Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/23039
Cómo citar
Título: | An embedded particle filter SLAM implementation using an affordable platform |
Autor: | Llofriu, Martin Andrade, Federico Benavides Olivera, Facundo Weitzenfeld, Alfredo Tejera, Gonzalo |
Tipo: | Artículo |
Palabras clave: | Simultaneous localization and mapping, Kalman filter, Navigation, Atmospheric measurements, Particle measurements |
Descriptores: | ROBOTS MOVILES, ALGORITMOS GENETICOS |
Fecha de publicación: | 2013 |
Resumen: | The recent growth in robotics applications has put to evidence the need for autonomous robots. In order for a
robot to be truly autonomous, it must be able to solve the navigation problem. This paper highlights the main features of a fully embedded particle filter SLAM system and introduces some novel ways of calculating a measurement likelihood. A genetic algorithm calibration approach is used to prevent parameter
over-fitting and obtain more generalizable results. Finally, it is depicted how the developed SLAM system was used to autonomously perform a field covering task showing robustness and better performance than a reference system. Several lines of possible improvements to the present system are presented. |
Descripción: | Postprint |
Editorial: | IEEE |
EN: | 16th International Conference on Advanced Robotics (ICAR), 25-29 Nov. 2013. |
Citación: | Llofriu, M., Andrade, F., Benavides Olivera, F., Weitzenfeld, A. y Tejera, G. An embedded particle filter SLAM implementation using an affordable platform. En : 16th International Conference on Advanced Robotics (ICAR) : 25-29 Nov. [en línea]. Montevideo : IEEE, 2013, pp. 1-6. DOI: 10.1109/ICAR.2013.6766537. |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
LABWT13.pdf | Artículo | 329,85 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons