can be exactly represented by the basis function ϕN+1 on ΛcH .

‖ · ‖L2(Ω) ‖ · ‖Hs(Ω)

Figure 5.1. The L2(Ω) and Hs(Ω) errors in logarithmic scale for
Example 5.2, using several values of s. In these experiments we
used uniform meshes with h = 1/1000, 1/2000, 1/4000, 1/8000,
and H = 1.2. The observed order of convergence is approximately
s+ 1/2 and 1/2 in the L2(Ω) and Hs(Ω) norms, respectively.

5.3. Convergence in H. In this example we consider Ω = (−1, 1), f ≡ 1, and
g(x) = −1/|x|1+p for some p > 0, and we aim to find experimental convergence rates
in H = diam(ΛH), using a fixed uniform mesh with small h. We shall denote by uHh
the discrete solution computed on a mesh with size h and a computational domain

ΛH . We are interested in the behavior of ‖uHnh − uHn+1

h ‖L2(Ω), with {Hn} ⊂ R+

and Hn+1 −Hn ' k for some fixed constant k > 0. Numerical results for s = 0.3,
s = 0.8, and several choices of g are shown in Figure 5.2. These experiments suggest

that ‖uHnh − uHn+1

h ‖L2(Ω) . H−c for some c > 0 depending on both s and g. Table
1 displays least-square fittings of the exponent c.

5.4. Qualitative behavior in 2D. In order to explore the qualitative behavior
of 2D solutions, we set a 2-dimensional example with Ω = B(0, 1), g(x) = −1/|x|3,
f ≡ 2, and H = 2. In this case,

∫
Ω
f = 2π = −

∫
Ωc
g, and thus solutions have zero
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s = 0.3 s = 0.8

Figure 5.2. Experimental results for Example 5.3. We plot

log
(
‖uHnh − uHn+1

h ‖L2(Ω)

)
vs log(Hn+1) for s = 0.3 and s = 0.8.

In these experiments, we set h = 1/1000, H = { 0.1, 0.5, 1, 1.5,
2, 2.5, 3, 3.5}, and the right hand sides g0 ≡ 0, g1(x) = −|x|−2,
g2(x) = −|x|−1.5, and g3(x) = −|x|−1.2. Also, we used f ≡ 1 for
all cases except for g0, where we took f(x) = sin(πx) in order to
avoid trivial constant solutions.

g0 ≡ 0 g1(x) = −|x|−2 g2(x) = −|x|−1.5 g3(x) = −|x|−1.2

s = 0.3 2.96 3.07 3.20 2.69
s = 0.8 3.84 3.44 2.92 2.68

Table 1. Experimental convergence rates for Example 5.3.
The asymptotic behavior (see Figure 5.2) suggests that ‖uHnh −
u
Hn+1

h ‖L2(Ω) . H−c, for some constant c > 0 depending of s and
g. Here we show least-squares fittings of c in these examples.

mean on Ω. For the implementation of (3.1), we modified the code given in [2]. We
give details on the implementation of this particular example in Appendix B.

Results for several values of s on a quasi-uniform mesh with ΛH = B(0, 3) are
shown in Figure 5.3. In all cases, we obtained that the discrete solutions have zero
average in Ω, in agreement with Remark 7. The solutions exposed in Figure 5.3
have different asymptotic behaviors. According to Corollary 2.1, since for s = 0.1
we have g(x)|x|2+2s → 0 as |x| → ∞, solutions vanish at infinity. On the other
hand, this limit blows up for s = 0.9 and thus u(x) → −∞ in such a case. The
transition between these two behaviors happens for s = 0.5. With the notation
from Remark 6, we have κ = −1 and therefore u(x) → −2 as |x| → ∞ because
C2,0.5 = 1/2π and |Ω| = π.

As an illustration of the method’s ability to capture this phenomenon, Table 2
reports the values of UN+1 = uh

∣∣
ΛcH

computed for three meshes Ti (i = 1, 2, 3).

In all cases, h = 5 × 10−2 in Ω and the meshes were graded in Ωc, so that the
element sizes are proportional to d(T,Ω)3 for elements far away from Ω. This way,
the resulting computational domains ΛH corresponded to H = 64, 216, 512.

5.5. Fractional Heat Equation. As a last example, we focus on the fractional
heat diffusion problem with homogeneous Neumann condition (1.5). By combining
scheme 3.1 for the spatial discretization and a backward Euler time-stepping, we
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s = 0.1 s = 0.5 s = 0.9

Figure 5.3. Results for the problem described in Section 5.4, for
several values of s computed on a quasi-uniform mesh consisting
of 32200 triangles on ΛH . Top row: discrete solutions in ΛH , with
the value of the solution in ΛcH represented by a red circle over
∂ΛH . Bottom row: solutions in Ω.

T1, H = 64 T2, H = 216 T3, H = 512
s = 0.1 −0.0720 −0.0283 −0.0151
s = 0.5 −2.0028 −2.0029 −2.0029
s = 0.9 −158.33 −419.04 −835.83

Table 2. Values of discrete solutions at infinity for s = 0.1, 0.5, 0.9
for meshes with different computational domains. The results are
in good agreement with Corollary 2.1 and Remark 6.

obtain the discrete problem: given Unh (n ∈ {0, ..., N − 1}), find Un+1
h ∈ Vh such

that (
Un+1
h − Unh

δt
, vh

)
L2(Ω)

+ 〈Un+1
h , vh〉X = 0 ∀vh ∈ Vh.

Above δt > 0 is a uniform time step, δt = T/N , and U0
h is a discretization of the

initial condition u0. Clearly, for every n, the equation above reduces to (3.1) with
f = Unh /δt, α = 1/δt, and g ≡ 0.

In our experiments we consider Ω = (−1, 1) and u0(x) = I[−1/2,1/2](x). Numer-
ical solutions for several values of s are displayed in Figure 5.4. Additionally, ac-
cording to [24, Proposition 4.2.], for all t > 0 we have ‖u− 1

|Ω|
∫

Ω
u0‖L2(Ω) < Ae−ct,

for some positive constants A and c. This exponential decay is also verified by our
numerical solutions (see in Figure 5.5).
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Appendix A. Computing the right hand side in Example 5.2

In order to assemble the right hand side in Example 5.2, we need to deal with
the singularities of the flux density g near ∂Ω. Since we are using a regular mesh
with element size h, this issue arises when computing

(A.1)

∫
Ti

g(x)ϕ(x) dx,

with Ti = [1, 1 + h] or Ti = [−1− h,−1]. Due to the symmetry of the problem, we
shall focus only on the first case.

Indeed, consider the Lagrange basis function ϕj associated with the node xj = 1,
namely, ϕj(x) = 1− (x− 1)/h for all x ∈ [1, 1 + h]. We recall the definitions (5.2)
and (1.2) of the constants cs and C1,s respectively, so that their product equals
csC1,s = 1

Γ(1−s)Γ(s) , and rewrite (A.1) as∫
Ti

g(x)ϕj(x) dx = − 1

Γ(1− s)Γ(s)

∫ 1+h

1

∫ 1

−1

(1− y2)s

(x− y)1+2s

(
1− x− 1

h

)
dy dx

= − 22s+1h

Γ(1− s)Γ(s)

∫ 1

0

∫ 1

0

ŷs(1− ŷ)s

(hx̂+ 2ŷ)1+2s

(
1− x̂

)
dŷ dx̂.

We use that |x− y| = (x− y) (because x− y > 0 in Ti ×Ω), and make the change
of variables (x̂, ŷ) = ((x − 1)/h, (1 − y)/2). Observing that the last integral is
performed over Q = (0, 1)× (0, 1), we split the domain into two triangles and treat
each part separately. Namely, defining

D1 := {(x, y) ∈ Q, such that y ≤ x},
D2 := {(x, y) ∈ Q, such that x ≤ y},

we have Q = D1 ∪D2. We first analyze the integral over D1.
Applying the Duffy-type transformation T1 : Q → D1, T1(ξ, η) → (ξ, ξη), we

write

∫∫
D1

ŷs(1− ŷ)s

(hx̂+ 2ŷ)1+2s

(
1− x̂

)
dŷ dx̂ =

∫ 1

0

∫ 1

0

ξsηs(1− ξη)s

(hξ + 2ξη)1+2s

(
1− ξ

)
ξ dη dξ

=

∫ 1

0

ηs

(h+ 2η)1+2s

(∫ 1

0

(1− ξη)s(1− ξ)
ξs

dξ
)
dη.

(A.2)

Let us focus on the inner singular integral. Defining

I1(η) :=

∫ 1

0

(1− ξη)s(1− ξ)
ξs

dξ,

and applying the change of variables ξ = z1/(1−s), we obtain

(A.3) I1(η) =
1

1− s

∫ 1

0

(1− ηz1/(1−s))s(1− z1/(1−s)) dz.

Because the integrand is a smooth, bounded function, this expression can be ac-
curately approximated using standard integration techniques for all η ∈ [0, 1], and
therefore we are able to obtain good approximations of the integral in (A.2).
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In the same fashion, applying the transformation T2 : Q→ D2, T2(ξ, η)→ (ξη, ξ)
we obtain
(A.4)∫∫

D2

ŷs(1− ŷ)s

(hx̂− 2ŷ)1+2s

(
1− x̂

)
dŷ dx̂ =

∫ 1

0

1

(hη + 2)1+2s

(∫ 1

0

(1− ξ)s(1− ηξ)
ξs

dξ
)
dη.

The function

(A.5) I2(η) :=

∫ 1

0

(1− ξ)s(1− ηξ)
ξs

dξ =
1

1− s

∫ 1

0

(1−z1/(1−s))s(1−ηz1/(1−s)) dz,

where in the last equality we made a change of variables as in (A.3), can be ac-
curately approximated by the same considerations as before. Finally, substituting
(A.4) and (A.3) in (A.2) and (A.5) respectively, yields∫ 1+h

1

g(x)ϕj(x) dx = −C1,scs2
2s+1h

∫ 1

0

ηsI1(η)

(h+ 2η)1+2s
+

I2(η)

(hη + 2)1+2s
dη,

and standard numerical integration techniques can be applied in order to approxi-
mate the latter expression.

The treatment of the other basis function on Ti, namely ϕj(x) = (x− 1)/h, can
be handled in the same way. Following the former ideas, if we define

I3(η) :=

∫ 1

0

(1− ξη)sξ1−s dξ, and I4(η) := η

∫ 1

0

(1− ξ)sξ1−s dξ,

we obtain∫ 1+h

1

g(x)ϕ2(x) dx = −C1,scs2
2s+1h

∫ 1

0

ηsI3(η)

(h+ 2η)1+2s
+

I4(η)

(hη + 2)1+2s
dη.

In this case, the functions I3 and I4 can be expressed in terms of beta functions: it
holds that I3(η) = ηs−2B(η; 1− s, s) and I4(η) = ηB(1− s, s).

Appendix B. Implementation details in 2D

Implementing the scheme described in Section 3 involves some computational
challenges, such as the integration of singular functions or the computation of inte-
grals over unbounded domains. However, many of these difficulties can be tackled
using the same ideas displayed in [2]. In this Appendix we report the modifications
needed on the code given in that work in order to adapt it to our problem 1. We
shall make use of the same notation as in [2]. To fix ideas, we restrict our attention
to the setting in Example 5.4.

B.1. Assembling the stiffness matrix. For the Dirichlet for the fractional Lapla-
cian with homogeneous boundary conditions, reference [2] uses an auxiliary domain
–typically a ball– to assemble the stiffness matrix K. Namely, it computes interac-
tions between basis functions supported in Ω and certain nodal basis functions
supported in Ωc. We take advantage of this construction in our setting because it
means we already have at hand the interactions between basis functions supported
in Ω and the ones supported in the auxiliary domain ΛH \ Ω.

1A full version of this code is available on: https://github.com/fbersetche/Finite-element-
approximation-of-fractional-Neumann-problems.
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Therefore, the missing entries in the stiffness matrix are the last row/column,
that involves the interaction between the constant basis function ϕN+1 and the
remaining ones. Namely, we need to calculate

Ki,N+1 = 〈ϕi, ϕN+1〉X, for i = 1, . . . , N + 1.

Splitting the integral in this bilinear form as in [2, Section 3] and using the fact that
ϕN+1 = χΛcH

, we realize we only need to compute, for every Tl ⊂ Ω, expressions of
the form∫∫

Tl×ΛcH

(ϕi(x)− ϕi(y))(ϕN+1(x)− ϕN+1(y))

|x− y|d+2s
dx dy = −

∫∫
Tl×ΛcH

ϕi(x)

|x− y|d+2s
dx dy

for i = 1, . . . , N and∫∫
Tl×ΛcH

(ϕN+1(x)− ϕN+1(y))2

|x− y|d+2s
dx dy =

∫∫
Tl×ΛcH

1

|x− y|d+2s
dx dy.

Because we need to compute integrals over unbounded domains, we use the
function comp_quad from [2, Section A.5] with a properly modified input. To this
end, some modifications in the variable cphi are needed: we compute two new
auxiliary variables cphi2 and cphi3 by executing the following code after the one
presented at the end of [2, Section C.6]:

local = cell(1,3);

local{1} = @(x,y) 1-x;

local{2} = @(x,y) x-y;

local{3} = @(x,y) y;

cphi2 = zeros(9,12);

cphi3 = zeros(9,12);

for i = 1:3

for j = 1:3

f1 = @(z,y) local{i}(z,y);

cphi2( sub2ind([3 3], i , j) , : ) =...

f1( p_T_12(:,1) , p_T_12(:,2) ).*w_T_12;

end

end

for i = 1:3

for j = 1:3

f1 = @(z,y) -1;

cphi3( sub2ind([3 3], i , j) , : ) =...

f1( p_T_12(:,1) , p_T_12(:,2) ).*w_T_12;

end

end

Above, p_T_12 and w_T_12 are the quadrature points and their respective weights
(see [2, Appendix C]). The variables cphi2 and cphi3 play the same role as cphi.
Thus, we need to execute the former code only once and save the auxiliary variables
in order to load them latter in the MATLAB workspace, before the execution of
the main code.

The main code is modified as follows.

• Replace line 9 with:
K = zeros(nn+1,nn+1);
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• Between lines 55 and 56 add the following:
JC = comp_quad(Bl,xl(1),yl(1),s,cphi2,R,area(l),p_I,w_I,p_T_12);

K(nodl, nn + 1) = K(nodl, nn + 1) + JC(:,1);

K(nn + 1, nodl) = K(nn + 1, nodl) + ( JC(:,1) )’;

JC2 = comp_quad(Bl,xl(1),yl(1),s,cphi3,R,area(l),p_I,w_I,p_T_12);

K(nn + 1, nn + 1) = K(nn + 1, nn + 1) + JC2(1,1);

Note that above R = diam(ΛH) = H; we named the variable in such a way in order
to be consistent with the notation from [2].

B.2. Computing the right hand side and solving the system. Let g be the
Neumann datum. We need to compute∫

R2

ϕi(x)g(x) dx, for i = 1, . . . , N + 1.

In Example 5.4 we have g(x) = −1/|x|3. In particular, we have

b(nn+1,1) =

∫
R2

ϕN+1(x)g(x) dx = −
∫

ΛcH

1

|x|3
dx = −2π/H.

Therefore, we modify the main code as follows to compute the right hand side
in (3.1).

• Define the function f in Ω and g in ΛH \Ω, for example, after the definition
of f . That is, overwrite line 4 with:
f = @(x,y) 2;

g = @(x,y) -1./( sqrt( x.^2 + y.^2 ) ).^3;

• Replace line 10 by:
b = zeros(nn+1,1);

• Comment the last two lines at the end of the main loop, and add:
for l=nt-nt_aux+1:nt

nodl = t(l,:);

xl = p(1 , nodl); yl = p(2 , nodl);

b(nodl) = b(nodl) + fquad(area(l),xl,yl,g);

end

b(nn+1,1) = -2*pi/R;

Besides modifying the right hand side, we need to incorporate the mass matrix
and modify the system matrix accordingly. The former task is straightforward:

M = zeros(nn+1,nn+1);

for l=1:nt-nt_aux

nodl = t(l,:);

M(nodl,nodl) = M(nodl,nodl) + (area(l)/12).*( ones(3) + eye(3) );

end

As for the second task, we set the variable alpha = α as in (1.1) (here we use
α = 1), and set and solve the linear system:

alpha = 1;

K = K.*cns;

uh = (K + alpha.*M)\b;
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Finally, we add the following lines to plot the discrete solution:

theta = 0:(2*pi)/100:2*pi;

xx = R.*cos(theta);

yy = R.*sin(theta);

zz = uh(nn+1).*ones(size(theta));

hold on

trimesh(t(1:nt , :), p(1,:),p(2,:),uh(1:end-1));

plot3(xx, yy, zz , ’-or’)

hold off

figure

trimesh(t(1:nt - nt_aux, :), p(1,:),p(2,:),uh(1:end-1));

We point out that this code returns two figures as output: the first one displays
the solution in ΛH , and a red circle over ∂ΛH represents the value of the numerical
solution in ΛcH , as in the top row in Figure 5.3. The second figure shows the solution
in Ω, as in the bottom row in the same figure.
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(J.P. Borthagaray) Departamento de Matemática y Estad́ıstica del Litoral, Universi-

dad de la República, Salto, Uruguay

Email address: jpborthagaray@unorte.edu.uy

(F.M. Bersetche)

Email address: bersetche@gmail.com


	1. Introduction and problem setting
	2. Weak Formulation
	2.1. Decay of solutions
	2.2. Interior regularity

	3. Discretization
	4. Interpolation and Convergence
	4.1. Interpolation
	4.2. Convergence

	5. Numerical experiments
	5.1. Explicit non-trivial solutions
	5.2. Convergence order
	5.3. Convergence in H
	5.4. Qualitative behavior in 2D
	5.5. Fractional Heat Equation

	References
	Appendix A. Computing the right hand side in Example 5.2
	Appendix B. Implementation details in 2D
	B.1. Assembling the stiffness matrix
	B.2. Computing the right hand side and solving the system

	Acknowledgements

