Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/53431
Cómo citar
Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.advisor | Lecumberry, Federico | - |
| dc.contributor.advisor | Bartesaghi, Alberto | - |
| dc.contributor.author | Silvera Coeff, Diego | - |
| dc.date.accessioned | 2026-02-10T20:42:47Z | - |
| dc.date.available | 2026-02-10T20:42:47Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Silvera Coeff, D. Improving heterogeneous resolution in cryo-EM volumes reconstructions with pose refinement [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2025. | es |
| dc.identifier.issn | 1688-2806 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.12008/53431 | - |
| dc.description.abstract | Single-particle cryo-electron microscopy (cryo-EM) has emerged as a transformative technique for determining the three-dimensional structures of macromolecular complexes at near-atomic resolution. Its ability to visualize biomolecules in multiple functional states without the need for crystallization has provided unprecedented insights into their structure, dynamics, and mechanisms, making it a cornerstone in structural biology and drug discovery. Despite its success, cryo-EM faces several challenges that limit the achievable resolution and accuracy of reconstructions. Chief among these are the inherently low signal-to-noise ratio (SNR) of raw micrographs, the difficulty in accurately estimating particle orientations (pose estimation), and the presence of conformational and compositional heterogeneity in the sample. In recent years, deep learning has emerged as a leading approach for addressing these limitations, offering powerful methods for denoising, pose refinement, and disentangling structural variability. In this work, a method designed to exploit particle heterogeneity for iterative pose refinement is presented. The approach integrates two state-of-the-art tools : cryoDRGN, which models structural variability using deep generative networks, and Frealign, which performs high-resolution 3D refinement. These tools were combined into a unified pipeline and tested on real cryo-EM datasets, demonstrating the potential of the method to improve both the accuracy of pose estimation and the quality of heterogeneous reconstructions. | es |
| dc.description.sponsorship | Beca de Maestría ANII | es |
| dc.format.extent | 116 p. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | en | es |
| dc.publisher | Udelar.FI. | es |
| dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
| dc.subject | Cryo-electron microscopy (cryo-EM) | es |
| dc.subject | Heterogeneous 3D reconstruction | es |
| dc.subject | Deep generative models | es |
| dc.subject | Latent space analysis | es |
| dc.subject | UMAP | es |
| dc.subject | Clustering | es |
| dc.title | Improving heterogeneous resolution in cryo-EM volumes reconstructions with pose refinement | es |
| dc.type | Tesis de maestría | es |
| dc.contributor.filiacion | Silvera Coeff Diego, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| thesis.degree.grantor | Universidad de la República (Uruguay). Facultad de Ingeniería | es |
| thesis.degree.name | Magíster en Ingeniería Eléctrica | es |
| dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
| Aparece en las colecciones: | Tesis de posgrado - Instituto de Ingeniería Eléctrica | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| Sil25.pdf | Tesis de maestría | 127,82 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons