english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/35002 Cómo citar
Título: Topology of leaves for minimal laminations by hyperbolic surfaces
Autor: Álvarez, Sebastien
Brum, Joaquín
Martínez, Matilde
Potrie Altieri, Rafael
Tipo: Preprint
Palabras clave: Geometric Topology, Dynamical Systems
Fecha de publicación: 2022
Resumen: We construct minimal laminations by hyperbolic surfaces whose generic leaf is a disk and contain any prescribed family of surfaces and with a precise control of the topologies of the surfaces that appear. The laminations are constructed via towers of finite coverings of surfaces for which we need to develop a relative version of residual finiteness which may be of independent interest. The main step in establishing this relative version of residual finiteness is to obtain finite covers with control on the \emph{second systole} of the surface, which is done in the appendix. In a companion paper, the case of other generic leaves is treated.
Descripción: Publicado también: Journal of Topology, 2022, 15(1):302 - 346.
Editorial: arXiv
EN: Mathematics (Geometric Topology), arXiv:1906.10029, 2022, pp 1-43
Financiadores: ANII: FCE_3_2018_1_148740
Citación: Álvarez, S, Brum, J, Martínez, M , [y otro autor] . "Topology of leaves for minimal laminations by hyperbolic surfaces" [Preprint]. Publicado en: Mathematics (Geometric Topology). 2022 arXiv:1906.10029, pp 1-43.
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)
Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
1906.10029.pdfPreprint873,23 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons