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Abstract. We construct minimal laminations by hyperbolic surfaces whose generic
leaf is a disk and contain any prescribed family of surfaces and with a precise con-
trol of the topologies of the surfaces that appear. The laminations are constructed
via towers of finite coverings of surfaces for which we need to develop a relative
version of residual finiteness which may be of independent interest. The main step
in establishing this relative version of residual finiteness is to obtain finite covers
with control on the second systole of the surface, which is done in the appendix.
In a companion paper, the case of other generic leaves is treated.

1. Introduction

A lamination or foliated space of dimension d is a compact metrizable space which
is locally homeomorphic to a disk D in Rd times a compact set T called transversal.
The space is required to have a compatibility condition between these local triv-
ialisations, which guarantees that sets of the form D × {t} glue together to form
d-dimensional manifolds called leaves. The space is therefore a disjoint union of
the leaves, which can be embedded in the compact space in very complicated ways.
When the space is a manifold, this structure is usually called a foliation. When the
transversal T is a Cantor set, it is called a solenoid. When all the leaves are dense,
we say that the lamination is minimal. We refer the reader to [11] for more details
and to [24] for an excellent survey about the two-dimensional case.
For laminations by surfaces, i.e. when d = 2, the topology and the geometry

of leaves have been widely studied. Cantwell and Conlon proved that any surface
appears as a leaf of a foliation by surfaces of a closed 3-manifold, see [12]. Note
that their construction does not produce a minimal foliation. In a very nice work
[32], Gusmão and Meniño have recently shown how to construct minimal foliations
by surfaces on some finite quotients of circle bundles over closed surfaces containing
any prescribed countable familly of noncompact surfaces as leaves. On the other
hand, Ghys proved in [23] that for a lamination by surfaces, the generic leaf –
in the sense of Garnett’s harmonic measures [22]– is either compact or in a list
containing only six noncompact surfaces. An analogous statement holds for generic
leaves in a topological sense under an assumption which is satisfied by minimal
laminations [13]. Much work on the quasi-isometry class of leaves has led to many
results concerning the topology of generic leaves. This is the subject of [5], which
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contains most relevant results and references. Many remarkable examples have given
us insights into which leaves can appear, or coexist, in a lamination by surfaces.
It is worth mentioning the Ghys-Kenyon example, constructed in [24] which is a
minimal lamination containing leaves with different conformal types. Also one has
the famous Hirsch’s foliation where all leaves have infinite topological types (see [26]
for the original construction and [1, 3, 13, 23] for the minimal construction). Other
aspects of the study of this subject have been pursued in different works, a non
exhaustive list is [16, 17, 21, 31, 36, 39, 40].
In this paper, we are interested in the study of the topology of the leaves for

minimal laminations by hyperbolic surfaces. Such laminations are quite ubiquituous
after a very beautiful uniformisation result of Candel [10] which shows that unless
some natural obstruction appears, every lamination by surfaces admits a leafwise
metric which makes every leaf of constant negative curvature.
The motivation for this work was to understand the possible topologies that can

coexist in a minimal lamination by hyperbolic surfaces. In this setting, a strong
dichotomy holds: either the generic leaf is simply connected or all leaves have a ‘big’
fundamental group –one which is not finitely generated– see [1, Theorem 2]. We
have found that there are no obstructions to having all surfaces simultaneously in
the same lamination.

Theorem A. There exists a minimal lamination by hyperbolic surfaces so that for
every non-compact open surface S there is at least one leaf homeomorphic to S.

After proving this theorem, we were informed that a similar result had been an-
nounced in the late 90’s by Blanc [7], as part of his unpublished doctoral thesis.
Nevertheless, the lamination described by Blanc, constructed with a refinement of
Ghys-Kenyon’s method, does not seem to admit a leafwise metric of constant cur-
vature −1.
We present a very flexible combinatorial method to construct minimal laminations

by hyperbolic surfaces with prescribed surfaces as leaves. This yields, in a straight-
forward way, the example announced in Theorem A and many others. For minimal
laminations, there is always a residual set of leaves having 1, 2 or a Cantor set of
ends, see [13]. In this paper we restrict ourselves to considering laminations for
which there is a residual set of leaves which are planes. Blanc studied the two-end
case in [8].
A companion paper [2] by the first two authors will address the case where the

generic leaf has a Cantor set of ends. It contains a refinment of [1, Theorem 2]: for
every leaf of such a lamination, all isolated ends are accumulated by genus —this is
called condition (∗) in [2]. Using the formalism developped in the present paper, as
well as new techniques, it is proven that this is the only obstruction. Better still:
there exists a minimal lamination L by hyperbolic surfaces whose generic leaf is a
Cantor tree and such that for every non-compact surface S satisfying condition (∗),
there is at least one leaf homeomorphic to S. The formalism used there and the
spirit of the proof are very similar, but other difficulties appear, and new techniques
are needed.
We are unable, in general, to prescribe exactly which noncompact surfaces will

appear as leaves in our examples. However, we do not know if this is a weakness of
our method or if it reflects a general obstruction. When restricting ourselves to finite
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or countable families of surfaces (recall that there are uncountably many topological
types of them), the formalism of forests of surfaces together with Theorem 5.3,
allows us to get an optimal result.

Theorem B. Let A = {Sn}n be a finite or countable sequence of non-compact open
surfaces different from the plane. Then, there is a minimal lamination by hyperbolic
surfaces for which the generic leaf is a plane, and the leaves which are not simply
connected form a sequence {Ln} such that Ln is homeomorphic to Sn for every n.

Notice that the sequence A can take any value more than once –even infinitely
many times. So this theorem says that, given a finite or countable set of noncompact
surfaces, there is a lamination having each element as a leaf exactly some prescribed
number of times.
These techniques can produce a wider variety of examples. We refer the reader

to Theorem 5.3 and Proposition 6.1 for the most general statements which allow in
particular to show Theorems A and B (see section 6).

Remark 1.1. Foliations of codimension one do not have this flexibility, at least in
enough regularity. In fact, for a foliation by surfaces of a closed 3-manifold by
surfaces of finite type, either all leaves are simply connected or there are infinitely
many leaves which are not. This will be explained in Proposition 3.3 (see also
Remark 3.2).

All of our examples are solenoids, obtained as the inverse limit L of an infinite
tower

· · · pn−→ Σn
pn−1−−−→ Σn−1 · · ·

p0−→ Σ0

of finite covers of a compact hyperbolic surface Σ0. These solenoids are also the
object of [21, Section 2]. There, Sibony, Fornaess and Wold prove, among other
things, that there is a unique transverse holonomy-invariant measure, and also that
there are no harmonic measures other than the one which is totally invariant (see
[21, Theorem 1], bearing in mind that holonomy-invariant measures are the same
as positive closed currents, as explained in [38]). Also, they prove that the lami-
nations we construct embed in CP3 (see also [19] for other results of immersion of
laminations inside projective complex spaces). On the other hand, it is easy to see
that laminations obtained by inverse limits hardly ever embed in a 3-manifold. This
follows from the more general fact that a minimal lamination by hyperbolic surfaces
which admits a holonomy-invariant measure and embeds in a 3-manifold has the
following property: either all its leaves are simply connected or none of them are,
see Remark 2.4.
All covering maps pn : Σn−1→Σn are local isometries, and an appropriate con-

trol of the geometry of the Σn will allow us to prescribe the topology of the leaves
of L. Fornaess, Sibony and Wold construct a lamination where all leaves but one
are simply connected. In the present work, to be able to construct every possible
surface, we need a tighter grip on the properties of the tower, and therefore a better
understanding of finite coverings of surfaces. The main technical tool is the follow-
ing statement, of independent interest, concerning covering maps between compact
hyperbolic surfaces (which appears in the Appendix, joint with M. Wolff).

Theorem C. Let Σ be a closed hyperbolic surface, and let α ⊂ Σ be a simple closed
geodesic. Then, for all K > 0, there exists a finite covering π : Σ̂→Σ such that
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• Σ̂ contains a non-separating simple closed geodesic such that π(α̂) = α and
π restricts to a homeomorphism on α̂;
• every simple closed geodesic which is not α̂ has length larger than K.

In other words, there is a finite cover where the curve α has a (1 : 1)-lift, all the
other curves open up and no new short curve appears. This result allows us to get
a relative version of residual finiteness for surface groups which may be interesting
by itself, see Theorem 4.3.
It is similar in spirit to the LERF property proved for surface groups by Scott in

[37]. By directly applying the LERF property we could find a finite covering where
the curve α has a (1 : 1)-lift with a large collar neighbourhood but some new short
curves can appear in its complement. Similar geometric and quantitative properties
of surface groups have been proved with different motivations, for a recent such
result see, e.g. [28].
Organization of the paper –. The paper is structured as follows: Section 2 covers
preliminary material related to compact hyperbolic surfaces, towers of coverings of
such surfaces and properties of their inverse limits. In Section 3 we present some
illustrative examples, motivating the techniques and pointing out some differences
with the foliation setting, it closes with some explainations on how the general results
will be obtained. Section 4 develops the necessary tools to control the geometry of
the finite covers (in particular, the general version: Theorem 4.3 of the relative
version of residual finitness is obtained). In Section 5 we define an abstract object,
an admissible tower of coverings, which enables us to control the topology of leaves
of a lamination. The notion of forest of surfaces is also introduced. Section 6 is
the technical heart of the paper: we prove there Proposition 6.1, which allows us to
construct towers of finite coverings admissible with respect to any forest of surfaces.
Finally, in Section 7 we construct the necessary forests of surfaces in order to prove
Theorems A and B; the constructions there are flexible and allow to make other
examples that the reader can pursue if desired.
Acknowledgements –. It is a pleasure to thank Henry Wilton whose answer to our ques-
tion in MathOverflow, which contained a first sketch of proof of Theorem C (see [41]), has
been very important for the completion of our work. Gilbert Hector kindly communicated
to us Blanc’s thesis, we are thankful to him. Finally we thank Fernando Alcalde, Pablo
Lessa, Jesús Álvarez Lopez, Paulo Gusmão and Carlos Meniño for useful discussions. Last
but not least we wish to thank the referee for his/her valuable comments that allowed us to
improve the presentation of this work.

2. Preliminaries

2.1. Towers of coverings and minimal laminations.
Definitions –. Let T = {pn : Σn+1→Σn} where Σn are closed hyperbolic surfaces
and pn are finite (isometric) coverings. We define L to be the inverse limit of
T, that consists of sequences x = (xn)n∈N ∈

∏
n Σn such that for every n ∈ N,

pn(xn+1) = xn, and we endow it with the the topology induced by the product
topology.

Remark 2.1. Let us emphasize that in this paper all covering maps are local isome-
tries.
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The set L is a compact space and possesses a lamination structure so that the leaf
of a sequence x = (xn)n∈N, denoted by Lx, is formed by those sequences y = (yn)n∈N
such that dist(xn, yn) is bounded (see [21, Proposition 2]).

Remark 2.2. Let x = (xn)n∈N and y = (yn)n∈N be two different points in L. Then
the sequence of distances d(xn, yn) is increasing with n. To see this notice that a
path α between xn and yn that realizes the distance between them, projects down
onto a path of the same length between xm and ym whenever m ≤ n.

Leafwise metric –. Let x ∈ L and Lx be the leaf of x. Let us consider the following
covering maps

• Πn : Lx→Σn associating to y the n-th coordinate yn.
• Pn = p0 ◦ . . . ◦ pn−1 : Σn→Σ0.
• Pn,m = pm ◦ . . . ◦ pn−1 : Σn→Σm for m < n.

Note that Pn ◦ Πn = Π0 for every n and that pn−1 ◦ Πn = Πn−1. We can lift the
metric of Σ0 on each Σn using maps Pn (so all coverings pn are local isometries) and
on Lx (so that all Πn are local isometries). We denote by gn the metric on Σn and
by gLx the metric on Lx. This gives a leafwise metric, i.e. an assignment L 7→ gL
which is transversally continuous in local charts.

Minimality –. Recall that a lamination is said to be minimal if all of its leaves are
dense.

Proposition 2.3. The lamination L defined by a tower T of finite coverings of
closed hyperbolic surfaces is minimal.

Proof. Given points x = (xn)n∈N and y = (yn)n∈N in L, we show that for any
neighbourhood Û of x, Û ∩ Ly 6= ∅.
Recall that the topology on L is induced by the product topology. So given an

open neighbourhood Û of x in L there exists an integer n0 > 0 and a positive number
δ0, such that Û contains every point x′ ∈ L satisfying dist(xn, x′n) < δ0 for every
n ≤ n0.
Let αn0 be any path in Σn0 starting at yn0 and ending at xn0 . For every n ≥ n0

there exists a path αn in Σn starting at yn such that Pn,n0 ◦αn = αn0 . Note that for
all n ≥ n0 we have that the length lαn of αn is equal to the length lαn0

of αn0 . Let
y′ ∈ L be defined as follows. For n ≤ n0, y′n = xn and for n > n0, y′n is the other
extremity of αn. The first condition implies that y′ ∈ Û . The second one implies
that dist(yn, y′n) ≤ lαn0

for every n so that y′ ∈ Ly. This proves that Û ∩ Ly 6= ∅.
This proves the minimality of L. �

In fact, we know from [30] that laminations constructed in this way must be
uniquely ergodic, since it can be shown that they are equicontinuous (see also [21]).

Remark 2.4. Laminations constructed this way that embed in 3-manifolds need
to be quite special. Indeed, since they admit a transverse invariant measure, the
codimension one property implies some local order preservation: If Λ is compact
lamination with a transverse invariant measure, i : Λ→M is an embedding in a
3-manifold and if L is a non-simply connected leaf, then, one can consider a small
transversal to a non trivial loop γ and the holonomy of the lamination can be pushed
to nearby leaves because the measure is preserved as well as the order. The loops
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in the nearby leaves cannot be homotopically trivial since that would imply that
closed curves of a given length bound arbitrarily large disks contradicting the fact
that leaves are hyperbolic. If the lamination is minimal this implies that every leaf
has a non-trivial fundamental group. This implies that if a minimal lamination with
hyperbolic leaves and a transverse invariant measure embeds in a 3-manifold then
either every leaf is simply connected, or no leaf is.

2.2. Geometry and topology of the leaves.
Cheeger-Gromov convergence –. A sequence (Σn, gn, xn)n∈N of pointed com-
plete Riemannian manifolds is said to converge towards the pointed complete Rie-
mannian manifold (L, g, x) in the Cheeger-Gromov sense whenever there exists a
sequence of smooth mappings Πn : L→Σn such that

(1) for every n ∈ N, Πn(x) = xn; and for every compact set K ⊂L there exists
an integer n0 = n0(K) > 0 such that

(2) for every n ≥ n0, Πn restricts to a diffeomorphism of K onto its image;
(3) the sequence of pull-back metrics (Π∗ngn)n≥n0 converges to g in the C∞-

topology over K.
The sequence (Πn)n∈N is called a sequence of convergence mappings of (Σn, gn, xn)n∈N

with respect to (L, g, x). This mode of convergence is sometimes called smooth con-
vergence: [29, 34]. It appeared first in [25], where Gromov proved that Cheeger’s
finiteness theorem (see [15]) was in fact a compactness result. We will refer to [34]
for more details about it.
Topology of the leaves –. Cheeger-Gromov convergence proves to be especially
useful to identify the topology of leaves of a lamination coming from a tower of finite
coverings.
Below, L denotes the inverse limit of a tower T = {pn+1 : Σn+1→Σn} of finite

coverings of closed hyperbolic surfaces.

Proposition 2.5. Let x = (xn)n∈N ∈ L. Then the pointed leaf (Lx, gLx ,x) is the
Cheeger-Gromov limit of pointed Riemannian manifolds (Σn, gn, xn).

Proof. Candidates for convergence mappings are given by the maps Πn : Lx→Σn.
These are indeed local isometries. By the inverse function theorem it is enough to
prove that for every R > 0 there exists n0 such that Πn is injective on the ball
BLx(x, R) for every n ≥ n0.
Consider the groups Gn = (Pn)∗(π1(Σn, xn)) and Gx = (Π0)∗(π1(Lx,x)). By

definition they form a decreasing sequence of subgroups of π1(Σ0, x0). On the other
hand, for every R > 0 there are only finitely many geodesic loops of length less than
R in Σ0. Thus, for every R > 0 there exists n1(R) ≥ 0 such that for every n ≥ n1(R)
we have

Gx ∩DR = Gn ∩DR (1)
where DR denotes the disk centered at the identity of radius R inside π1(Σ0, x0) for
the geometric norm, i.e. the one that associates to γ the length of the correspond-
ing geodesic loop based at x0 (i.e. the one that associates to γ the length of the
associated geodesic loop based at x0 that is the projection of the geodesic segment
[x, γ.x] where x is the preferred lift of x0).
First note that if Πn(y) = Πn(z) for some n ∈ N and y, z ∈ Lx then we have

Πm(y) = Πm(z) for every m ≤ n. Assume that for infinitely many integers n there
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exists an open geodesic segment αn⊂B(x, R) so that Πn ◦ αn is a geodesic loop
(where B(x, R) denotes the ball of radius R about x). Using Ascoli’s theorem and
the remark above, we see that there exists an open geodesic ray α⊂B(x, R) such
that Πn ◦α is a closed geodesic loop (hence nontrivial in homotopy) for every n ∈ N,
contradicting (1).

�

Notice in particular that the leaves of L are hyperbolic surfaces, but all this discus-
sion works equally well if one considers towers of coverings of compact Riemannian
manifolds of any dimension.

2.3. Some hyperbolic geometry.
Systoles, collars and injectivity radius –. Below we set definitions and nota-
tions of hyperbolic geometry that will be used throughout the paper.

Definition 2.6. Let X be a compact hyperbolic surface with geodesic boundary.
The systole sys(X) of X is the length of the shortest geodesic in X. The internal
systole of X is the shortest length of an essential and primitive closed curve in X
which is not isotopic to a boundary component. This is also the smallest length of
a closed geodesic included in the interior Int(X).

Notice that if X has no boundary, these two concepts coincide, but when X has
boundary, the systole could be achieved by a boundary component.

Definition 2.7. The (maximal) half-collar width K0 at a boundary component α
of X is the minimal half-distance of two lifts of α to the Poincaré disk D. It satisfies
that for every K < K0 the K-neighbourhood of α is an embedded half-collar.
We say that the boundary of X has a half-collar of width K0 if there exists a

neighbourhood of ∂X consisting of a disjoint union of embedded half-collars of width
K0.

We now give a series of lemmas that we will use later in the text.

Lemma 2.8. Let X be a hyperbolic surface with geodesic boundary which is not a
pair of pants and α⊂ ∂X be a boundary component. Then

K0 >
σ − lα

2 ,

where σ and K0 denote respectively the internal systole and the half-collar width at
α of X.

Proof. By definition 2K0 is the minimal distance between two lifts of α to the upper
half plane and it is the length of a geodesic segment γ cutting α orthogonally at two
points x and y, included inside the pair of pants P attached to α.
The pair of pants P has a boundary component β disjoint from the boundary

∂X. This simple closed curve is isotopic to the concatenation of γ with a geodesic
segment [x, y] included in α. We find

2K0 + lα > lβ ≥ σ.

The lemma follows. �
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The injectivity radius at a point x of a Riemannian manifold will be denoted by
rinj(x). In other words, the injectivity radius at x is the smallest length of a geodesic
loop based at x. Notice that the geodesic loop is not necessarily a closed geodesic
since it can have a cone point at x.

Lemma 2.9. Let X be a hyperbolic surface with geodesic boundary and σ be its
internal systole. Assume that boundary components of X have disjoint collars of
width K0 > 0. Assume furthermore that we have

K0 ≤ sys(X) cosh
(
K0
2

)
.

Let x ∈ X such that dist(x, ∂X) ≥ K0. Then

rinj(x) ≥ min
(
σ,
K0
2

)
.

Proof. Assume that the hypotheses of the lemma hold. Let x be a point such that
dist(x, ∂X) ≥ K0. We must prove that a primitive geodesic loop γ based at x
satisfies lγ ≥ min(σ,K0/2). If γ is not isotopic to a boundary component of X then
lγ ≥ σ. So assume that γ is isotopic to a boundary component β of X and that γ
satisfies lγ < K0/2. Then, as a consequence of the triangle inequality, γ is entirely
contained outside the (K0/2)-neighbourhood of β.
Let β̃ be a lift of β to the Poincaré disk D, it is invariant by a hyperbolic isometry

denoted by h whose translation length is lβ ≥ sys(X). There exists a geodesic
segment γ̃ between x̃ (a lift of x) and h(x̃) which projects down isometrically onto γ
and is located outside a (K0/2)-neighbourhood of β̃. Since the orthogonal projection
outside a (K0/2)-neighbourhod of β̃ is a contraction of factor 1/ cosh(K0/2) we must
have

sys(X) ≤ lβ ≤
lγ̃

cosh(K0/2) ≤
K0

2 cosh(K0/2) ,

which contradicts the hypothesis. We deduce that if γ is isotopic to a boundary
component it must satisfy lγ ≥ K0/2.

�

Lemma 2.10. Consider Σ and X hyperbolic surfaces with geodesic boundary, and
a map

ϕ : X→Σ

which is an isometric embedding in restriction to Int(X). Take α⊂ ∂X, a boundary
component and denote by K0 the half-collar width of α. Then if γ is a closed geodesic
in Σ that crosses ϕ(α), we have lγ > K0

Proof. Let us denote by C the image by ϕ of a half-collar at α with width K0, as
stated in the lemma. Let γ0 be a connected component of γ ∩C which meets ϕ(α).
Since two geodesic arcs cannot bound a bigon, γ0 ∩ ϕ(α) must be a singleton, so
γ0 must connect the two boundary components of C, therefore it must have length
greater than K0. �

We will also need the following:



TOPOLOGY OF LEAVES FOR MINIMAL LAMINATIONS BY HYPERBOLIC SURFACES 9

Lemma 2.11. Let X be a hyperbolic surface with geodesic boundary written as a
union

X =
n⋃
i=0

Xi

where the Xi are subsurfaces with geodesic boundary meeting each other at boundary
components, and K a positive number. Assume moreover that for i = 0, . . . , n we
have:

• the internal systole of Xi is greater than K;
• the half collar width of every boundary component of Xi included in the
interior of X is greater than K;
• the boundary components of Xi included in the interior of X have length
greater than K.

Then, the internal systole of X is greater than K.

Proof. Take a closed geodesic γ ⊂ Int(X), we must check that its length is greater
than K. For this, we distinguish three cases.
Case 1. γ ⊂ Int(Xi) for some i. In this case, the length of γ must be greater or
equal than the internal systole of Xi, and therefore is greater than K by hypothesis.
Case 2. γ crosses a boundary component b of Xi for some i. By hypothesis, the
half-collar width of every boundary component of Xi included in the interior of X
is greater than K, then Lemma 2.10 implies that lγ > K.
Case 3. γ is a boundary component of some Xi included in Int(X). In this case
the length of γ is greater than K by hypothesis. This finishes the proof of the
lemma. �

Retraction on subsurfaces –. We will need the following proposition to identify
the topology of some complete hyperbolic surface knowing that of a subsurface.

Proposition 2.12. Let L be a complete hyperbolic surface without cusps and S⊂L
a closed subsurface with geodesic boundary such that every connected component Ci
of L \ S satisfies the following properties.

(1) Ci does not contain a closed geodesic.
(2) The boundary ∂Ci is connected

Then L is diffeomorphic to Int(S).

Proof. Let Ci be a connected component of L \ S and C̃i be a component of its
preimage to the Poincaré disk D by uniformization. Its closure is geodesically convex
and has geodesic boundary (argue like in the proof of [14, Lemma 4.1.]).
Moreover, we can prove that its boundary is connected so this is a half plane. In

order to see this we use that the boundary ∂Ci is connected so if the closure of C̃i
had various boundary components, there would exist a geodesic ray between two of
them projecting down to a geodesic loop inside Ci. Such a loop cannot be isotopic
to the boundary of Ci, thus contradicting the first hypothesis.
Since Ci has no cusp, no interior closed geodesic and only one geodesic boundary

component, its fundamental group (which equals the fundamental group of Ci) must
be trivial or cyclic generated by the translation about the geodesic boundary.
We deduce from this that Ci must be a hyperbolic half-plane or a funnel with

geodesic boundary. Using the transport on geodesics orthogonal to ∂S and basic
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Morse theory we see that all manifolds defined as {x; dist(x, S) ≤ r}, r > 0 are
diffeomorphic to S so their interiors are all diffeomorphic to Int(S). We deduce that
L is diffeomorphic to Int(S). �

2.4. Noncompact surfaces.
Ends of a space –. Let us recall the definition of an end of a connected topological
space X. Let (Kn)n∈N be an exhausting and increasing sequence of compact subsets
of X. An end of X is a decreasing sequence

C1 ⊃ C2 ⊃ ... ⊃ Cn ⊃ ...

where Cn is a connected component of X \ Kn. We denote by E(X) the space of
ends of X. It is independent of the choice of Kn.
The space of ends of X possesses a natural topology which makes it a compact

subspace of a Cantor space. An open neighbourhood of an end e = (Cn)n∈N is an
open set V ⊂X such that Cn⊂V for all but finitely many n ∈ N.
Classifying triples –. In what follows, a classifying triple is the data τ = (g, E0, E)
of

• a number g ∈ N ∪ {∞};
• a pair of nested spaces E0⊂E where E is a nonempty, totally disconnected
and compact topological space; which satisfy
• g =∞ if and only if E0 6= ∅.

Say that two classifying triples τ = (g, E0, E) and τ ′ = (g′, E ′0, E ′) are equivalent if
g = g′ and if there exists a homeomorphism h : E →E ′ such that h(E0) = E ′0.
Noncompact surfaces –. We now recall the modern classification of surfaces as it
appears in [35]. The leaves of a hyperbolic surface laminations are orientable so we
are only interested in the classification of orientable surfaces.
Recall that an end e = (Cn)n∈N of Σ is accumulated by genus if for every n ∈ N, the

surface Cn has genus. The ends accumulated by genus form a compact subset that
we denote by E0(Σ)⊂E(Σ). In our terminology the triple τ(Σ) = (g(Σ), E0(Σ), E(Σ))
is a classifying triple.

Theorem 2.13 (Classification of surfaces). Two orientable noncompact surfaces Σ
and Σ′ are homeomorphic if and only if their classifying triples τ(Σ) and τ(Σ′) are
equivalent.
Moreover for every classifying triple τ there exists an orientable noncompact sur-

face Σ such that τ(Σ) is equivalent to τ .

Remark 2.14. As a direct consequence, there are uncountably many different topo-
logical types of open surfaces as there exists uncountably many closed subsets of the
Cantor set.

2.5. Direct limits of surfaces.
Inclusions of surfaces –. Let S and S′ be two surfaces with boundary. We say
that a map f : S→S′ is an inclusion if the two conditions below are satisfied.

• f is continuous and injective.
• f maps every boundary component of S to a boundary component of S′ or
inside the interior of S′.



TOPOLOGY OF LEAVES FOR MINIMAL LAMINATIONS BY HYPERBOLIC SURFACES 11

When S′ \ f(S) admits a hyperbolic structure with geodesic boundary we call f a
good inclusion.
When we specify two points x and x′ on S and S′ respectively, a (good) inclusion

f : (S, x)→(S′, x′) is supposed to map x to x′.

Remark 2.15. If S and S′ are hyperbolic surfaces with geodesic boundary, then any
isometric embedding f : S→S′ is a good inclusion.

Direct limits –. Let (Sn)n∈N be a sequence of surfaces with boundary and a chain
of inclusions {jn : Sn→Sn+1}. The direct limit of this chain is the quotient

S∞ = lim−→{jn : Sn→Sn+1} =
⊔
Sn
/
∼

where ∼ is the equivalence relation generated by ∀x ∈ Sn, x ∼ jn(x). The space
S∞ is naturally a topological surface, possibly with boundary. By definition of
inclusions, a point of ∂S∞ corresponds to a point x of the boundary of some Sn0

such that for every n ≥ n0 the map jn−1 ◦ . . . ◦ jn0(x) belongs to the boundary of
Sn. Moreover there exists an inclusion Jn : Sn→S∞.
Direct limits enjoy the following universal property.

Theorem 2.16 (Universal property). Let L be a surface. Assume that there exists
a sequence of inclusions φn : Sn→L which satisfy the compatibility condition

φn = φn+1 ◦ jn.
Then there exists an inclusion φ : S∞→L such that for every n ∈ N

φn = φ ◦ Jn.

Open direct limits –. Let (Sn)n∈N be a sequence of surfaces with boundary and
a chain of inclusions {jn : Sn→Sn+1}. The open direct limit of this chain is by
definition the interior of the direct limit. This is by definition an open surface.
Geometric direct limits –. We now assume that we are given a sequence (Sn)n∈N
of compact hyperbolic surfaces with geodesic boundary and a chain of isometric em-
beddings {jn : Sn→Sn+1}. This is in particular a chain of good inclusions (see
Remark 2.15). The direct limit S∞ of this chain might not be complete: imagine
the case of a sequence of surfaces obtained by gluing hyperbolic pairs of pants whose
boundary components have length growing very fast.

Definition 2.17. The geometric direct limit of the chain {jn : Sn→Sn+1} of iso-
metric embeddings of compact hyperbolic surfaces with geodesic boundary is the
surface denoted by S∞ and defined as the metric completion of the direct limit S∞.

Proposition 2.18. The geometric direct limit of a chain {jn : Sn→Sn+1} of iso-
metric embeddings of compact hyperbolic surfaces with geodesic boundary is a hyper-
bolic surface whose boundary components are disjoint geodesics (that can be closed
or not) and satisfies that Int(S∞) = Int(S∞), the open direct limit.

Proof. An inductive argument using the uniformization theorem shows the following.
There exist an increasing sequence of Fuchsian groups Γ1 < Γ2 < . . .Γn < . . ., an
increasing sequence of connected domains with geodesic boundary of the Poincaré
disk D, denoted by D1⊂D2⊂ . . .⊂Dn⊂ . . . (defined as the Nielsen cores of the Γn,
i.e. the convex hulls of their limits sets) and a sequence of isometries

φn : Sn→Dn/Γn
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satisfying the following compatibility condition

ιn ◦ φn = φn+1 ◦ jn,

where ιn : Dn/Γn→Dn+1/Γn+1 is the natural inclusion.
Let D∞ be the increasing union of the domains Dn and Γ∞ be the increasing

union of the groups Γn. The set D∞ is a convex set invariant by the Fuchsian group
Γ∞ and D∞/Γ is the direct limit of the inclusions ιn : Dn/Γn→Dn+1/Γn+1. Using
the universal property of direct limits (Theorem 2.16) we see that S∞ is isometric
to D∞/Γ∞.
The surface D∞/Γ∞ embeds isometrically inside the complete surface D/Γ∞ so its

metric completion, which is isometric to S∞, is realized as the closure D∞/Γ∞. The
boundary of D∞ is geodesic (by convexity), its interior is precisely the interior of
D∞, and these sets are Γ∞-invariant. This proves that the surface D∞/Γ∞ satisfies
the conclusion of the proposition, and hence S∞ as well. �

3. Illustrative examples

3.1. A lamination where every leaf is a disk.
Residual finiteness and geometry –. Surface groups enjoy a property known
as residual finiteness (see [18, III.18] ). More precisely, given a closed hyperbolic
surface Σ, and a non-trivial element γ ∈ π1(Σ) there exists a finite group G and a
morphism φ : π1(Σ)→G so that φ(γ) 6= 1. In other words, every non-trivial element
is disjoint from some finite index normal subgroup in π1(Σ). It is clear that this also
implies that for any finite subset of F ⊂ π1(Σ) \ {e} there is a finite index normal
subgroup N C π1(Σ) such that N ∩ F = ∅. From the geometric point of view this
easily implies:

Lemma 3.1. For every closed hyperbolic surface Σ and every K > 0 there exists a
normal covering map p̂ : Σ̂→Σ such that sys(Σ̂) > K.

Proof. Just take as finite set the elements of π1(Σ) corresponding to simple closed
geodesics of length ≤ K and the covering associated to the normal finite index
subgroup given by residual finiteness which will then open all short curves to give
the desired statement. �

Note that the covering constructed in Lemma 3.1 has injectivity radius > K at
every point.
Tower of coverings –. Thus we can consider a tower of regular covering maps
T = {pn : Σn+1→Σn} such that the injectivity radius at every point of Σn tends to
infinity with n. See Figure 1.
The inverse limit of such a tower gives rise to a minimal lamination (see Proposition

2.3). Moreover Proposition 2.5 states that for every K > 0 the K-neighbourhood
of an element x ∈ L inside its leaf is a copy of the K-neighbourhood of xn inside
Σn for n large enough, which is an embedded disk of radius R. This means in
particular that the leaf of every x is an increasing union of disks: this must be a
disk. This completes the construction of a minimal lamination all of whose leaves
are hyperbolic disks.
Notice that from the topological point of view, such examples are quite well known.

For instance, one can take a totally irrational linear foliation in T3 to get a minimal
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Σ0

Σ1

Σn

pn−1

p1

p0
x0

x1

xn

Figure 1. Residual finiteness.

foliation by planes. Also, the universal inverse limit construction, obtained as the
inverse limit of all finite coverings of a given surface gives rise to another minimal
foliations by disks which is indeed the same as the one constructed above (as they
are cofinal). We refer to [39, 40]. See also [27] for a realization of some laminations
by hyperbolic spaces as inverse limits of towers of coverings. From the point of view
of our construction, nevertheless, this construction is quite illustrative, as it shows
in the simplest possible context the strategy we want to follow to prove our main
theorems, the key idea is to be able to construct a tower of regular coverings so that
the injectivity radius grows in most places while we control that some other places
get lifted carefully in order to get some leaves with topology. This will become
clearer in our next example.

3.2. Realizing a cylinder as a leaf. Let us show next how to construct a minimal
lamination by Riemann surfaces for which one leaf is a cylinder, and every other leaf
is a disk. This is not as simple as it seems and it contains one of the key difficulties
in our whole construction.
Using the same line of reasoning as above we would like to construct a tower

of coverings such that for one sequence x = (xn)n∈N of the inverse limits the K-
neighbourhood of xn inside Σn is an embedded annulus when n is large enough. The
corresponding leaf would be an annulus. And furthermore, when dist(xn, yn)→∞
(so x and y lie on different leaves), we want the K-neighbourhood of yn to be a disk,
when n is large enough. The corresponding leaf would be a disk. See Figure 2.
This is obtained by using our relative version of residual finiteness, Theorem C.

For every simple closed geodesic α there exists a finite cover π : Σ̂→Σ such that
α has a unique (1 : 1)-lift to Σ̂, called α̂, and such that every other simple closed
geodesic of Σ̂ has length ≥ K where K can be arbitrarily large. One could say that
the second systole of Σ̂ is arbitrarily large.
Some basic facts of hyperbolic geometry (see Lemmas 2.8 and 2.9) show that when

K is large enough, there is a collar about α̂ of width ≥ K/2 and that points away
from α̂ have injectivity radii larger than K. This allows to implement the desired
tower of finite coverings.
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Σ0

Σ1

Σn

pn−1

p1

p0 x0

y1

xn

αn

yn

α1
x1

α0

y0

Figure 2. Creating a cylinder.

Remark 3.2. It is possible to see that a representation ρ : π1(Σ)→Homeo(S1) of a
surface group cannot produce, via the suspension construction, a foliation such that
there is a unique annulus and the rest of the leaves are planes. This is because this
would imply the existence of a non-abelian free subgroup1 acting freely on S1 which
is impossible according to Hölder’s Theorem [33, Theorem 2.2.32].

More generally, one can show:

Proposition 3.3. Let F be a minimal2 foliation by surfaces in a closed 3 manifold
M with all leaves of finite type and so that not every leaf is a disk, then it must have
infinitely many leaves which are not disks.

Proof. To see this, notice first that in this context there cannot be a transverse
invariant measure: if a minimal foliation has a transverse invariant measure and
one leaf is not a disk, then infinitely many leaves must have non-trivial fundamental
group, notice that one can lift a non-trivial loop to nearby leaves, and these cannot
become homotopically trivial in their leaves because of Novikov’s theorem (recall
that a minimal foliation cannot have a Reeb-component).
Therefore Candel’s theorem applies and there is a smooth Riemannian metric

on M such that leaves have negative curvature everywhere (see for example [4,
Theorem B]). Thus, one can apply [4, Theorem A] to get a hyperbolic measure for
the foliated geodesic flow which produces an infinite number of periodic orbits and
each corresponds to a non-trivial closed geodesic in some leaves. This is produced
by a measure which has the SRB property (in particular its support is saturated
by strong unstable manifolds) and therefore cannot be supported in finitely many
leaves (see [4, Proposition 3.1 (3)]).

1To see this it is enough to find two noncommuting elements in π1(Σ) which do not intersect the
normal subgroup generated by an element which has a unique fixed point in S1 (notice that only
elements in the normal subgroup generated by this element can have fixed points since there is a
unique non-planar leaf). To find such elements, one can look at the projection of π1(Σ) into its first
homology group.

2Sufficiently smooth, C1+ is enough to use [4].
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If all leaves have finite topological type and are hyperbolic, since the injectivity
radius must be bounded from below it follows that all closed geodesic in the leaves
must lie in a compact core inside each leaf. In particular, if one looks at an accu-
mulation point along the transverse direction in the support of the measure not all
periodic orbits of the foliated geodesic flow can belong to the same leaf.
This implies that there are infinitely many leaves with non-trivial topology. �

It seems reasonable to expect the previous result to hold without any regularity
assumption nor that assuming that all leaves have finite topological type, but we
decided not to pursue this as it is not central for the results of this paper.

3.3. Realizing the Loch-Ness monster. Assume now that we wish to construct
a minimal lamination for which one leaf is a Loch-Ness monster (i.e. has one end
and infinite genus) and every other leaf is a disk. In such an example, surfaces of
finite and infinite topological type will coexist inside the same minimal hyperbolic
surface lamination.
The strategy will be similar. We need to construct a tower of coverings T = {pn :

Σn+1→Σn} with the following properties (see Figure 3):

y0

y1

xn yn

x1

x0

Σn

Σ0

Σ1

pn−1

p1

p0

Stabilized part Large collar
Large injectivity radius

Figure 3. Realizing a Loch-Ness monster.

(1) Each Σn = Sn∪Xn where Sn andXn are subsurfaces with geodesic boundary
and disjoint interiors (compare with admissible decompositions defined in
§4.1).

(2) The surface Sn is connected, with genus n and one boundary component.
This is the part we want to stabilize. Moreover, each surface Sn admits a
(1 : 1)-lift into a subsurface S∗n ⊂ Sn+1.

(3) The internal systole σn of Σn \ S∗n (see Definition 2.7) grows to ∞ with n.
The fact that such a tower can be constructed relies on a strengthening of the

relative residual finiteness mentioned in the previous section that is obtained in
Theorem 4.3. A similar argument as above, provides the desired construction.
Consider a sequence x = (xn)n∈N ∈ L so that xn ∈ Sn and pn(xn+1) = xn for

every n ∈ N. In this case the leaf through x is a Loch-Ness monster (this follows
from Proposition 5.15). On the other hand, the injectivity radius over any sequence
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y = (yn)n∈N ∈ L such that dist(xn, yn) is unbounded, goes to infinity with n (see
Lemma 5.13). This implies that every leaf different from that containing x is a disk.

3.4. Combining both examples and some comments on cylinders. It can be
noticed from the proof of Theorem 4.3 below that it is possible to adapt the relative
residual finiteness in order to consider a tower of coverings T = {pn : Σn+1→Σn}
so that:

• Each Σn = Sn∪Xn where Sn andXn are subsurfaces with geodesic boundary
and disjoint interiors.
• The surface Sn is connected, with genus n and one boundary component and
admits a (1 : 1)-lift into a subsurface S∗n ⊂ Sn+1.
• The surface Xn has the property that it contains a unique simple closed
geodesic αn which has length smaller than 1 but every other primitive closed
geodesic of length smaller than n has to be homotopic to either the boundary
of Xn or to αn (we could say that the second internal systole grows to
infinity).
• The distance between ∂Sn and αn goes to infinity with n.

Notice in particular that pn must map αn+1 as a (1:1) covering of αn for suffi-
ciently large n. As in the previous examples, this construction will produce a leaf
homeomorphic to a Loch-Ness monster corresponding to the sequence of subsur-
faces Sn, and a leaf homeomorphic to an annulus corresponding to the sequence
αn. Moreover, it can be shown that any other leaf is homeomorphic to a disk (this
follows again from Lemma 5.13).
In what follows we will extend this constructions in order to be able to produce

several different possible laminations. As this example shows, the production of
cylinders in the lamination is a bit different from the construction of the Loch-Ness
monster as one requires the construction of surfaces in the coverings, and cylinders
are detected by closed geodesics with large collar neighbourhoods. It turns out that
a procedure similar to the one used to construct the Loch-Ness monster works for
every other surface (except the cylinder). It is possible to find a more cumbersome
formalism that includes cylinders, but in order to simplify the presentation, we will
ignore cylinder leaves and leave the construction of laminations which also have
cylinder leaves to the reader.

4. Toolbox for constructing finite coverings

We now give the principal tool that we will use in order to implement the idea
given in §3. This is a variation of the residual finiteness of surface groups.

4.1. A relative version of residual finiteness.
The key tool –. The following result will provide us with an essential tool for the
proof of Theorem 4.3 and will be used in several points. Its proof is deferred to
Appendix A.

Theorem C. Let Σ be a closed hyperbolic surface, and let α ⊂ Σ be a simple closed
geodesic. Then, for all K > 0, there exists a finite covering π : Σ̂→Σ such that

• Σ̂ contains a non-separating simple closed geodesic such that π(α̂) = α and
π restricts to a homeomorphism on α̂;



TOPOLOGY OF LEAVES FOR MINIMAL LAMINATIONS BY HYPERBOLIC SURFACES 17

• every simple closed geodesic which is not α̂ has length larger than K.

We say that the second systole of Σ̂ is large because the only short closed curves
(i.e. shorter than K) in Σ̂ need to be homotopic to a power of α̂.

Remark 4.1. By Lemma 2.8 the surface Σ̂ has half-collars around α̂ of width ≥ K−lα
2

on both sides. If K ≥ 2lα then the widths of these half-collars are ≥ K/4.
Remark 4.2. The internal systole of the connected surface with boundary T obtained
by cutting Σ̂ along α̂ is greater than K so there must exist a point of T with
injectivity radius ≥ K. We deduce that the area of T (which equals that of Σ̂) is
≥ 2π(coshK−1). By Gauss-Bonnet’s theorem, the genus g of T (note that it equals
genus(Σ̂)− 1) satisfies the following inequality

g ≥ coshK − 1
2 .

Admissible decompositions –. Let Σ be a closed hyperbolic surface. An admissi-
ble decomposition of Σ is a pair (X,S) of (possibly disconnected) compact hyperbolic
subsurfaces of Σ with geodesic boundary such that

• Σ = X ∪ S;
• X and S meet at their common boundary.

The surface X will be sometimes called the admissible complement of S.
Relative residual finiteness –. We now state a relative version of residual finite-
ness of the fundamental group of a given closed hyperbolic surface Σ which is adapted
to a given admissible decomposition (X,S). More precisely, we want to find cover-
ings of Σ where we keep a copy of S while increasing the internal systole and collar
width of its admissible complement X. The following theorem in the case where S
is empty, can be deduced from the residual finiteness of surface groups.
Theorem 4.3 (Relative residual finiteness). Let Σ be a closed hyperbolic surface
and (X,S) be an admissible decomposition of Σ. Then, given K > 0, there exists
a closed hyperbolic surface Σ̂ with an admissible decomposition (X̂, Ŝ) as well as a
finite covering p : Σ̂→Σ such that

(1) the restriction p|Ŝ : Ŝ→S is a (1 : 1) isometry;
(2) the internal systole of X̂ is larger than K;
(3) the boundary components of X̂ have disjoint half collars of width larger than

K.

Notice that conditions (1) and (2) imply condition (3) with a smaller constant
depending on the length of the boundary components of S. We state the three
conditions because this is the way we will use it.
Remark 4.4 (Enough topological room on X̂). Assume the hypothesis of Theorem
4.3, and consider S0 a compact surface with boundary (not necessarily connected
and possibly with degenerate components3) and g ∈ N. Then, we can perform the
construction so that, in addition to the conclusion of Theorem 4.3, X̂ contains a
subsurface X with geodesic boundary, written as a disjoint union X = X1tX2 such
that:

3This would be isolated simple closed geodesics with large embedded collars. This is needed if
one wishes to construct cylinder leaves, but as we mentioned before, we will ignore this to avoid
cumbersome notation.
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• X1 is homeomorphic to S0
• for every boundary component αj of X̂ there exists a subsurface Aj ⊂X2
such that
(1) Aj has genus g and two boundary components;
(2) one of the boundary components of Aj is αj ;
(3) for i 6= j we have Ai ∩Aj = ∅.

This means that boundary components of X̂ are separated by topology.

The rest of the section is devoted to the proof of Theorem 4.3 and Remark 4.4.
For that purpose we will show how to perform surgeries of finite coverings.

4.2. Surgeries of finite coverings. We now introduce a technique to construct
new finite coverings of a surface from others. We call this technique surgery since it
consists in ‘cutting and pasting’ different finite coverings (see Figure 4).

α

Σ

̂Σ1

̂Σ2

̂Σα1,α2

p1 p2

p

+

−

−

+

+

−

−

+ −

+

α1
α2

Figure 4. The surgery of two double covers.

Given a closed hyperbolic surface Σ and a simple closed geodesic α ⊂ Σ we denote
by Σα the (not necessarily connected) hyperbolic surface obtained by cutting along
α. Two new boundary components appear in Σα associated to α which we denote
by α+ and α− according to the orientation. We will fix a point x ∈ Σ and its two
copies x+ ∈ α+ and x− ∈ α−.
Let pi : Σ̂i→Σ be coverings of Σ (i = 1, 2) such that for some simple closed

geodesic α of Σ there exists, for every i, a closed geodesic αi ⊂ Σ̂i such that pi is a
(1 : 1) isometry from αi to α. Consider the two surfaces Σ̂αi , the four copies α±i of
α as well as the four points x±i , which project down to x.
We define Σ̂α1,α2 to be the surface obtained from Σ̂α1 and Σ̂α2 by gluing α+

1 with
α−2 and α−1 with α+

2 . To completely describe the gluing one must require that it
sends respectively x+

1 and x−1 on x−2 and x+
2 and that it is an isometry: notice that

the four curves are isometric lifts of α.
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Together with Σ̂α1,α2 one can define a map p : Σ̂α1,α2→Σ which is obtained by
applying p1 or p2. We let α̂+ and α̂− be these two distinguished curves, which are
both isometric to α

Definition 4.5. The map p : Σ̂α1,α2→Σ is called the surgery of p1 and p2 along
the pair (α1, α2).

Proposition 4.6. The map p is a finite cover of Σ and the surface Σ̂α1,α2 is con-
nected if the Σ̂i are connected and at least one of the αi is non-separating.

Proof. Suppose Σ̂i are connected and α1 is non separating. Then Σ̂α1,α2 is a union of
Σ̂α1 , a connected surface, with two (if α2 separates) or one (if it does not) connected
surfaces intersecting Σ̂α1 . It must be connected.
Moreover the surface Σ̂α1,α2 is compact so it suffices to prove that p is a local

isometry. Since p1 and p2 are local isometries, it is enough to verify this in a
neighbourhood of α̂+ and α̂−.
Recall that a point y inside a sufficiently thin collar in Σ about α is described by

its Fermi coordinates (based at x) (ρ(y), θ(y)) where ρ(y) is the signed distance from
y to α (positive on the right side, negative on the left side) and where the orthogonal
projection of y onto α is α(θ(y)) (here we choose α(0) = x). See [9].
Since they are isometries from a collar of αi onto a collar onto α, the maps pi

preserve Fermi coordinates (based at xi respectively). So by construction the map
p preserves Fermi coordinates in a collar of α̂±. This means that it is an isometry
from these open sets onto a collar about α, concluding the proof. �

Finally, note that by construction there are two isometric embeddings j1 : Σ̂α1→ Σ̂
and j2 : Σ̂α2→ Σ̂ such that for i = 1, 2

p ◦ ji = pi

when restricted to Int(Σ̂αi). We will refer to them as the two (1 : 1)-lifts of Σ̂α1 and
Σ̂α2 to Σ̂.

4.3. Attaching tubes. To construct the desired coverings we will use Theorem C
several times and perform surgeries from this. To simplify the structure we will give
a name to the building blocks of the surgeries provided by Theorem C.

Definition 4.7. Given α ⊂ Σ a simple closed geodesic and K > 0 we say that T is
an (α,K)-tube if it is a surface given by Theorem C for the curve α and the constant
K.

Notice that an (α,K)-tube is not topologically a simple surface, like the word
‘tube’ might suggest. In fact, since it covers some closed hyperbolic surface, it must
be itself a surface of hyperbolic type, and in our applications it will usually have
large genus (see Remark 4.2).
Given an admissible decomposition (X,S) of Σ we will “attach tubes” to boundary

components of S in order to isolate them one from the other.
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Figure 5. Attaching a tube.

Attaching tubes at a closed geodesic –. Given a surface Σ with a simple closed
geodesic α. Consider T , a (α,K)-tube, and π : T →Σ the covering map defined by
Theorem C and α̂, the unique (1 : 1)-lift of α.
We will say that a covering p : Σ̂→Σ is obtained from Σ by attaching a (α,K)-

tube at α if it is the surgery of π and the identity Id : Σ→Σ along the pair (α̂, α).
Since the curve α̂ is non-separating, the surface Σ̂ is connected (see Proposition 4.6).
In Σ̂ there are two distinguished curves α̂+ and α̂− which are the unique (1 : 1)-

lifts of α and have at least one half collar of width ≥ K−lα
2 ≥ K/4 (if K ≥ 2lα). See

Figure 5.
Let j1, j2 be the two (1 : 1)-lifts associated to p : Σ̂→Σ and note that by definition

p ◦ j1 = Id when restricted to Int(Σα).

Lemma 4.8. Let Σ be a closed surface, α be a simple closed geodesic and K ≥ 2lα.
Let p : Σ̂→Σ be a finite covering obtained from Σ by attaching a (α,K)-tube. Let
β⊂ Σ̂ be a closed geodesic of length < K/4. Then β is included inside j1(Int(Σα)).

Proof. Let β⊂ Σ̂ be a closed geodesic. There are two possibilities
Case 1. β is disjoint from α̂+ and α̂−. In that case either β is included inside
j1(Int(Σα)) or inside j2(Int(Tα)). In the second case lβ is larger that the second
systole of the tube, so it is ≥ K
Case 2. β crosses α̂+ or α̂−. In that case its length must be larger than the width
of a half-collar based at α̂+ or at α̂−, which is ≥ K/4.
This proves that if furthermore lβ < K/4 then β⊂ j1(Int(Σα)). �

4.4. Proof of Theorem 4.3. The proof of Theorem 4.3 consists in starting with Σ
and attaching several (α,K)-tubes. The construction has several stages. Consider
a closed hyperbolic surface Σ with admissible decomposition (X,S). Let α1, . . . , αk
denote the boundary components of S⊂Σ. Let K > 0 and L > 4K satisfying
moreover L ≥ 2lαi for all i.

Remark 4.9. Let 1 ≤ i ≤ k. If αi is a boundary component of S then it has one
half-collar included inside S and another one included in X.
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Isolating components of S –. Denote Σ0 = Σ and consider a finite cover p1 :
Σ1→Σ0 obtained by attaching an (α1, L)-tube along α1.
There is exactly one (1 : 1)-lift of αj for j ≥ 2, and exactly two (1 : 1)-lifts of

α1. Moreover only one of these two lifts has a half-collar that projects down into
S (see Remark 4.9). This lift bounds a (1 : 1)-copy of the corresponding connected
component of S and has one half collar of width more than L/4 ≥ K. Let α̂1 denote
the lift of α1 that we distinguished.
As a consequence, the surface Σ1 possesses an admissible decomposition (X1, S1)

p1|S1 : S1→S is an isometry and where α̂1 has one half-collar of width ≥ K included
in X1.
We can continue this process and construct pj : Σj→Σj−1 for j = 2, . . . , k by

attaching (αj , L)-tubes along αj ⊂ Σj−1. This produces a finite cover p̂k : Σk→Σ
where Σk has an admissible decomposition Σk = Xk ∪ Sk such that

• each component of S has a (1 : 1)-lift to Sk by p̂k;
• boundary components of Xk have disjoint half-collars of width ≥ K.

Remark 4.10. Tubes have large genus by Remark 4.2 so we can assume that Xk is
a finite union of compact connected surfaces with boundary, none of which is a pair
of pants.

Enlarging the internal systole of X –. To complete the proof we need to take
a finite cover that lifts Sk while enlarging the internal systole of Xk, the admissible
complement of Sk. This will be done by attaching tubes to large simple closed
geodesics intersecting those curves of Xk that have length < K.

Proposition 4.11. Let Y be a connected compact hyperbolic surface with geodesic
boundary which is not a pair of pants and let β be a closed geodesic inside the interior
of Y . For every L > 0 there exists a simple closed geodesic γ such that β ∩ γ 6= ∅
and lγ ≥ L for i = 1, 2.

Proof. The set Y is not a pair of pants so there exists a filling pair (γ1, γ2) of simple
closed geodesics, meaning that Y \ (γ1∪γ2) is a union of disks and annuli isotopic to
the boundary of Y (see [20, Proposition 3.5.]). In particular every closed geodesic
inside the interior of Y meets the union γ1 ∪ γ2 and i(γ1, γ2) > 0.
Let γ′1 be the simple closed geodesic obtained from γ1 after performing a large

enough number of Dehn twists about γ2 so that lγ′1 ≥ L. We have i(γ′1, γ2) > 0 so
we can also obtain from γ2 a simple closed geodesic γ′2 after iterating a large enough
number of Dehn twists about γ′1 so that lγ′2 ≥ L. By construction, the pair of curves
(γ′1, γ′2) remains filling. In particular every closed geodesic β inside the interior of Y
meets γ′1 or γ′2. Since each of these curves has length ≥ L this ends the proof of the
lemma. �

End of the proof of Theorem 4.3. Since Xk is a compact hyperbolic manifold its
length spectrum (c.f. Appendix A) is discrete and there are finitely many closed
geodesics (not necessarily simple) β1, . . . , βl⊂Xk with length < K and that are
inside the interior of Xk.
Consider first the curve β1. The connected component of Xk containing β1 is not

a pair of pants by Remark 4.10. Hence we can apply Proposition 4.11 and find a
simple closed curve γ with length greater than L = 4K. Let us rename Σ̂0 = Σk,
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Ŝ0 = Sk and X̂0 = Xk. Consider the covering map p̂1 : Σ̂1→ Σ̂0 defined by attaching
a (γ, L)-tube along γ. Each connected component of Ŝ0 has a unique (1 : 1)-lift to
Σ̂1, this defines an admissible decomposition (X̂1, Ŝ1) of Σ̂1. The surface X̂1 has
half-collars of width ≥ K, and its boundary components are separated by surfaces
of high genus.
Moreover, by Lemma 4.8, the only closed geodesics of Σ̂1 of length < K are

included inside j1(Int([Σ̂0]γ)). In particular the only closed geodesics inside Int(X̂1)
with length < K are the lifts j1(βi) of the curves βi⊂ X̂0 satisfying βi ∩ γ = ∅. So
after this step, the number of closed geodesics of length < K inside the admissible
complement is strictly smaller. Reasoning inductively we obtain the desired cover
p̂ : Σ̂→Σ where the admissible decomposition Σ̂ = X̂ ∪ Σ̂ satisfies the three Items
of Theorem 4.3.
Note that since tubes have large genus (see Remark 4.2) we can, up to attaching

tubes at large curves inside X̂, ensure that the conclusion of Remark 4.4 holds: there
is enough topological room inside X̂. �

5. Forests of surfaces and towers of finite coverings

5.1. Organizing surfaces in forests. We now use the combinatorial description
of surfaces and the concept of open direct limit to organize a family of open surfaces.
This seemingly complicated way to organize the surfaces gives us more flexibility to
control the topology of the leaves of a lamination constructed as a tower of coverings
(see Remark 5.5).
Forests –. A forest will be defined as a countable union of disjoint rooted trees.
Let us be more precise and state some notations.
Let G = (V,E) be an oriented graph where V is the set of vertices of G and

E ⊂ V 2 is the set of edges. We define the origin and terminal functions o : E→V
and t : E→V so that e = (o(e), t(e)) for every e ∈ E.

Definition 5.1. A forest is an oriented graph T = (V (T ), E(T )) where the set
V (T ) of vertices and the set E(T )⊂V (T )2 of oriented edges satisfy

• The set of vertices V (T ) has a countable partition V (T ) =
⊔
n∈N Vn(T ) were

the Vn(T ) are finite sets. We call Vn(T ) the n-th floor of T .
• E(T ) is contained in

⋃
n∈N(Vn(T ) × Vn+1(T )). In other words, given any

edge, its terminal vertex is one floor above its origin vertex.
• Every vertex is the terminal vertex of at most one edge. This implies that
T has no cycles.
• Every vertex is the origin vertex of at least one edge.

We will write E(T ) =
⊔
n∈NEn(T ) where En(T ) = {e ∈ E(T ) : o(e) ∈ Vn(T )}.

A root of T is a vertex v ∈ V (T ) that is not the terminal vertex of any edge:
a root can be located at an arbitrary level. We note R(T ) the set of roots of T
and Rk(T ) the set of roots of T that belong to Vk(T ). Notice that T =

⊔
v∈R(T ) Tv

where Tv is the maximal connected subtree of T containing the root v.
On the other hand, we define the ends of T as the union of the ends of its sub-trees,

that is
E(T ) =

⊔
v∈R(T )

E(Tv)
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A ray of T is a concatenation of edges r = (en) starting at a root. We will index
those edges according to the floor to which they belong, that is: if a ray r starts at
a root v ∈ Rk(T ), we will denote its edges as ekek+1 . . . Also, we will consider rα as
a graph morphism rα : [k,+∞)→T where [k,+∞) is the half-line with one vertex
for each integer greater or equal than k and rα([n, n+ 1]) ∈ En(T ).
Notice that the set of rays is in correspondence with E(T ), we will note rα the ray

converging to α.
Forests of surfaces –. A forest of surfaces is a triple

S = (T , {Sv}v∈V (T ), {je}e∈E(T ))

where T is a forest , {Sv}v∈V (T ) is a family of pointed compact and connected sur-
faces with boundary and {je}e∈E(T ) is a family of good inclusions je : So(e)→St(e).
When necessary, we will note the pointed surface (Sv, qv), however we will omit the
pointing whenever it is possible.
We associate to S a family of pointed surfaces {Sα}α∈E(T ) that is called the set

of limit surfaces of S and is defined as follows. For an end α ∈ E(T ) with the
corresponding ray rα = (en)n≥k (k being the floor of the corresponding root) and
the chain of inclusions {jen : So(en)→St(en)}n≥k associated to it. We define Sα as
the open direct limit of this chain.
As mentioned in §3, we need to be very careful in our construction of towers of

coverings if we want to control the topology of leaves in the inverse limit. The next
definition gives the correct way to organize the towers.

5.2. Admissible towers and forests.
Forests of surfaces included in towers –. A forest of surfaces

S = (T , {Zv}v∈V (T ), {ie}e∈E(T ))

is said to be included in a tower T = {pn : Σn+1→Σn} (as in Figure 6) if there exist

• subsurfaces with geodesic boundary Sn =
⊔
v∈Vn(T ) Sv included in Σn;

• a family of homeomorphisms {hv : Zv→Sv : v ∈ V (T )}; and
• a family of embeddings {je : So(e)→St(e) : e ∈ E(T )};

such that

• pn ◦ ie = Id for every e ∈ En(T );
• je ◦ ho(e) = ht(e) ◦ ie for every e ∈ E(T ).

For every n ∈ N we define the subsurface S∗n⊂Sn by

S∗n =
⋃

e∈En−1(T )
ie(So(e)).

The (not necessarily connected) surface Sn consists precisely of those surfaces that
we want to stabilize (as was illustrated in §3) whereas the surface S∗n is the isometric
lift to the level n of the surfaces we constructed at the level n− 1.
We will let Xn denote the admissible complement of Sn and X∗n the admissible

complement of S∗n.
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Figure 6. Including a forest of surfaces inside a tower of coverings.

Admissible towers –. The definition of admissible tower provides the geometric
formalization of the intuition explained in §3.

Definition 5.2 (Admissible towers with respect to a forest of surfaces). Following
the previous notation, we say that the tower of finite coverings T is admissible with
respect to the forest of surfaces S if S is included in T and if furthermore

(1) the internal systole σn of X∗n tends to infinity with n;
(2) the boundary of Xn has a half-collar of width Kn→∞.

When a tower T is admissible with respect to some surface forest, we call it an
admissible tower.

The following result encapsules the main abstract criteria to control the topology
of the leaves of a lamination made by a tower of finite coverings. Let L/∼ denote
the set of leaves of L.

Theorem 5.3 (Topology of the leaves). Consider a forest of surfaces
S = (T , {Sv}v∈V (T ), {je}e∈E(T ))

and T = {pn : Σn+1→Σn} an admissible tower with respect to S with inverse limit L.
Then, the generic leaf of L is a disk and there exists an injective map E(T ) ↪→ L/∼
such that

• the leaf corresponding to an end α ∈ E(T ) is homeomorphic to Sα, the open
direct limit defined in 5.1;
• every leaf which is not included in the image of this map is a disk.

The rest of the section is devoted to the proof of Theorem 5.3. We first give some
geometric properties of admissible towers and deduce that the generic leaf of the
solenoid defined by an admissible tower is a disk.

Remark 5.4. Once again we point out that it is possible to adapt this formalism
to include cylinder leaves which are not taken into account in the way we have
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presented forests of surfaces. To do this one should allow degenerate surfaces which
involves no new difficulty but makes the presentation more dense. In Section 3 we
already illustrated how cylinders can be embedded and we leave to the reader the
adaptations needed to include them in the formalism presented here.

Remark 5.5. The main difference between trees and forests is that the set of ends of
a tree is compact and the set of ends of a forest may be non compact. For example
assume that we want to find a lamination such that all leaves are disks except
countably many leaves with prescribed topology (cf Theorem B) by including a tree
of surfaces inside a tower. After Theorem 5.3 countably many ends αn of the tree
would provide leaves homeomorphic to the desired surfaces. But this sequence must
accumulate to other ends of the tree: undesired surfaces can appear as leaves of the
lamination. In order to prove Theorem B with our method we will need to use a
countable union of trees.

5.3. Injectivity radius, decompositions and systoles. Consider a tower of fi-
nite coverings T = {pn : Σn+1→Σn} admissible with respect to the forest of surfaces

S = (T , {Sv}v∈V (T ), {je}e∈E(T )).

Large injectivity radius –. We first use the definition of admissibility to prove
that there exist points of Xn with arbitrarily large injectivity radii when n→∞.
This point will yield, in the limit, the leaves which are simply connected.

Lemma 5.6. There exists n0 > 0 such that for every n ≥ n0 and xn ∈ Xn such
that dist(xn, ∂Xn) ≥ Kn we have

rinj(xn) ≥ min
(
σn,

Kn

2

)
.

In particular rinj(xn)→∞ for such a sequence of points (xn)n∈N.

Proof. Note first that for every n ∈ N, sys(Xn) ≥ sys(Σ0) > 0 and that Kn→∞ as
n→∞. Hence there exists n0 > 0 such that for every n ≥ n0,

Kn ≤ sys(Xn) cosh
(
Kn

2

)
.

Finally σn is smaller that the internal systole of Xn (which is contained inside X∗n).
Therefore we can use Lemma 2.9 and order to prove the result. �

Level i subsurfaces –. A difficulty that we have to deal with in order to prove
our main theorems is that there could exist subtrees of the forest T with a root
appearing at an arbitrarily large floor. These will correspond to components of Sn
which are disjoint from the lift of Sn−1 contained in Σn.
Notice that the surfaces Sv can be written as an exhaustion of subsurfaces cor-

responding to lifts of surfaces associated to vertices below v. We will introduce
the subsurfaces Sv,i⊂Sv that will denote the (closure of) the difference between
the mentioned exhausting subsurfaces. For example, when i is the floor to which
v belongs, Sv,i will designate the subsurface of Sv which does not come from the
embedding of Si−1. When v is above floor i, Sv,i will denote the lift of Sw,i inside
Sv, where w ∈ Vi(T ) is the vertex at floor i below v.
More precisely, let V k

n (T ) denote the set of vertices in Vn(T ) that belong to a
subtree Tv with v ∈ Rk(T ).
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We define the family of level i surfaces {Sv,i : v ∈ T , i ∈ N} as follows.
• If v ∈ V k

n (T ) and i < k or i > n define Sv,i = ∅.
• If v ∈ V k

n (T ) and i = n define Sv,i as
– Sv if k = n (i.e. if v is a root appearing at floor k)
– Sv \ je(So(e)) with v = t(e) if n > k (this is one of the building blocks

defined in §2.5).
• The family satisfies the recurrence relation St(e),i = je(So(e),i) for e ∈ Em(T )
and every m ∈ N and i ≤ m.

Informally speaking, Sv,i is the part of Sv that “grew” at level i.
Notice that

Sv =
⋃
i∈N

Sv,i

is a decomposition by subsurfaces with geodesic boundary meeting each other along
boundary components. We define Sn,k as the union of all the subsurfaces Sv,i with
v ∈ Vn(T ) and i ≤ k
Then we define Xn,k as the admissible complement of Sn,k. Note that by definition

Xn,n−1 = X∗n. Note that these surface have the following decomposition

Xn,k = Xn ∪
⋃

v∈Vn(T )

 n⋃
i=k+1

Sv,i

 . (2)

Remark 5.7. Recall that when i < n we denoted Pn,i = pi ◦ . . . ◦ pn−1 : Σn→Σi.
Then for every v ∈ Vn(T )

(1) the interior of Sv,i is mapped inside of Int(X∗i ) by Pn,i;
(2) a boundary component of Sv,i is either mapped isometrically onto a boundary

component of Xi by Pn,i or onto a boundary component of Xi−1 by Pn,i−1.

Increasing internal systoles –. We will need the following result.

Proposition 5.8. Let kn be a sequence of integers satisfying kn ≤ n for every n and
limn kn =∞. Then the internal systole of Xn,kn tends to infinity with n. Moreover,
for every K > 0, there exists m ∈ N so that, if γn ⊂ ∂Xn,kn is a sequence of boundary
components with lγn < K, then γn ⊂ Sn,m for every n ∈ N.

Proof. Define mn = mini>n{σi,Ki} where σi and Ki are as in the definition of
admissible tower. Then mn→∞ as n goes to ∞.
We consider a sequence (kn)n∈N as in the statement of the lemma. We will prove

that every closed geodesic of Int(Xn,kn) has a length ≥ mkn , which is enough to
prove the lemma. For every n ∈ N, Xn,kn has a decomposition as in (2). Recall that
this is a decomposition by subsurfaces with geodesic boundary and disjoint interiors.
We deduce that there are four possibilities for a closed geodesic γ⊂ Int(Xn,kn).
Case 1. γ is included inside Int(Xn).
Case 2. γ is included inside Int(Sv,i) for some v ∈ Vn(T ) and kn < i ≤ n.
Case 3. γ is a boundary component of Sv,i for some v ∈ Vn(T ) and kn + 1 < i ≤ n.
Case 4. γ crosses ∂Sv,i for some v ∈ Vn(T ) and kn + 1 < i ≤ n.

In Case 1, we automatically have that lγ ≥ σn ≥ mkn .
In Case 2, we use Item 1 of Remark 5.7 to prove that Pn,i(γ) is included in Int(X∗i )

so lγ ≥ σi ≥ mkn .
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In Case 3, we use Item 2 of Remark 5.7 to get that Pn,j(γ) is a boundary component
ofXj and hence belong to Int(X∗j ) for j = i or i−1. This implies that lγ ≥ σj ≥ mkn .
And finally in Case 4, we also use Item 2 of Remark 5.7. The projection Pn,j(γ)

crosses a boundary component of Xj inside Σj for j = i or i − 1. Using Item 2 of
Lemma 2.10 we see that lγ ≥ Kj ≥ mkn .
For the last part of the proposition, suppose by contradiction that there exist K >

0, sequences rs < ns converging to +∞, and a sequence of boundary components
γs ⊂ Xns,kns \ Sns,rs satisfying lγs < K for every s. Thus, the internal systole of
Xns,rs does not converge to +∞ contradicting the first part of the proposition. �

5.4. Proof of Theorem 5.3.
Topology of the generic leaf –. The first and easiest step in the proof of Theorem
5.3 is to prove that the generic leaf of L defined by an admissible tower is a disk. Then
we will need a further analysis using the forest structure to identify the topology of
all leaves.
A property is said to hold for a generic leaf, if it holds for every leaf in a residual

set (that is a countable intersection of dense and open subsets) which is saturated
by the lamination.

Lemma 5.9. The generic leaf of L is simply connected.

Proof. For k ∈ N define

Uk = {x ∈ L : rinj(xm0) > k for some m0 ∈ N}.

First notice that rinj(xn) is increasing with n. Therefore, Proposition 2.5 implies
that if x ∈ Uk then the injectivity radius of Lx at x is greater than k.
We will show that Uk is open and dense for every k ∈ N, getting that

⋂
k∈N Uk is

a residual and saturated set all whose leaves are disks.
Step 1. Uk is open for every k ∈ N. Take x ∈ Uk and m0 ∈ N so that rinj(xm0) >
k. Since the injectivity radius function is lower semi-continuous, we can take a
neighbourhood W of xm0 in Σm0 such that every point in W has injectivity radius
greater than k. Then, the set of y ∈ L satisfying ym0 ∈W is an open neighbourhood
of x contained in Uk.
Step 2. Uk is dense for every k ∈ N. Fix two integers k,m0 ∈ N, as well as a
sequence (xn)n=0,...m0 satisfying pn(xn+1) = xn when n < m0. We will construct a
sequence y ∈ L such that yn = xn when n ≤ m0 and rinj(yn) > k for n large enough
(so y ∈ Uk).
Fix D ≥ diam(Σn) for all n ≤ m0. Using Lemma 5.6 we see that there exists m

and a point y′m ∈ Σm such that rinj(y′m) > k + D. Arguing as in the proof of the
minimality of L (see Lemma 2.3) we find a sequence y ∈ L such that yn = xn for
n ≤ m0 and dist(ym, y′m) ≤ D, which implies that rinj(ym) > k. �

Now we will need to go further and associate a marking to some leaves such that
the following dichotomy holds. Unmarked leaves are disks, and the topology of
marked leaves is prescribed by the forest.
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Associated markings –. We note (Sv, qv) the pointed surface associated to the
vertex v. Recall that inclusions appearing in the forest of surfaces respect the base
points, i.e.

je
(
qo(e)

)
= qt(e).

We can naturally associate a point xα in the inverse limit of T to every end α
in E(T ). For this consider the associated ray rα (recall Definition 5.1) and let k0
denote the floor of rα. The sequence xα = (xαn)n∈N ∈ L is defined by

xαn =
{
qrα(n) n ≥ k0

Pk0,k0−n
(
qrα(k0)

)
n < k0

.

Definition 5.10 (Markings). We define the set of markings associated to the ad-
missible tower as the subset (xα)α∈E(T ) included in L. The leaves of points xα will
be called marked.

Lemma 5.11 (Different markings give different leaves). Consider α and β different
ends of E(T ). Then

dist(xαn, xβn) −→
n→∞

∞

and Lxα 6= Lxβ .

Proof. If α 6= β, there exists n0 such that when n ≥ n0 the points xαn and xβn belong
to distinct connected components of Sn. So any geodesic path between these two
points must cross two disjoint half collars of boundary components of Xn. Thus,
the length of this geodesic path must be greater than 2Kn. This quantity goes to
infinity with n by definition and the lemma is proven. �

Topology of non-marked leaves –. A non-marked leaf is by definition the leaf of
a sequence x ∈ L satisfying dist(xn, xαn)→∞ for every end of the forest α ∈ E(T ).
We want to prove that such a leaf exists and that it is a disk. We will have to face
a difficulty: new roots of the forest can appear at an arbitrary floor and we want to
prove that a sequence defining a non-marked leaf goes away from all those roots.
Recall that V k

n (T ) consists of those vertices of Vn(T ) that belong to a subtree
whose root is at floor k. We set

Qkn = {qv : v ∈ V k
n (T )}

Note that Qkn⊂Sn⊂Σn. Recall that for two integers n ≥ m, Pn,m denotes the
projection pm ◦ . . . ◦ pn−1.

Lemma 5.12. Let x ∈ L. We have the following dichotomy.
• Either there exists α ∈ E(T ) such that dist(xn, xαn) is uniformly bounded.
• Or, for every k ∈ N we have

dist(xn, Qkn) −→
n→∞

∞.

This lemma in particular implies that every leaf is either marked or non-marked.

Proof. Suppose there exist k ∈ N and C > 0 so that dist(xn, Qkn) ≤ C for every
n ∈ N. Then, there exists a sequence of points qn ∈ Qkn such that for every n ∈ N,
dist(xn, qn) ≤ C.
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Fix m ≥ k and define for n ≥ m the sequence qmn = Pn,m(qn) ∈ Σm. For such a
pair (m,n) we have by definition qmn ∈ Qkm. The set Qkm is finite so for a given m ≥ k
infinitely many of the points qmn coincide. Hence a diagonal argument provides an
infinite subsequence of integers (ni)i∈N such that for every m ≥ k the sequence
(qmni)i∈N of points of Qkm is eventually constant (we denote ym the common value),
and satisfies pm(qm+1

ni ) = qmni and dist(xm, qmni) ≤ C for i large enough.
Hence the sequence (ym)m≥k is the tail of a point of L which must be marked

by some end α ∈ E(T ) (this is because for every m ≥ k, ym is the marked point
qv of some surface Sv). This implies that ym = xαm for every m and finally that
dist(xm, xαm) ≤ C and the lemma follows. �

Lemma 5.13 (Controlling the topology of non-marked leaves). Let x = (xn)n∈N ∈ L
such that for every α ∈ E(T ) we have

dist(xn, xαn) −→
n→∞

∞.

Then we have
rinj(xn)→∞.

In particular Lx is a disk by Proposition 2.5.

Proof. We must prove that the length of every geodesic loop based at xn tends to
infinity with n. Arguing by contradiction, suppose there exists a sequence of geodesic
loops γn based at xn with uniformly bounded lengths lγn .
Applying the dichotomy of Lemma 5.12 and the fact that lγn is uniformly bounded,

we get dist(γn, Qkn)→∞ for every k ∈ N. We claim that for every k ∈ N there exists
mk ∈ N so that γn⊂Xn,k for every n ≥ mk. To see this, first notice that the
components of Sn,k consist of (1 : 1)-lifts of components of Sk, and therefore have
uniformly bounded diameter. On the other hand, each component of Sn,k contains
a point qv ∈ Qkn. Since dist(γn, Qkn)→∞ we conclude that γn does not meet Sn,k
for n large enough as desired. Then, define kn := max{i < n : mi < n}. Clearly,
kn→+∞ and, by definition of mi, the curve γn is included in Xn,kn for every n ∈ N.
There are two possibilities.

Case 1. γn is not isotopic to a boundary component of Xn,kn. Applying Proposition
5.8 we get that the internal systole of Xn,kn goes to +∞. On the other hand, since
γn is not isotopic to a boundary component of Xn,kn , we have that lγn is greater
than its internal systole. Therefore, Case 1 happens for finitely many n.
Case 2. γn is isotopic to a boundary component of Xn,kn. Denote by βn the boundary
component of Xn,kn isotopic to γn. We have lγn ≥ lβn so βn has bounded length.
Applying the second part of Proposition 5.8 we get m ∈ N so that βn⊂Sn,m for
every n. In particular, since Sn,m has uniformly bounded diameter and contains a
point in Qkn, we get that the distance Dn from γn to βn tends to infinity. Finally,
arguing as in the proof of Lemma 2.9 we obtain a lower bound.

lγn ≥ cosh(Dn)lβn ≥ cosh(Dn)sys(Σ0).
This contradicts that lγn is uniformly bounded.

�

We will now end the proof of Theorem 5.3 and characterize the topology of marked
leaves.
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Embedding direct limits –. Given α, an end of T represented by a sequence (en)n
of edges, we denote respectively by Sα and Sα the open and geometric direct limits of
the sequence of isometric embeddings {jen : So(en)→St(en)} (recall definition 2.17).
Recall that Sα is diffeomorphic to the interior of Sα.

Lemma 5.14. For every end α ∈ E(T ) there exists an isometric embedding φ :
Sα→Lxα.

Proof. Set α = (en)n and vn = rα(n) for every n greater or equal than the floor where
rα starts. By Proposition 2.5 the pointed leaf (Lxα ,xα) is the Cheeger-Gromov limit
of the sequence of pointed surfaces (Σn, x

α
n)n∈N. More precisely, the proof of that

Proposition shows that for every compact domain D⊂Lxα there exists n0 such
that for every n ≥ n0, the projection on the n-th coordinate induces an isometric
embedding

Πn : (D,xα)→(Σn, x
α
n).

For n < m, set jm,n = jem−1 ◦ . . .◦jen : Svn→Svm . This is an isometric embedding
whose image is included inside the Rn-neighbourhood of xαm for some Rn independent
of m > n. Using the property stated above, for m large enough the inverse of Πm

induces a isometric embedding φn : Svn→Lxα . This yields a sequence of isometric
embeddings which satisfy φn+1 ◦ jen = φn (note that we have jm,n ◦Πn = Πm when
the left-hand term is defined).
Using the universal property of direct limits and the fact that the leaf Lxα is a

complete Riemannian surface, we see that there exists an isometric embedding of
the geometric direct limit φ : Sα→Lxα . �

Topology of the marked leaf –. The embedding obtained in Lemma 5.14 might
not be surjective. In fact, its image can be complicated from the geometric point of
view since we don’t control the lengths of the boundary components of the surfaces
Svn . Nevertheless, using Proposition 2.12 and the geometric properties of admissible
towers, we will prove that this embedding contains all the topological information
of the complete hyperbolic surface Lxα .
Recall the definition of open direct limit in §2.5. Given an end α = (en) we define

Sα as the open direct limit of the sequence of embeddings (jen).

Proposition 5.15. The leaf of a sequence xα is diffeomorphic to the open direct
limit Sα.

This proposition finishes the topological characterization of all leaves of L and the
proof of Theorem 5.3.
We will fix α ∈ E(T ) and note vn = rα(n). Consider the closed surface defined in

Lemma 5.14
S = φ(Sα).

This is a closed surface with (possibly) geodesic boundary (see Proposition 2.18).
We shall prove Proposition 5.15 in two steps, by checking that the pair (Lxα , S)

satisfies the hypotheses of Proposition 2.12. For this, we need two lemmas.

Lemma 5.16 (No closed geodesic outside of S). Let C be a connected component
of Lxα \ S. Then C contains no closed geodesic.
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Proof. Suppose there exists a closed geodesic γ included in C. The projections
γn = Πn(γ) define a sequence of closed geodesics in Σn disjoint from Svn with the
same length and located at a uniform distance to xαn (by definition of the leaf Lxα).
In particular it must be disjoint from all other subsurfaces Sv with v ∈ Vn(T ), when
n is large enough (by Lemma 5.11). Hence it must be completely included in Int(Xn)
for n large enough, contradicting that the internal systole of Xn goes to infinity as
n grows. �

Lemma 5.17 (No connection of boundary components outside of S). Let C be a
connected component of Lxα \ S. Then the boundary ∂C is connected.

Proof. Assume that ∂C has more than one boundary component (that can be a
closed geodesic or a complete geodesic). Then there exists a simple geodesic arc γ
contained in C and connecting two points y and z of these two boundary components.
Consider D1, D2, two disks inside Lxα centered at y and z respectively.
Now note that S is an increasing union of compact surfaces with boundary Sn

such that Πn : Sn→Svn is an isometry for every n. For n large enough, there exist
two points yn ∈ D1 ∩ ∂Sn and zn ∈ D2 ∩ ∂Sn and a simple geodesic arc γn between
them, that is outside Int(Sn) and whose length is bounded independently of n. As
a consequence there exists a compact domain D containing all geodesics γn. For
n large enough the projection Πn|D : D→Σn is an isometric embedding and the
projection of the γn (still denoted by γn) to Σn is a path in Σn \ Svn connecting
two points, denoted abusively by yn, zn, of ∂Svn . Fix such an n and assume that
the quantity Kn (recall that it denotes a lower bounds of the width of half-collars
of boundary components of Xn) is > lγn . There are two possibilities.
If yn and zn belong to two distincts connected components of ∂Svn then, arguing as

in Lemma 5.11 (two large and disjoint half collars are attached to these components)
we see that lγn ≥ 2Kn which is a contradiction.
If yn and zn belong to the same boundary component, called αn, then γn, which

has length < Kn, must be completely included inside a collar about αn. This
implies that the geodesics αn and the simple geodesic arc γn form a bigon, which is
absurd. �

6. Including forests of surfaces in towers

The rest of the paper is devoted to the proof of Theorem A and Theorem B. Both
theorems will be deduced from the more general result

Proposition 6.1. Given a forest of surfaces S there exists a tower of finite coverings
T which is admissible with respect to S.

Proof. Consider a forest of surfaces

S = (T , {Zv}v∈V (T ), {ie}e∈E(T )).

Proceeding inductively, we will construct a tower of finite coverings T which is
admissible with respect to S.
The base case –. Consider a hyperbolic surface Σ0 containing a set of pairwise
disjoint subsurfaces with geodesic boundary {Sv : v ∈ V0(T )}, so that each Sv is
homeomorphic to Zv. Define S0 :=

⋃
v∈V0(T ) Sv and X0 as it admissible complement.
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The induction hypothesis –. Suppose we have already included S up to the floor
k. Namely, we have:

• Finite coverings pi : Σi+1→Σi for i = 0, . . . , k − 1
• Subsurfaces Si⊂Σi with Si =

⊔
v∈Vi(T ) Sv where each Sv is homeomorphic

to Zv and i = 1, . . . , k
• A family of lifts {je : So(e)→St(e)} where e ranges over Ei(T ) with i ≤ k−1
• A family of homeomorphisms {hv : Zv→Sv; v ∈ Vi(T ), i ≤ k}

such that for every e ∈ Ei(T ) we have je ◦ ho(e) = ht(e) ◦ ie
• The internal systole of X∗i and half-collar width of the boundary compo-
nents of Xi are greater than i for i = 1, . . . , k; where X∗i is the admissible
complement of

S∗i =
⋃

e∈Ei−1

je(So(e))

and Xi is the admissible complement of Si.

The induction step –. We will now use the tools described in Section 4 in order
to construct the desired covering map pk : Σk+1→Σk.

Step 1. Creating new roots and space for extending level k surfaces. Take g ∈ N
such that every surface in {Zt(e); e ∈ Ek(T )} can be realized a subsurface with
geodesic boundary of a hyperbolic surface with geodesic boundary with genus g and
two boundary components. Define

S0 =
⊔

v∈Rk+1(T )
Zv

the union of surfaces corresponding to the roots of T appearing at floor k + 1.
Applying Theorem 4.3 and Remark 4.4 we can construct a finite covering q1 :

Σ(1)→Σk such that Σ(1) admits an admissible decomposition (X∗, S∗) satisfying

• S∗ decomposes as
S∗ =

⊔
e∈Ek(T )

S∗t(e)

such that q1 restricted to S∗t(e) is an isometry onto So(e) for every e ∈ Ek(T ).
Denote by j(1)

e : So(e)→S∗t(e) the inverses of these restrictions;
• the internal systole of X∗ is ≥ k + 1;
• X∗ contains a subsurface with geodesic boundary X = X1 tX2 such that:

– X1 is homeomorphic to S0;
– For every boundary component αj of X∗ there exists a genus g surface
Aj included in X2 with two boundary components one of which is αj .
Moreover, subsurfaces corresponding to different boundary components
are disjoint.

Note that by this last condition, X1⊂ Int(X∗).

Step 2. Recognizing level k+1 subsurfaces – We shall now proceed to construct both
families S(1) = {S(1)

v : v ∈ Vk+1(T )} and h(1) = {h(1)
v : v ∈ Vk+1(T )} simultaneously.

• Case v ∈ Rk+1(T ).
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By construction, we have a decomposition X1 =
⊔
v∈Rk+1(T ) S

(1)
v where

each S(1)
v is homeomorphic to Zv. For every v ∈ Rk+1(T ) define hv as any

homeomorphism between S(1)
v and Zv.

• Case v = t(e) for some e ∈ Ek(T ).
Set A = Int(X2)⊂Σ(1). This is a key point of the whole construction. Re-

call that by definition of good inclusion we have that Zt(e) \ ie(Zo(e)) admits a
hyperbolic structure with geodesic boundary. Therefore, the choice of g and
the construction of A, imply that there is enough room to construct a pair-
wise disjoint family of subsurfaces with geodesic boundary {S(1)

t(e); e ∈ Ek(T )}
and a family of homeomorphisms {h(1)

t(e) : Zt(e)→S
(1)
t(e); e ∈ Ek(T )} so that

(1) S(1)
t(e) ⊂ S

∗
t(e) ∪A

(2) h(1)
t(e) ◦ ie = j

(1)
e ◦ ho(e)

Define
S(1) =

⋃
v∈Vk+1(T )

S(1)
v .

Using notations coherent with §5.3, we define S(1)
v,k+1 as follows:

• if v ∈ Rk+1(T ), define
S

(1)
v,k+1 = S(1)

v

• Otherwise v = t(e) for some e ∈ Ek(T ) and we define

S
(1)
v,k+1 = S

(1)
v \ S∗t(e)

Notice that, since the internal systole of X∗ is greater than k + 1, so are those
of surfaces S(1)

v,k+1. Also for the same reason, the boundary components of these
surfaces which are not in the interior of the S(1)

v have length greater than k + 1.

Step 3. Increasing collars of the admissible complement – Applying Theorem 4.3
again, we can construct a covering q2 : Σk+1→Σ(1) with a subsurface Sk+1 such
that

• Sk+1 decomposes as

Sk+1 =
⊔

v∈Vk+1(T )
Sv

where q restricted to Sv is an isometry onto S(1)
v for every v ∈ Vk+1(T );

• The admissible complement of Sk+1, denoted by Xk+1, satisfies:
(1) The internal systole of Xk+1 is greater than k + 1
(2) The boundary of Xk+1 has a collar of width k + 1

Let φ(2)
v denote the inverse of q2|Sv for every v ∈ Vk+1(T ). We define
• pk as the composition q2 ◦ q1;
• je as the composition φ(2)

t(e) ◦ j
(1)
e for every e ∈ Ek(T );

• hv as the composition φ(2)
v ◦ h(1)

v for every v ∈ Vk+1(T );
• Sv,k+1 as the images by the maps φ(2)

v of the surfaces S(1)
v,k+1;
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We define S∗k+1 =
⋃
e∈Ei−1 je(So(e)) and X∗k+1 as its admissible complement.

Step 4. The internal systole of X∗k+1 – It remains to check that the internal systole
of X∗k+1 is greater than k+ 1. For this, we consider the decomposition stated in (2)

X∗k+1 = Xk+1 ∪
⋃

v∈Vk+1

Sv,k+1.

The following properties are satisfied.
• The boundary components of subsurfaces in the decomposition lying on the
interior of X∗k+1 satisfy
(1) They are contained in the boundary of Xk+1 and therefore have a half-

collar width greater than k + 1 by construction.
(2) They belong to a boundary component of Sv,k+1 not contained in the

interior of the Sv, for some v ∈ Vk+1(T ). Therefore they have length
greater than k + 1 (see the end of Step 2)

• The internal systole of Xk+1 is greater than k + 1
• The internal systole of each surface Sv,k+1 is greater than k + 1

Now we are in condition to apply Lemma 2.11 to the decomposition of X∗k+1 and
get that the internal systole of X∗k+1 is greater than k + 1 as desired. This finishes
the proof of the Proposition. �

7. Proof of main theorems

7.1. Combinatorial representation of surfaces. In order to prove Theorems A
and B we will apply Proposition 6.1 and Theorem 5.3 to particular choices of sur-
face forests. We proceed to define coding trees which will give us a combinatorial
framework to construct surface forests. We recall here that we will prove this theo-
rems ignoring the cylinder leafs, but that the arguments may be easily addapted to
include cylinders as leaves (c.f. Remark 5.4).
Coding trees –. In [6], Bavard and Walker define a combinatorial object (they call
it core tree), which is a rooted and colored tree that gives a combinatorial framework
for describing open surfaces. We give a variation of their setting that is more suited
to our purposes.

Definition 7.1. A coding tree is a connected and rooted tree Λ having two types
of vertices

• boundary vertices that must have valency 1 or 2
• simple vertices that must have valency 1, 2 or 3

and satisfying the following properties:
• The root must be a simple vertex.
• All simple vertices must have valency strictly greater than one, with the only
possible exception of the root.
• Edges must join a boundary vertex with a simple vertex (they cannot joint
two vertices of the same type).

Any coding tree Λ can be written as the union of the balls of radius one around
its simple vertices. Notice that this balls meet at boundary vertices, and consist of
simple vertices with one, two or three adjacent vertices, that will be calles valency
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one, two or three basic pieces respectively. Call these subgraphs the basic subgraphs
of Λ.
From coding trees to pointed surfaces –. We proceed to describe how to
associate a pointed surface to coding tree Λ. First, associate to each basic subgraph
of Λ a surface with boundary as follows

• Valency one simple vertex ↔ surface of genus one with one boundary com-
ponent
• Valency two simple vertex ↔ surface of genus one with two boundary com-
ponents
• Valency three simple vertex ↔ surface of genus zero with three boundary
components

v0 p

Figure 7. From coding trees to surfaces.

Consider also a correspondence between the boundary vertices of each basic piece
and the boundary components of its associated surface. Then, glue the bound-
ary components of two different surfaces if their associated boundary vertices are
equal. To obtain a pointed surface, take any point in the interior of the subsurface
corresponding to the root of Λ. See Figure 7.
Notice that the topological type of the resulting pointed surface does not depend

on the choices that we have made. Abusing notation we will denote ΣΛ to either
the topological type obtained by the previous construction or to a particular repre-
sentative of this equivalence class of topological surfaces.
Every surface can be obtained from a coding tree –. The proof of the
following Lemma is a straightforward adaptation of [6, Lemma 2.3.1] which relies
on the classification of open surfaces given by classifying triples.

Lemma 7.2. Let S be an open orientable surface other than the disk and the an-
nulus. Then there exists a coding tree Λ such that S is homeomorphic ΣΛ.

Good inclusions between coding trees –. Consider coding trees Λ1 and Λ2.
We say that an inclusion j : Λ1→Λ2 is a good inclusion of coding trees if j is an
injective map that preserves the graph structure, the roots, the vertices types, and
whose image boundary consists of a union of boundary vertices.
Notice that a good inclusion of coding trees j : Λ1→Λ2 naturally induces a good

inclusion of surfaces jΣ : ΣΛ1→ΣΛ2 that respects subsurfaces coming from basic
subgraphs.
When there is a bijective good inclusion between two coding trees we will say they

are isomorphic. Given a coding tree Λ we will note [Λ] its class of isomorphism.
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Forests of coding trees –. In the rest of the section we want to show how to use
this combinatorial description for surfaces in order to exhibit a combinatorial way
to organize non-compact surfaces.
Analogously to the definition of forest of surfaces, we define a forest of coding trees

as a triple
T ∗ = (T , {Λv}v∈V (T ), {je}e∈E(T ))

where {Λv}v∈V (T ) is a family of finite coding trees and {je}e∈E(T ) is a family of good
inclusions je : Λo(e)→Λt(e).
There is also an analogous definition of set of limit coding trees that associates a

coding tree Λα to each end α ∈ E(T ).
From forests of coding trees to forests of surfaces –. Consider T ∗ a forest of
coding trees over T . We define its associated forest of surfaces as follows (see Figure
8):

V0

V1

V2

V3

e

o(e)

t(e)
e

o(e)

t(e)

Γo(e)

Γt(e)

So(e)

St(e)
ie je

Figure 8. A forest of coding trees and its associated forest of surfaces.

For every vertex v ∈ V (T ) take a surface Sv with the topological type of ΣΛv .
Then, for every edge e ∈ E(T ) consider a good inclusion of surfaces (je)Σ : So(e)→St(e)
preserving the subsurfaces corresponding to basic subgraphs. We will note ΣT ∗ the
resulting forest of surfaces.
Although several choices were made in the previous construction, different choices

give rise to isomorphic trees of surfaces. Namely, if

Σ(1)
T ∗ = (T , {Sv}v∈V (T ), {(je)Σ}e∈E(T ))

and
Σ(2)
T ∗ = (T , {Zv}v∈V (T ), {(ie)Σ}e∈E(T ))

are trees of surfaces obtained taking different choices, we can find a family of home-
omorphisms {hv : Zv→Sv}v∈V (T ) preserving roots and satisfying (je)Σ ◦ ho(e) =
ht(e) ◦ (ie)Σ for every e ∈ E(T ). In particular, if α is an end of E(T ), the corre-
sponding limit surfaces Sα and Zα are homeomorphic.

Remark 7.3. It follows directly from the definitions that Sα is homeomorphic to the
interior of ΣΛα

7.2. Constructing surface forests. By Theorem 5.3 and Proposition 6.1, in order
to prove Theorem A, it is enough to show that the family of all surfaces can be
realized inside the set of ends of a forest of surfaces. In order to prove Theorem B,
it is enough to show that every finite or countable family of open surfaces can be
realized as the set of ends of a forest of surfaces (see Remark 5.5).
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On the other hand, by Remark 7.3 and Lemma 7.2 this reduces to realizing certain
sets of coding trees as the set of limit coding trees of a forest.
The universal forest of coding trees–. In the particular case of Theorem A, it
is enough to construct a forest of coding trees T ∗ so that every coding tree appears
as a limit coding tree.
Consider (Λ, v0) a coding tree. Notice that even though not every ball included

in Λ is a coding tree, if v0 is the root, then BΛ(v0, 2n + 1) is also a coding tree for
every n ∈ N.
The construction of T ∗ –. We start defining the underlying forest T , for this we
define

Vn(T ) =
{[
BΛ(v0, 2n+ 1)

]
: (Λ, v0) coding tree

}
Since vertices in coding trees have bounded valency, Vn(T ) is a finite set. We

define that
([Λ1], [Λ2]) ∈ En(T ) ⊂ Vn(T )× Vn+1(T )

if there exists a good inclusion i : Λ1→Λ2 (recall that good inclusions preserve the
root). Given [Ω] ∈ V (T ) define Λ[Ω] as any representative of [Ω], and given

e = ([Ω1], [Ω2]) ∈ E(T )
define je as any good inclusion from Λ[Ω1] to Λ[Ω2]. Summarizing, our forest of coding
trees is

T ∗ = (T , {Λ[Ω]}[Ω]∈V (T ), {je}e∈E(T ))
Finally, notice that if (Ω, v0) is a coding tree, the ray r(n) = [BΩ(v0, 2n+ 1)] ⊂ T

represents an end α ∈ E(T ) satisfying Λα ∼= (Ω, v0).
The countable forest of coding trees –. In order to prove Theorem B, we have
to construct a forest of coding trees T ∗ that realizes any given countable family of
coding trees {Λ1, . . . ,Λi, . . .} as its set of limit coding trees.
The construction of T ∗: We start defining the underlying forest. For this, set

Vn(T ) = {BΛi(vi, rn,i) : i = 1, . . . , n}
with rn,i = 2(n − i) + 1. Notice that in this case the vertices are not equivalence
classes of coding trees, but actual coding trees. Then, we define Λv = v for every
v ∈ V (T ) =

⊔
Vn(T ) and set

(Ω1,Ω2) ∈ E(T )
if and only if there exists i, k ∈ N so that Ω1 = BΛi(vi, rk,i) and Ω2 = BΛi(vi, rk+1,i).

Appendix A. Appendix: Coverings and the second systole

Sébastien Alvarez, Joaquín Brum, Matilde Martínez, Rafael Potrie and Maxime
Wolff

In this appendix we prove the Theorem below. A proof was first suggested by
Henry Wilton on MathOverflow, as an answer to a question posed by the authors in
that site (see [41]), while the proof presented here grew out of conversations between
the authors.

Theorem C. Let Σ be a closed hyperbolic surface, and let α ⊂ Σ be a simple closed
geodesic. Then, for all K > 0, there exists a finite covering π : Σ̂→Σ such that
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• Σ̂ contains a non-separating simple closed geodesic such that π(α̂) = α and
π restricts to a homeomorphism on α̂;
• every simple closed geodesic which is not α̂ has length larger than K.

Adapted metrics –. Recall that, on a compact manifold, any two Riemannian
metrics are bi-Lipschitz equivalent. It should be observed that the statement of
Theorem C does not depend on the metric chosen on Σ, up to rescalingK. Therefore,
we may as well suppose that the metric on Σ is adapted to the problem, and we will
choose it in the following way.
We will say that the metric on Σ is adapted to α if the two following conditions

are satisfied
(1) α realizes the unique systole of Σ;
(2) the width of the collar about α is larger than the length of α.

Length spectrum –. If Σ is a compact hyperbolic surface, we denote by
LS(Σ) = (`1(Σ), `2(Σ), . . . , )

the (unmarked) length spectrum of Σ with multiplicity, but with the restriction that
we do not take any higher power of any curve realizing the systole of Σ. In other
words, we enumerate, up to making choices, the unoriented closed geodesic curves
γn ⊂ Σ, with n ≥ 1, that either realize the systole of Σ, or meet such a curve
only transversally if at all, sort them by increasing length and set `k(Σ) to be the
length of γk. Recall that the length spectrum of every compact hyperbolic surface
is discrete, and `k(Σ)→+∞ as k goes to +∞.
Increasing the second systole –. We now reduce Theorem C to the following
statement.
Theorem A.1. Let Σ be a closed hyperbolic surface, with metric adapted to some
nonseparating simple closed geodesic α. Then there exists a finite covering π : Σ′→Σ
such that α has a unique (1 : 1)-lift to Σ′ and `2(Σ′) > `2(Σ).

Proof of Theorem C assuming Theorem A.1. First, up to starting with a cover of
degree two, we may assume without loss of generality that α is nonseparating, and
then we may choose a hyperbolic metric adapted to α. Now let

d1 < d2 < · · ·
be the (unmarked) length spectrum of Σ, without multiplicity, and without restric-
tions (i.e., this time we consider all geodesic curves). Let π(1) : Σ(1)→Σ be a covering
of Σ as in Theorem A.1. It follows from the statement of this theorem that α ad-
mits a unique lift α(1) such that π(1) is (1 : 1) in restriction to α(1), and we have
`2(Σ(1)) ≥ d2. In particular α(1) is the unique systole of Σ(1), and it follows that the
metric on Σ(1) is adapted to α(1). Hence, we may apply Theorem A.1 to (Σ(1), α(1)),
getting a covering π(2) : Σ(2)→Σ(1), and so on.
This yields a sequence of finite coverings Σ(k)→Σ. By construction, for all k,

Σ(k) has a closed geodesic α(k) mapping homeomorphically to α, and the sequence
of second systoles of Σ(k) is strictly increasing.
Now the geodesics of Σ(k) realizing this second systole project to geodesics of Σ;

it follows that `2(Σ(k)) ≥ dk for all k. Since the length spectrum of Σ is discrete,
this sequence of coverings provides, for k large enough, a covering satisfying the
conclusion of Theorem C. �
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Product of coverings –. Before carrying out the proof, let us recall a construction
of the smallest common covering associated to a finite family of coverings.

Definition A.2. Consider a finite family of finite covering maps π(i) : Σ(i)→Σ, for
i = 1, ..., n. The product of these coverings is the map π̂ : Σ̂→Σ where

Σ̂ =
{

(x, y1, . . . , yn) ∈ Σ× Σ(1) × · · · × Σ(n) : ∀j, π(j)(yj) = x
}

and π̂(x, y1, · · · , yn) = x.

Notice that by the homotopy lifting property this cover is connected (though this
will not be used in the proof).
This notion allows us to reduce the proof of Theorem A.1 to that of the following

technical result which can also be seen as a straightening of residual finiteness.

Lemma A.3. Let Σ be a closed hyperbolic surface with metric adapted to some
nonseparating simple closed curve α. Let β be a geodesic of Σ realizing the length
`2(Σ), and intersecting α only transversally. Let N > 0 be an integer.
Then there exists a finite covering πβ : Σ′→Σ, such that β admits no (1 : 1) lifts,

and such that α admits a unique (1 : 1) lift α̂, and such that all other lifts of α are
at least (N : 1).

Proof of Theorem A.1 assuming Lemma A.3. Let γ1, . . . , γn be all the geodesics of
Σ involved in the definition of the length `2(Σ), and letN ≥ 1 be such thatN`1(Σ) >
`2(Σ). For each j ∈ {1, . . . , n} let πγj : Σ(j)→Σ be a finite covering as provided by
Lemma A.3. We will prove that the product covering of all these coverings satisfies
the conclusion of Theorem A.1. Thus, let us consider π̂ : Σ̂→Σ, the product of all
these coverings. Recall that a point of Σ̂ is denoted by (x, y1, · · · yn), yj ∈ Σ(j) and
that π̂ is the projection on the first coordinate.
By construction, α has a unique lift to Σ̂. It consists of points (x, y1, . . . , yn) such

that x lies in α and such that yj lies in the unique (1 : 1) lift of α to Σ(j), for all j.
It follows that α̂ is the unique systole of Σ̂, and `2(Σ̂) > `2(Σ). Thus, let us consider
a geodesic γ of Σ̂ that may intersect α̂ only transversally (or equivalently, which is
not a power of α̂), we have to prove that its length is > `2(Σ).
If γ projects to α in Σ, then, as γ intersects α̂ only transversally, there exists

j ∈ {1, . . . , n} such that the image of γ in Σ(j) is not the (1 : 1) lift of α. Hence, the
length of γ is at least N`1(Σ), which is (strictly) larger than `2(Σ).
Otherwise, γ projects to a curve π̂(γ) which may intersect α only transversally.

By definition of `2(Σ), it follows that the length of π̂(γ) is at least `2(Σ), and equal
to `2(Σ) only if π̂(γ) is one of the γj , j ∈ {1, . . . , n}. But γj does not have any
(1 : 1) lifts to Σ(j). It follows that γ is not a (1 : 1) lift of γj , hence the length of γ
is strictly larger than `2(Σ) in either case, and Theorem A.1 is proven. �

Curves realizing the second systole –. We now use the assumption made on
the metric in order to study curves that realize the second systole.

Lemma A.4. Let Σ be a closed hyperbolic surface with metric adapted to a closed
geodesic α. Let β be a curve intersecting α only transversally, and realizing the
length `2(Σ). Then β is simple, and its geometric intersection number with α is at
most one.
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Proof. First, let us prove that β is simple, by contradiction. Recall (see [9, Theo-
rem 4.2.4]) that if a curve realizes the minimum of the length among all primitive
non-simple curves, then it is a figure eight. Obviously, the curve β is primitive by
assumption, hence this theorem applies: β has a unique self-intersection point. Let
us choose this intersection point as a base point and write β = β1β2 as the concate-
nation of two closed loops, both geodesic except at the base point. Also, β3 = β1β

−1
2

is a non-trivial loop, geodesic except at the base point.
By minimality of `2(Σ) and uniqueness of the curve realizing the systole on Σ,

it follows that β1, β2 and β3 are all freely homotopic to α, hence β2 and β3 are
conjugate to β±1

1 . In the abelianization of π1(Σ), this gives a contradiction, as α
was supposed to be non-separating, hence nontrivial in homology.
Now, again by contradiction, suppose that α and β intersect at least twice. Then

we may decompose β as the concatenation of two geodesic segments, β1 and β2, with
common endpoints on α, and let α1 be a geodesic subpath of α of minimal length
and joining these two endpoints of β1 and β2. As the collar around α is greater than
its length, α1 is shorter than β2. Hence the curve formed by α1 and β1 is shorter
than β, and it is essential and non-freely homotopic to α (for otherwise α and β
would form a bigon). This contradicts the minimality assumption on β. �

Conclusion –. Now we finish the proof of the theorem.

Proof of Lemma A.3. Thanks to Lemma A.4, we are left with four possibilities:
(1) i(α, β) = 1;
(2) i(α, β) = 0 and (α, β) is free in the homology of Σ;
(3) i(α, β) = 0 and [β] = 0 in homology;
(4) i(α, β) = 0 and [α] + [β] = 0 in homology mod 2;

these four cases are illustrated in Figure 9.

β2 β1

β3

α

β4

Figure 9. The curve α and the four possible cases for β.

Cases (1) and (2) are the easiest to deal with: in both these cases, we can find
two disjoint, simple geodesics δ1, δ2 with geometric intersection numbers i(α, δ2) =
i(β, δ1) = 0 and i(α, δ1) = i(β, δ2) = 1. We can then cut Σ along δ1 and δ2; this
gives a surface Σ1 with four boundary components. Finally we can glue N+1 pieces
of Σ1, along a graph as suggested in Figure 10, thus obtaining a surface Σ̂ covering
Σ in a way that satisfies the lemma. Let us be a little more precise here. We may
choose a co-orientation for the curves δ1 and δ2. This gives an orientation for the
edges of the (figure eight) graph Γ dual to the cutting system (δ1, δ2).
Denote by 〈a, b〉 the fundamental group of Γ, where a is the oriented edge dual

to δ1 and b dual to δ2. Any covering of Γ gives rise to a covering of Σ, either by
pulling back a pinching map Σ→Γ, or equivalently, by thinking of the covering
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δ1

β

α δ2

Figure 10. Left: cutting Σ. Right: gluing Σ′ with pieces of Σ1.

of Γ as a set of instructions for gluing as many copies of Σ1 as the vertices of the
covering graph. The covering of Γ suggested in Figure 10 is associated to a morphism
σ : 〈a, b〉→SN+1 (the symmetric group on N+1 elements) where σ(a) has one fixed
point and one cycle of length N , and σ(b) has a cycle of length N + 1. Now, up
to choosing an orientation on them, the closed curves α, β yield two loops in this
figure eight oriented graph: α yields the path a, hence α has one (1 : 1) lift and one
(N : 1) lift, while β yields the path b, hence it has one (N + 1 : 1) lift, and this
covering satisfies the conclusion of Lemma A.3.
Cases (3) and (4) are similar, except that the curve β cannot be mapped to a single

generator b in Γ, but to a slightly longer word. In case (3), we can find two disjoint
simple curves δ1, δ2 such that i(α, δ1) = 1, i(α, δ2) = 0, and i(β, δ1) = i(β, δ2) = 2
as in Figure 11.

δ1

β

α
δ2

δ1
δ2

δ3

α

β

Figure 11. The curve α and the four possible cases for β.

For some co-orientations of δ1 and δ2, and some orientations on α and β, the loop
α gives the loop a in the graph Γ as above, while the loop β yields the word aba−1b−1.
Thus as before, finding a cover satisfying the conclusion of Lemma A.3 amounts to
choosing two permutations σ(a) and σ(b), such that σ(a) has one fixed point and one
cycle of length N , say, (2 3 · · · N + 1), and such that the commutator σ(aba−1b−1)
has no fixed point: it suffices to choose σ(b) so that σ(ba−1b−1) = (1 2 · · ·N) (recall
that all cycles of length N are conjugated since for every permutation B ∈ SN+1
and every cycle A = (a1 a2 · · · aN ) we have BAB−1 = (B(a1) B(a2) · · · B(aN ))).
Finally, in case (4), which may happen only if the genus of Σ is at least three, it

is best to cut Σ along three curves δ1, δ2 and δ3, as pictured in Figure 11. This time
α yields the word a, while β yields the word abcb−1c−1 in the fundamental group
of the graph Γ, which is this time a bouquet of three circles. We pick again σ(a)
to be the cycle (2 3 · · ·N + 1), as before. As long as N ≥ 5, the cycle (1 3 5) is
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a commutator in SN+1. For example we can write (1 3 5) = BCB−1C−1 where
B = (2 4 6) and C = (1 2)(3 4)(5 6). Hence we may pick σ(b) = B and σ(c) = C so
that σ(bcb−1c−1) = (1 3 5), and then σ(abcb−1c−1) has no fixed point: this yields a
covering of Σ satisfying the conclusion of Lemma A.3, in either case.

�
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