Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/29279
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Rodríguez, Marcelo | - |
dc.contributor.author | Betarte, Gustavo | - |
dc.contributor.author | Calegari, Daniel | - |
dc.date.accessioned | 2021-09-01T12:32:53Z | - |
dc.date.available | 2021-09-01T12:32:53Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Rodríguez, M., Betarte, G. y Calegari, D. A Process Mining-based approach for Attacker Profiling [Preprint]. Publicado en : IEEE URUCON 2021, Montevideo, Uruguay. 24-26 November, 2021. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/29279 | - |
dc.description | IEEE URUCON 2021, Montevideo, Uruguay. 24-26 November, 2021. | es |
dc.description.abstract | Reacting adequately to cybersecurity attacks requires observing the attackers’ knowledge, skills, and behaviors to examine their influence over the system and understand the characteristics associated with these attacks. Profiling an attacker allows generating security countermeasures that can be adopted even from the design of the systems. For automated attackers, e.g. malware, it is possible to identify some structured behavior, i.e. a process-like behavior consisting of several (partial) ordered activities. Process Mining (PM) is a discipline from the organizational context that focuses on analyzing the event logs associated with executing the system’s processes to discover many aspects of process behavior. Few proposals are applying PM to attacker profiling. In this work, we explore the use of PM techniques to identify the behavior of cyber attackers. In particular, we illustrate, using an application example, how they can be adapted to an environment dominated by automated attackers. We discuss preliminary results and provide guidelines for future work. | es |
dc.format.extent | 4 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Cybersecurity | es |
dc.subject | Process mining | es |
dc.subject | Behaviour | es |
dc.subject | Malware | es |
dc.title | A Process Mining-based approach for Attacker Profiling | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Rodríguez Marcelo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Betarte Gustavo, Universidad de la República (Uruguay). Facultad de Ingeniería | - |
dc.contributor.filiacion | Calegari Daniel, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Reportes Técnicos - Instituto de Computación |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RBC21.pdf | Preprint | 327,38 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons