Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/35002
Cómo citar
Título: | Topology of leaves for minimal laminations by hyperbolic surfaces |
Autor: | Álvarez, Sebastien Brum, Joaquín Martínez, Matilde Potrie Altieri, Rafael |
Tipo: | Preprint |
Palabras clave: | Geometric Topology, Dynamical Systems |
Fecha de publicación: | 2022 |
Resumen: | We construct minimal laminations by hyperbolic surfaces whose generic leaf is a disk and contain any prescribed family of surfaces and with a precise control of the topologies of the surfaces that appear. The laminations are constructed via towers of finite coverings of surfaces for which we need to develop a relative version of residual finiteness which may be of independent interest. The main step in establishing this relative version of residual finiteness is to obtain finite covers with control on the \emph{second systole} of the surface, which is done in the appendix. In a companion paper, the case of other generic leaves is treated. |
Descripción: | Publicado también: Journal of Topology, 2022, 15(1):302 - 346. |
Editorial: | arXiv |
EN: | Mathematics (Geometric Topology), arXiv:1906.10029, 2022, pp 1-43 |
Financiadores: | ANII: FCE_3_2018_1_148740 |
Citación: | Álvarez, S, Brum, J, Martínez, M , [y otro autor] . "Topology of leaves for minimal laminations by hyperbolic surfaces" [Preprint]. Publicado en: Mathematics (Geometric Topology). 2022 arXiv:1906.10029, pp 1-43. |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
1906.10029.pdf | Preprint | 873,23 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons