english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/3455 How to cite
Title: Analysis of Rabin's irreducibility test for polynomials over finite fields
Authors: Panario, Daniel
Pittel, Boris
Richmond, Bruce
Viola, Alfredo
Type: Reporte técnico
Keywords: RANDOM POLYNOMIALS, FINITE FIELDS, ALGORITHMS
Issue Date: 2001
Abstract: We give a precise average-case analysis of Rabin's algorithm for testing the irreducibility of polynomials over finite fields. The main technical contribution of the paper is the study of the probability that a random polynomial of degree n contains an irreducible factor of degree dividing several maximal divisors of the degree n. We study the expected value and the variance of the number of operations performed by the algorithm. We present a exact analysis when n=p1 and n=p1p2 for p1,p2 prime numbers, and as asymptotic analysis for the general case. Our method generalizes to other algorithms that deal with similar divisor conditions. In particular, we analyze the average-case number of operations for two variants of Rabin's algorithm, and determine the ordering of prime divisors of n that minimizes the leading factor.
Publisher: UR. FI – INCO.
Series or collection: Reportes Técnicos 01-16
ISSN: 0797-6410
Citation: PANARIO, D., PITTEL, B., RICHMOND, B., y otros. "Analysis of Rabin's irreducibility test for polynomials over finite fields". Reportes Técnicos 01-16. UR. FI – INCO, 2001.
License: Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
Appears in Collections:Reportes Técnicos - Instituto de Computación

Files in This Item:
File Description SizeFormat  
TR0116.pdf321,88 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons