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Abstract—The recent growth in robotics applications has put

to evidence the need for autonomous robots. In order for a

robot to be truly autonomous, it must be able to solve the

navigation problem. This paper highlights the main features of a

fully embedded particle filter SLAM system and introduces some

novel ways of calculating a measurement likelihood. A genetic

algorithm calibration approach is used to prevent parameter

over-fitting and obtain more generalizable results. Finally, it

is depicted how the developed SLAM system was used to

autonomously perform a field covering task showing robustness

and better performance than a reference system. Several lines of

possible improvements to the present system are presented.

I. INTRODUCTION

The recent growth in robotics applications has put to evi-
dence the need for autonomous robots. In order for a robot to
be truly autonomous, it must be able to solve the navigation
problem, which may be seen as the robot being able to answer
four questions: Where am I? Where have I been? Where
should I go? How will I get there?[15]

The first two questions may be solved through mapping
and localization, whereas the last two questions concern to
goal selection and path planing respectively. In this work the
problem of simultaneous localization and mapping (SLAM)
is addressed. In addition, a working solution has been imple-
mented using a low cost robot. Furthermore, the implemented
solution has been tested on the autonomous task of field
covering, which may be applied to automated cleaning robots,
ground profiling in agriculture and exhaustive search for
locally visible items such as demining.

A particle filter SLAM has been implemented, using inde-
pendent Gaussian estimates for landmark positions, as done in
[14]. The system executed in a controlled environment with
identifiable artificial landmarks, which were visually sensed.
Some minor improvements on the particle filter observation
model were implemented, which were not found in the re-
viewed literature.

The robotic system consisted in a low cost differential robot
built using the robotic kit Lego NXT v2.0 and a single board
computer Fox Board as the main computing unit. The main
sensor used was the Lego NXTCam V3. The use of this sensor
presented a huge challenge due to its low color and pixel
resolution.

The paper is organized as follows: Section II includes an
overview of the studied previous work and a short compa-
rison with the implemented solution. Section III includes an

overview of the SLAM problem and its formal framework and
the particle filter solution. Section IV describes the software
implementation of the SLAM solution. Section V presents
the experimental environment configuration and section VI
shows the obtained results. Finally, section VII includes a brief
discussion and conclusions.

II. PREVIOUS WORK

Most solutions to the SLAM problem can be divided in
three broad categories, Kalman filter SLAM, Graph SLAM
and particle filters.

Kalman filters (KF)[11] use high-dimension Gaussian dis-
tributions to model the position of both the robot and discrete
landmarks. Kalman filters may be used to update the belief
about the world’s state in an online fashion (i.e. one measure-
ment at a time). Certain extensions of this approach, known
as extended Kalman filters (EKF) include the use of non-
linear observation or motion models, allowing a more precise
modeling of the world. Welch and Bishop have provided a
good introductory text to Kalman filters[19].

2D I-SLSJF system[9] uses an Information Filter, which is a
variation of the Kalman filter approach. The main contribution
of their work consists on the dimensionality reduction of
the KF solution by applying a hierarchical approach to the
problem. High dimensionality presents one of the biggest
challenges in the SLAM problem, specially with KF solutions,
as their computational complexity of every update is O(M3)
where M is the number of landmarks in the system. Similarly,
CEKF-SLAM system[7] extends Kalman filters including the
concept of local and global landmarks, delaying update steps
until the robot exits the current local region. Frese’s et al.
Treemap system tackles the dimensionality problem by using
a hierarchical structure too[4], achieving a reported perfor-
mance of being able to maintain a million landmarks. The
present work addresses the issue of dimensionality by using
the Rao-Blackwellized particle filter[5], in which landmark
observations are treated as independent events, avoiding the
growth in computational costs as the number of landmarks
increase.

EKFMonocularSLAM[2] implements SLAM using a
Kalman filter. They use a monocular camera as their only
sensor, as does the presented work. Their main contribution
consists of the inclusion of a RANSAC outlier filter, which
they tightly integrate to the KF’s predict and update steps.



Although this work includes some mechanisms to avoid land-
mark mismatching, the inclusion of such systems would be of
great value, as discussed in Sec. VII.

The second class of SLAM systems is known as Graph
SLAM, due to the way it model the problem as a soft-
constraint graph. To do this, it transforms observations made
by the robot into soft constraints represented as edges in a
graph, while the nodes in this graph represent robot positions.
After the whole graph has been built, well-known optimization
techniques are applied to find the set of node positions that
minimizes the measurement error under the soft constraints.

G2O is a library that solves the Graph SLAM optimiza-
tion problem, given a constraint graph is provided[12]. This
library is used to compare results against other Graph SLAM
approaches, for it makes no optimization hypothesis. Thus, it
returns the best, but computationally expensive, result. iSAM
provides a least squares solution as well and works with
a Bayesian network provided as input[10]. HOG-Man uses
a hierarchical approach to optimize the graph, performing
online local updates and seldom global updates[6]. Graph
SLAM systems are not easily comparable to the present work,
because the former usually performs off-line processing of the
information, which is not applicable to our context of low
computational power and on-line processing needs.

The last category are particle filter SLAM systems. Fast-
SLAM uses a particle filter to estimate the robot’s position
over time (the robot’s path) and one Kalman filter for every
pair of landmarks and particles[14]. This division of work
tackles the problem of dimensionality by solving localization
and mapping separately. In addition, Fast-SLAM maximizes
the likelihood of the movement measures, in a neighbor of the
raw estimate, using the same observation information that is
later on used in the update process. This technique allows Fast-
SLAM to decrease the number of particles, which is important
as the computational cost grows linearly with it.

DP-SLAM reduces the cost of copying the map of particle-
filter based SLAMs that use occupancy grids as their map[3].
Only one map is maintained and a tree-like data structure
is used to keep record of all updates done by all different
particles. GridSLAM also uses an occupancy grid and per-
forms scan-matching as a way to maximize the likelihood
of odometry measurements[8], in the same way Fast-SLAM
does. GMapping, addresses the problem of over-resampling
the particle set and introduces a measurement of particle
variance into the decision process of whether to resample or
not[5].

This work combines some features from Fast-SLAM with
GMapping selective resampling techniques. In addition, we
introduce minor novelties in the measurement models and the
computation of resampling weights, as will be discussed in
Sec. IV.

III. SIMULTANEOUS LOCALIZATION AND MAPPING

The SLAM problem can be described as the task of building
a map of the environment and localizing the robot within that
map, simultaneously. This problem can be formulated as a

bayesian network linking three different variables over time t,
as shown in Figure 1:

• Map description and robot position (x
t

): this variable
involves the robot’s model of the world including itself.
This variable is also referred as the hidden state, when
casting the problem as a hidden Markov model. Some-
times, this variable is split into two components, the map
m

t

and the robot position x
t

.
• Observations (z

t

): this variable represents the observa-
tions performed by the robot. In the case of this work,
it corresponds to the perceived location of an observed
landmark.

• Self-movement (u
t

): this variable includes the self-
movement information provided by systems such as
wheel odometry.

Fig. 1: Bayesian network for the SLAM problem. Dark grey nodes represent hidden
variables, while light gray nodes represent observable ones.

Then, the problem can be casted as the optimization of the
posterior probability of x1:T , i.e. all maps and positions from
the start (time 1) to the end (time T ), given the observations
z1:T and self-movement cues u1:T , as described in Eq. 1.

argmax
x1:T p(x1:t|z1:t, u1:t) (1)

On-line SLAM systems like Kalman or particle filters use
the fact that given the position of the robot and the map at
a given time, past and future observations z

t

and movements
u
t

are independent from each other. Then, every hidden state
x
t

can be calculated iteratively by incorporating the last
observation and movement information to the system. This
follows the factorization shown in Eq. 2.

p(x1:t|z1:t, u1:t) = p(x1)
t=TY

t=2

p(x
t

|x
t�1, ut

)p(z
t

|x
t

) (2)

The factorization in Eq. 2 elucidates two fundamental com-
ponents of probabilistic SLAM systems. The first one being
the motion model, which corresponds to the probability shown
in Eq. 3. It models the probability distribution of the robot
being in a position x

t

, given it was in x
t�1 and the perceived

the self-motion information u
t

.

p(x
t

|x
t�1, ut

) (3)

The observation model shown in Eq. 4 relates the position of
the robot and map configuration x

t

with the observation z
t

. It
describes the probability of getting a specific measurement at



a given state of the world. It is usually called the measurement
likelihood.

p(z
t

|x
t

) (4)

For a good introduction to bayesian networks see [1].
The reader may also review Thrun’s book[18] for a detailed
description of the SLAM problem in the bayesian networks
framework.

IV. THE IMPLEMENTED SLAM

The SLAM system description has been divided into its
three main components: its core module, its sensor model
and its motion model. An additional section describes the
calibration process.

A. Core module

This system implements the four main functionalities for the
particle filter: particle bookkeep, map update after observations
are made (i.e. update step), weight assignment and particle
selection (i.e. resampling step) and the update of every particle
position after a movement is performed (i.e. predict step).

1) Particles: Every particle keeps its own estimate of the
robot position. Besides, each particle keeps its own estimate of
every landmark in the map. Each landmark position estimate is
kept using a 2-dimension Kalman filter. This filter maintains an
estimate of the landmark’s (x, y) coordinates and a covariance
matrix, which may be interpreted as the accuracy of that
estimate.

2) Predict : Upon every robot move, each particle’s posi-
tion estimate is updated to reflect that movement.

Each landmark position is represented in an absolute co-
ordinate framework. Thus, there is no need to update the
landmarks’ position in this step.

3) Update: After every observation, the landmark’s Kalman
filter of every particle is updated to incorporate this new
information. This update tends to move the estimate towards
the measured position for that landmark. In addition, the
covariance’s main components are reduced during the update.
As a consequence, the position estimate converges with each
observation.

Particle weights are updated as well after every observation.
The likelihood of the observation was used as the new weight.

The fact that mapping and weights assignment are done as
separate steps corresponds to the Rao-Blackwellized aspect of
the particle filter. Taking into account that all observations are
independent of each other given the path of the robot is known,
one can estimate just the position using the particle filter and
leave the mapping part aside.

It is also important to notice that the sensor model parameter
(see Sec. IV-B) is used twice in this step. First, it is used to
represent the estimate of the observed landmark position. The
mean and covariance dictated by the sensor model are passed
as the measurement to the Kalman filter. Secondly, it is used
to evaluate the likelihood of a an estimate, given the observed
data.

4) Resampling: The particles’ variance determines the need
for resampling, as done in GMapping system[5]. Resampling
is performed if it is greater than a system parameter.

If resampling is to be made, a new set of particles is selected
with replacement from the old set. The probability of choosing
each particle is proportional to its weight. A weighted roulette
algorithm is used for this purpose.

B. Sensor Model

The information obtained from the vision module was used
to detect artificial landmarks. A bayesian approach was used
to identify landmarks and filter out the noise of each BLOB’s
reported position.

Once the image position of the landmark and its size was
obtained, a trained polynomial interpolation system was used
to derive the distance and angle, relative to the robot.

These data is used to compute an estimate of the landmark
position, using trigonometry. The resulting point is considered
the mean of a 2-dimensional estimated gaussian distribution
of the landmark position. The covariance matrix is built as
↵I , where ↵ is a fixed system parameter called sensor model
covariance and I is the identity matrix.

The obtained gaussian estimation of the landmark is what
is actually passed on to the SLAM system as a measurement.
That way, the Kalman filters corresponding to each particle’s
current estimate for the landmark position can be updated
using a linear observation matrix H, namely the identity
matrix.

As was mentioned above, the sensor model parameter is
used to determine the likelihood of new observations as well.
When doing so, the likelihood distribution of sensing given
the current map estimate, p(z

t

|m
t

), is built as a convolution
of two Gaussian distributions. The first one being the current
estimate of the landmark position, as explained above. The
other distribution used is a Gaussian with (0, 0) as its mean
and the sensor model covariance as its covariance matrix.
The advantage of using this approach instead of just taking
a symmetric distribution around the estimated position relies
on the possibility to include the ’shape’ of the uncertainty into
account. Namely, suppose a landmark is known to be estimated
with high uncertainty in the y axis, but with high accuracy in
the x axis. Then, a measurement of its position that is far from
the mean in the y direction is not as unlikely as a measurement
that is equally far in the x direction.

C. Motion Model

The robot was always commanded to perform pure rotations
or pure forward-backward motions. That is, no arc movements
were ever performed. As a consequence, the implemented
motion model was a simple one.

The motion commands issued to the control system were
inputed to the SLAM system too. These commands were used
to estimate the actual movement for the robot.

For every particle, during the predict process, the actual
movement was calculated using these issued motion com-
mands plus two additive sources of Gaussian noise, a rota-
tion noise and a translational noise. These were white noise



sources, i.e. the noise distributions were centered around zero,
and their variance was controlled by two corresponding system
parameters.

D. Calibration using Genetic Algorithms

As has been shown this far, the SLAM system depends on
four parameter: the resampling parameter, the sensor model
parameter, and the translation and rotation motion model
parameters.

The calibration for this four parameters was done using a
genetic algorithm. First, a small dataset was recorded. The
dataset included both landmark measurements and self-motion
cues observed by the robot while it navigated randomly in the
environment described in Sec. V. In addition, the actual robot
position was recorded using a global camera.

Once the dataset had been recorded, the SLAM system
could be executed off-line and the SLAM estimate of the robot
position could be compared to the actual position recorded by
the global camera. To get an actual estimate of the goodness
of a set of parameters, the dataset was inputed to the SLAM
algorithm using those parameters, over ten repetitions with
different random seeds. The median of the average estimation
error of the executions was taken as the ’fitness’ value of that
particular set of parameters.

V. EXPERIMENTAL ENVIRONMENT

The percepts, actions, goals and environment framework
(PAGE)[17] is used here to describe the experimental envi-
ronment.

A. Percepts

An NXTCam-v3 was included in the robot. This vision
module preprocesses the image and outputs the location of
a set of detected color BLOBs. The BLOBs are recognized by
matching a set of preconfigured color ranges. The camera can
capture 30 frames per second with a resolution of 144 by 88
pixels.

The detected BLOBs where passed on to the landmark
detection system described in Section IV.

B. Actions

The robot task was to cover as much of the field as
possible. The navigation algorithm used for this purpose is
shown in Alg. 1. The routine getRobotPosition returns the
estimated location of the robot’s current position. The function
getNextWaypoint return the next waypoint to be navigated.
The waypoints are created so as to follow a route as shown in
Figure 3. Once the robot reaches the end of that route, it turns
back and travels the other way using the same algorithm.

C. Environment

The differential robot shown in Figure 2 was used for the
experiments. It had two motored wheels and a third pivot
wheel. It featured a Lego NXT brick and a Fox Board G20 as
its processing units.

A small field of 2.4 by 2.0 meters was laid out. Six different
landmarks were place in different places of this environment.

Algorithm 1 Navigation algorithm used to solve the covering
task.

do f o r e v e r :
pos = g e t R o b o t P o s i t i o n ( )
wp = ge tNex tWaypo in t ( pos )
t ravelToWP ( wp )

The landmarks consisted of a stack of three 5 cm edge colored
cubes. The environment was surrounded with walls to prevent
the background from interfering with the landmark recognition
process. Figure 2 shows the configuration of the environment
and the robot.

Fig. 2: On the left side, the experimental environment. The six color piles correspond
to the artificial landmarks. The robot is located in the usual start position, in the upper
right corner of the image. The black lines in the floor are just for visual guidance and
debugging. On the right side the robotic platform, the red squares show the robot sensors.

D. Goals

The agent performance depended on how much terrain was
covered in each run. The robot was able to perform covering
for 100 minutes or until it exited the environment due to
navigational errors.

Two main performance metrics were assessed, the amount
of covered terrain and the error in the estimation of the
position.

1) Covered terrain: In order to measure covering, the
environment was divided into a fine grained grid. Then, the
robot position was recorded continuously. At each instant, all
cells in the grid within a square of 20 by 20 cm centered on the
recorded position were marked as covered terrain. The covered
terrain at each step was superimposed to get a total covering
measurement. Figure 3 shows the covered terrain after the
robot started the task.

Given that the robot was supposed to navigate only in an
interior area of the entire field, a zone called useful zone was
delimited. The useful zone corresponded to the terrain that
an ideal robotic system should cover following the employed
navigation algorithm. The useful zone is shown in Figure 3.

Three different coverage indicators were taken into consid-
eration:

• Useful coverage: this metric counted the number of grid
cells in the useful zone that were covered at least once.

• Wasted coverage: this metric counted the number of
covered grid cells outside the useful zone.



Fig. 3: On the left, the covering navigation pattern. The robot (blue rectangle) is at the
starting position. The landmarks are shown as squares labeled M1..M6. The route is
composed of a set of waypoints (black dots) laid out to cover the entire space. On the
right, the covering done by the robot (dark grey) right after starting the task. The big
circle represents the estimated position by the SLAM system. The right green crosses
represent the starting waypoint (left) and the next goal waypoint (right). The inner big
rectangle shows the zone to be covered.

• Total useful coverage: this metric assess the amount of
visited cells considering that a same cell could be visited
more than once.

2) Estimation error: The estimated position of each system
was compared to the absolute position reported by the global
camera at every waypoint. Then, the average of this errors
was computed. The error measure used was RMS, which is
calculated as shown in Eq. 5.

RMS =

vuut 1

n

nX

1

(x
estimated

� x
read

)2 (5)

VI. RESULTS

In order to be able to compare results, another system was
implemented using odometry integration as the sole source of
information for localization.

The experiment results are summarized in Table I. All
coverage measurements are reported as a percentage of the
total possible coverage. Total useful coverage figures are above
100% due to the fact that the robot covers the field several
times.

TABLE I: Experiment results summary.

Reference System Implemented SLAM

Metric Mean Variance Mean Variance

Useful Coverage 95.13% 3.61% 96.25% 1.17%

Wasted Coverage 24.39% 4.31% 20.27% 1.35%

Total Useful Coverage 4218.16% 2146.22% 9320.36% 1427.16%

RMS error 0.64 m 0.26 m 0.42 m 0.18 m

Executions with errors 5/5 - 0/5 -

The SLAM system performed slightly better for the useful
and wasted coverage measures while the it notably outper-
formed the reference system for the total useful coverage

metric. This was due to the fact that the reference system
accumulated rotation errors which made it to exit the field
early, while the SLAM system was able to perform for the
full 100 minutes.

In order to further analyze this aspect the evolution of
the useful coverage and total useful coverage over time was
studied. Figure 4 shows both plots of the percentage of covered
terrain over time. The coverage shown is the average of five
runs for each system.

As it can be deduced from the plots, the reference system
performed better at first, but the SLAM system outperformed
it in the long run. Due to the vision module’s noise, the
SLAM system robot had to stop for several seconds in order to
take the required number of images for the bayesian approach
described in Sec. IV-B. As the other system did not use the
vision module at all, it navigated the field faster. However, the
SLAM system showed a more robust behavior, which allowed
it to operate autonomously for the entire 100 minutes with no
errors.

Fig. 4: Coverage measures as a function of time, useful coverage (right) and total useful
coverage (left). Coverage is expressed as a percentage of the entire field to cover and
time is expressed in minutes.

Although the position estimation error was better for the
SLAM system than for the odometry one, it was lower than
expected. Thus, a study of the evolution of the error was
carried out, comparing the estimated rotation and position to
the actual ones. Figure 5 shows the evolution of rotation and
position error for one of the runs of the SLAM system. The
data for this particular run suggests that system converges
to a fixed difference between the estimated position and the
real one. This may have been caused by a difference in the
coordinate frameworks used by the SLAM system and the
global camera.

Fig. 5: Error evolution study for the third run of the SLAM system, distance (right) and
relative angle (left). The green line shows where the estimation error stabilizes (right)
and average angle value (left).



VII. DISCUSSION AND CONCLUSIONS

A particle filter SLAM has been implemented fully em-
bedded and some novel ways of calculating a measurement
likelihood has been introduced. A genetic algorithm calibration
approach was used to prevent parameter over-fitting and ob-
tain more generalizable results. Finally, the developed SLAM
system was used to implement a general field coverage task
and showed better performance than the reference system.

Results show a competitive performance in both useful
coverage and wasted coverage metrics. However, they do not
show the improvement level expected by the authors. This is
attributed to the fact that landmarks were only seen by the
robot within a short range. This prevented continuos correc-
tions to the robot’s estimated positions and led to navigation
errors. The total useful coverage metric, however, showed the
advantage of using the implemented SLAM in the long run.
The SLAM corrections allow the robot to operate without
leaving the environment for a longer time, thus enabling a
better coverage. Moreover, the improvement in performance
is greater if one takes into account the fact that the odometry
system moves faster than the SLAM system. Namely, if the
vision module is replaced with one that allows to sense while
moving or with shorter stop times, the difference in total useful
coverage would be even greater.

Further studies should be carried out to elucidate the reason
behind the errors in the estimated position against the one ob-
tained with the global camera. More data should be collected
and analyzed in order to determine if the position estimation
error found is due to a difference in the coordinate frameworks.
Given the SLAM system’s map is totally independent from the
global camera system’s map, it would be expected for them to
end up with similar maps but with shifted coordinate systems.

There are several lines of possible improvements to the
present system. Replacing the Lego vision module with a state
of the art camera and an image processing software such as
OpenCV is considered the most urgent one. The addition of
automatic landmark detection systems such as SIFT[13] or
FAST[16] would help scale the system to real environments.

Apart from that, additional data structures should be imple-
mented to enable for the maintenance of a large number of
particles, as it is done in Thrun’s work[14].
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