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Abstract

Single-particle cryo-electron microscopy (cryo-EM) has emerged as a transforma-
tive technique for determining the three-dimensional structures of macromolecu-
lar complexes at near-atomic resolution. Its ability to visualize biomolecules in
multiple functional states without the need for crystallization has provided un-
precedented insights into their structure, dynamics, and mechanisms, making it a
cornerstone in structural biology and drug discovery.

Despite its success, cryo-EM faces several challenges that limit the achievable
resolution and accuracy of reconstructions. Chief among these are the inherently
low signal-to-noise ratio (SNR) of raw micrographs, the difficulty in accurately esti-
mating particle orientations (pose estimation), and the presence of conformational
and compositional heterogeneity in the sample. In recent years, deep learning has
emerged as a leading approach for addressing these limitations, offering powerful
methods for denoising, pose refinement, and disentangling structural variability.

In this work, a method designed to exploit particle heterogeneity for iterative
pose refinement is presented. The approach integrates two state-of-the-art tools:
cryoDRGN, which models structural variability using deep generative networks,
and Frealign, which performs high-resolution 3D refinement. These tools were
combined into a unified pipeline and tested on real cryo-EM datasets, demonstrat-
ing the potential of the method to improve both the accuracy of pose estimation
and the quality of heterogeneous reconstructions.
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Chapter 1

Introduction

1.1 Motivation

Inside cells, macromolecules perform several biological functions within the con-
text of complex molecular networks, often transitioning between different assembly
states to regulate activity [6]. The structure and dynamics of these networks can
be uncovered through structural analysis of the macromolecules involved. Such
analyses are essential not only for understanding fundamental functional mecha-
nisms but also for the design of new drugs aimed at modulating these mechanisms
in pathological conditions [14].

Traditionally, the understanding of macromolecular function has been derived
from static three-dimensional structures. However, a more comprehensive view can
be achieved by analyzing the full distribution of conformational and compositional
states that are functionally relevant [65]. Unlike other structural biology imaging
techniques such as X-ray crystallography or nuclear magnetic resonance (NMR)
spectroscopy, cryo-electron microscopy (cryo-EM) offers the unique ability to cap-
ture structural dynamics, including a wide range of conformations (continuous
motions and flexible states) and compositional (discrete differences in assembly
states or subunit presence) variability. Thanks to substantial advances in both
hardware [3,35,[55] and software [5,9,[35,/53},55,63], cryo-EM has rapidly emerged
as a leading technique for resolving the high-resolution structures of large macro-
molecular complexes [1,/62]. An example of cryo-EM particle images and a 3D
volume reconstruction can be seen in Figure which shows some of the parti-
cles used for the volume reconstruction.

The importance of cryo-EM in structural biology was recognized with the
2017 Nobel Prize in Chemistry, awarded to Jacques Dubochet, Joachim Frank,
and Richard Henderson for the development of cryo-EM for the high-resolution
structure determination of biomolecules in solution. This recognition underscored
cryo-EM’s potential to study biological structures in near-native states, without
the need for crystallization, and to reveal previously inaccessible dynamics and
heterogeneity at the molecular level.

Despite its potential, cryo-EM data present significant challenges. The ac-
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Figure 1.1: Particle images acquired with cryo-EM and their 3D reconstruction.

quired images typically exhibit extremely low signal-to-noise ratios (SNR), and the
3D orientations and 2D translations (poses) of individual particle projections are
unknown. Furthermore, most macromolecular samples display heterogeneity, both
conformational and compositional . Despite these difficulties, cryo-EM stands
out for its ability to capture structural variability of biological importance—vari-
ability that is generally inaccessible to predictive tools such as AlphaFold ,
whose main developers Demis Hassabis and John Jumper were also recognized
with the 2024 Nobel Prize in Chemistry for their work on protein structure pre-
diction and computational protein design.

A critical limitation in most cryo-EM processing pipelines is that particle poses
are generally estimated relative to a single consensus volume. This assumption is
problematic in the presence of structural heterogeneity, as it may lead to incorrect
pose estimation for particles that significantly deviate from the consensus struc-
ture. Consequently, this may become a major obstacle to achieving high-resolution
reconstructions for such subpopulations. An example of structural heterogeneity
can be seen in Figure [[.2] where different reconstructions of the same macro-
molecule are shown. It can be seen that there are clear differences in the volumes
obtained, which are due to the different compositions the protein can take due to
the interaction of certain subunits.

1.2 Objetives

This work aims to improve the resolution of cryo-EM reconstructions in datasets
exhibiting structural heterogeneity, particularly in cases of discrete variability.
Rather than treating heterogeneity as a source of noise or an obstacle, this thesis
explores how it can be exploited to enhance pose estimation and, in turn, pro-
duce higher-resolution density maps for distinct molecular states. To achieve this,
an iterative framework is proposed in which particle poses are refined based on
structure-aware clustering in a low-dimensional space. Specifically, the method
involves identifying clusters that correspond to distinct conformational or com-
positional states of the macromolecule, reconstructing a 3D density map for each
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Figure 1.2: Example of structural heterogeneity. The three volumes are reconstructions of
different particles from the same dataset, but with different compositions due to the presence
or absence of some subunits of the macromolecule.

cluster, and using these reconstructions as references for targeted pose refinement.
By integrating clustering and refinement in a feedback loop, this approach lever-
ages the underlying heterogeneity of the sample to inform more accurate alignment
of particles.

1.3 Contributions

The main contribution of this work is a fully automated pipeline that combines
the feature-learning capabilities of a state-of-the-art deep generative model called
cryoDRGN , with the high-resolution refinement and reconstruction ca-
pabilities of a processing tool called Frealign [20]. This integration enables high-
resolution reconstructions, in some cases surpassing the resolutions achieved in
previous work .

Building upon this pipeline, a second contribution is the development of a set of
Python functions designed to facilitate the parsing, manipulation, and conversion
of common file formats in cryo-EM workflows. These include:

o .par files used by Frealign for alignment and refinement metadata

e .star files from RELION, a widely used format for particle metadata
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e .pkl files produced by Python’s pickle module

o .mrc files for storing particle images and 3D density maps

While cryoDRGN and some other libraries already support integration of .mrc,
.star, and .pkl, no existing solution was found that also supports the integration
of Frealign’s .par files.

Although the pipeline can be automated, it has the advantage of showing how
the clusters are evolving after each refinement. Clusters can be inspected in low-
dimensional spaces (e.g., PCA, UMAP), enabling dynamic feedback on the quality
and separability of clusters. This also helps guide hyperparameter tuning in clus-
tering algorithms such as K-Means, Gaussian Mixture Models (GMMs), Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [18], or Hierarchi-
cal Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [10],
and supports informed decisions regarding class selection in downstream refine-
ment. As such, the pipeline not only supports automated reconstruction, but also
provides tools for guided exploration and hyperparameter fine-tuning.

1.4 Document Structure

Chapter 2 provides a brief overview of the biological and scientific context of the
problem, along with key concepts needed to understand the following chapters.
This includes a biological context and how the levels of organization of proteins
are defined, an introduction to the cryo-EM acquisition technique, the available
data repositories, the general workflow for cryo-EM image processing, the image
formation model used in this work, the Fourier Shell Correlation and the use of it in
this context, a dimensionality reduction technique called UMAP, concepts related
to the heterogeneity of macromolecules, and how Frealign refines and reconstructs
3D structures.

Chapter 3 presents works that relate deep learning and cryo-EM data process-
ing for volume reconstruction. The selected works present novel approaches to
cryo-EM problems such as pose estimation or particle heterogeneity.

Chapter 4 introduces the proposed method, providing a detailed explanation of
each component of the pipeline. It also presents preliminary results that guided the
decisions made during its design. The experimental setup is described, including
the datasets employed and the supporting tools utilized. Finally, the potential
advantages and limitations of the pipeline are discussed.

Chapter 5 presents the results of the experiments conducted and provides a
detailed analysis of the findings.

Finally, Chapter 6 summarizes the conclusions, outlines directions for future
work, and personal reflections about this work.
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Background

Cryo-EM is a biological imaging technique that has recently enabled the recon-
struction of molecular structures at near-atomic resolution [67]. These reconstruc-
tions are fundamental in structural biology, as the three-dimensional structure of
macromolecules is directly linked to their biological function. Accurate maps are
therefore critical to progress in biology, chemistry, and pharmacology. Despite
its remarkable success, cryo-EM presents significant computational and method-
ological challenges. Raw images suffer from extremely low signal-to-noise ratio,
particle poses are initially unknown, and molecules often exhibit substantial struc-
tural heterogeneity. Addressing these issues requires advanced image processing
tools.

This chapter introduces the essential concepts needed to understand the re-
mainder of this document. It first provides a biological context, reviewing protein
organization levels and the principles of cryo-EM data acquisition. It then de-
scribes the image formation model, available data repositories, and key validation
metrics such as the Fourier Shell Correlation. Finally, it outlines computational
approaches to deal with heterogeneity and reconstruction, motivating the use of
methods like UMAP and Frealign, which will be discussed in detail later.

2.1 Structural Biology

Structural biology is a branch of biology that studies the three-dimensional struc-
ture of biomolecules, primarily proteins and nucleic acids (DNA and RNA). Unlike
other areas that focus on genetic or biochemical aspects, structural biology seeks to
understand how the shape of a molecule affects its function, which is fundamental
to understanding biological processes at the molecular level.

Among biomolecules, proteins are especially significant due to their diverse
and essential functions in the cell. At the most basic level, a protein consists of a
sequence of basic components called amino acids, arranged in a specific linear order,
called a polypeptide chain. The amino acids in this chain are linked by peptide
bonds in a specific order defined by the genetic code. Although the chain itself is
linear, it folds into complex three-dimensional structures due to various chemical
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interactions between its components. These folded structures are essential for the
protein’s biological function.

One of the central ideas in this field is that structure determines function. For
example, an enzyme (a protein that accelerates chemical reactions) can only fulfill
its function if its shape allows it to interact correctly with other molecules. If that
shape is altered, either by a genetic mutation or a change in the environment, its
activity can be affected, which can lead to disease.

This relationship between form and function can be better understood if we
consider the different structural levels at which a protein is organized:

¢ Primary structures

The primary structure of a protein is its linear sequence of amino acids,
which are the fundamental building blocks of proteins. This sequence is en-
coded by DNA and determines the basic chemical properties of the molecule.
Changes in this sequence (for example, a mutation) can affect higher levels
of protein structure.

e Secondary structures

The secondary structure refers to simple, repetitive patterns that form when
parts of the amino acid chain fold locally. The most common patterns are
spiral shapes (called alpha-helices) and flat, sheet-like arrangements (called
beta-strands). These structures are held together by internal forces and help
give the protein its initial stability and shape.

¢ Tertiary structures

This is the complete three-dimensional conformation adopted by a polypep-
tide chain. This shape results from interactions between different parts of
the chain, depending on their chemical characteristics. The final folded
structure determines how the protein interacts with other molecules and
performs its specific role.

¢ Quaternary structures

The quaternary structure appears when a protein is made up of more than
one chain, commonly called subunits. These subunits come together to form
a functional unit. The way they fit and work together is essential for the
protein’s activity.

Figure [2.1] shows an example of each structure level, where the letters in the
primary structure represent different amino acids, and the letters from the tertiary
and quaternary structures represent the amino (N) and carboxyl (C) groups.

Traditionally, the aim has been to produce a single, high-resolution 3D model
that represents the molecule structure. This model can provide important insights
into how the molecule works, how it interacts with other molecules, or how muta-
tions might affect its behavior. However, many molecules are not static (normally
called homogeneous). They change shape as part of their natural function. For ex-
ample, ribosomes adopt different conformations during the translation of genetic
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Figure 2.1: Representation of the different structural levels of proteins extracted from |[8].
The letters in the primary structure represent differents amino acids, and the letters from the
tertiary and quaternary structures represent the amino (N) and carboxyl (C) groups.

information. In those cases where biomolecules are not homogeneous, a single
averaged structure may be inaccurate. If structural data from many particles in
different conformations/compositions are averaged together, flexible and dynamic
regions would become blurred, and important information about molecular motion
would be lost. The result would be a model that might look well-defined in some
areas, but unclear or misleading in others.

To address these challenges, modern cryo-EM workflows aim not only to re-
construct a single average model, but also to resolve and classify multiple distinct
structures from a heterogeneous dataset.

2.2  Cryo-EM

Several experimental techniques are available for determining the 3D structure of
biomolecules. The most established methods include X-ray crystallography, NMR
spectroscopy, and cryo-EM. Each technique has its strengths and limitations, de-
pending on the nature of the sample and the biological questions being addressed.

In X-ray crystallography, many identical copies of a molecule are packed into
a solid crystal. When this crystal is exposed to a beam of X-rays, the atoms in the
molecules scatter the radiation, producing a pattern of spots. By analyzing this
pattern, it is possible to reconstruct the average 3D structure of the molecule at
high resolution. However, this process forces all molecules into a single, repeated
arrangement, effectively removing any structural variability from the measurement.
While crystallography yields atomic-resolution models, it captures only a single,
averaged conformation—typically the most stable one. Transient or flexible states
are lost in the process.

NMR spectroscopy studies molecules in solution by placing them in a strong
magnetic field and measuring how their atomic nuclei respond to radiofrequency
pulses. These responses depend on the chemical environment of the atoms and
can be used to infer distances and motions within the molecule. This technique is
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Figure 2.2: Cryo-EM sample preparation. (a) Copper mesh grid, 3 mm in diameter, coated
with a thin layer of perforated carbon film. (b) Closer view of one of the grid squares, revealing
the microscopic holes within the carbon layer. (c) Detailed view of a single hole, showing a
thin layer of vitrified ice in which protein molecules are suspended. (d) Schematic cross-section
of a hole illustrating particles embedded in the ice. The figure was extracted from .

able to capture molecular dynamics in solution and is well-suited for small, flexible
proteins. However, it works best for relatively small biomolecules, such as short
proteins or peptides, and becomes increasingly difficult to apply as the molecules
get larger. The main reason has to do with the way molecules move in solution.
Small molecules rotate and tumble very quickly, and this rapid motion helps NMR,
produce clear and sharp signals. Large molecules, by contrast, rotate much more
slowly. When this happens, the NMR signals die out more quickly, which makes
the peaks in the spectrum appear broad and faint. This loss of clarity makes it
hard to extract useful information.

Cryo-EM, and particularly single-particle cryo-EM, overcomes many of these
limitations. In this technique, thousands to millions of individual particles are
imaged in a near-native, frozen-hydrated state. Each image represents a 2D pro-
jection of a particle in an unknown 3D orientation and potentially in a different
structural state. This makes it well-suited to capture structural variability and
explore structural heterogeneity, both conformational and compositional.

In cryo-EM, cryogenic temperatures are used to convert the water into vitreous
ice. Vitreous ice is characterized by the absence of an ordered molecular structure,
unlike ordinary crystalline ice. In practice, it is formed by rapidly cooling the
thin aqueous layer during sample vitrification, which prevents crystallization and
preserves biomolecules in a near-native state. This lack of structure is what allows
macromolecules to be visualized. Otherwise, the noise and distortions generated
by the ice pattern would be so severe that no information would be visible.

The particles are deposited onto a grid, typically made of copper, and sub-
sequently frozen. As illustrated in Figure the grid consists of square regions
covered by a perforated carbon film, where each hole contains particles embedded
within a thin layer of vitreous ice.

Once the sample has been prepared and vitrified, the grid is transferred to
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the cryo-electron microscope using a cryo-holder or an automated loading system,
ensuring that the specimen remains at liquid nitrogen temperature throughout the
process to prevent devitrification. Inside the microscope, the grid is placed in the
path of an electron beam, typically generated by a field emission gun operating
at 200-300 kV. The electrons interact with the sample, and those transmitted
through the thin layer of vitreous ice are projected onto a direct electron detector.

To minimize radiation damage, a low electron dose is used. Otherwise, the
sample can become dehydrated and damaged. This is the main cause of the low
signal-to-noise ratio in the acquired images.

Images are recorded across different areas of the grid, each containing particles
in random orientations. These two-dimensional projections form the raw data from
which three-dimensional reconstructions will later be computed.

2.3 Data

Given the importance of characterizing the structures of macromolecules, several
specialized public databases have been established to store structural data. Among
the best-known are the Electron Microscopy Public Image Archive (EMPIAR) [25],
the Electron Microscopy Data Bank (EMDB) [33] and the Protein Data Bank
(PDB) [7].

EMPIAR provides access to images collected during cryo-EM experiments.
These images may be raw data, which are unprocessed images of thousands of
particles called micrographs, or particles that are already selected and cropped
from the micrographs.

Particle images are especially useful when the focus is solely on the particles
themselves, as there is no need to perform particle picking. Moreover, in some
cases, certain artifacts caused by particle motion or the contrast transfer function
(see Subsection are already partially corrected. Conversely, if the focus is
on preprocessing steps such as particle picking, working with raw micrographs is
necessary.

Figures|2.3|and show examples of a micrograph and some selected particles,
respectively. Both figures illustrate the challenges associated with the low SNR
and highlight the complexity of the particle picking task. There are deep learning
approaches to this problem, such as DeepEM [69], TOPAZ [5] and crYOLO [59],
but these will not be addressed in this work because pre-picked particles will be
used.

EMPIAR also stores detailed metadata associated with the images. These
metadata include crucial information of the microscope like sample conditions,
electron beam energy, and defocus angles. Acquisition parameters include the
number of micrographs captured, the number of selected particles, sizes of the
images, pixel size, and data encoding formats.

Finally, if some processing was made, it is common practice to specify the
processing techniques used and the results obtained.

The EMDB stores three-dimensional density maps obtained primarily through
electron microscopy techniques, especially cryo-EM. A density map is a volumetric



Chapter 2. Background

Figure 2.3: Micrograph from EMPIAR-10025.

Figure 2.4: Selected particles from Figure

10
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Figure 2.5: (a) Three-dimensional density map of a spliceosome (EMPIAR-10180). (b) Atomic
model of pre-catalytic spliccosome from PDB (ID: 5nrl). Atoms are representes as spheres.
The colors represent different subunits of the the atomic model. (c) Atomic model fitted into
the consensus volume generated from EMPIAR-10180 particles. Atoms are shown in sphere
style.

reconstruction that reflects the probability of finding electrons in different regions
of space, and therefore gives an estimate of the molecule’s structure at a given
resolution.

Each EMDB entry also includes associated experimental metadata, such as
information about the sample, imaging conditions, achieved resolution, and the
software and image processing methods used during reconstruction.

An example of a density map is shown in Figure which was generated
using data from the EMPIAR-10180 dataset and represents a pre-catalytic spliceo-
some.

Because all available particles were used to compute this map, it is commonly
referred to as a consensus volume. A consensus volume is a single, averaged re-
construction that captures the dominant structure present in the dataset.

PDB is the central archive for atomic models of biomolecules, including pro-
teins, nucleic acids and large molecular complexes, derived from X-ray crystallog-
raphy, NMR spectroscopy, and cryo-EM. An atomic model specifies the spatial
position of each atom in the molecule, along with other information such as atom

11
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types, connectivity, secondary structure assignments, and experimental metadata.
Atomic models are the final result that can be achieved and the one with biological
information.

Figure shows the atomic model of a pre-catalytic spliceosome.

Together, these databases form an ecosystem for storing, sharing, and analyz-
ing structural data. The images processed in this work are from EMPIAR; the
density maps obtained and published from these images are used for the selec-
tion of hyperparameters and to compare results, and the atomic models serve as
ground-truth.

Figure [2.5¢ shows the density map from Figure fitted with the atomic
model from Figure [2.5b

Fitting an atomic model into a density map allows the identification of specific
amino acids, nucleotides, or ligands, which is essential for understanding mecha-
nisms of action, binding sites, compositional and conformational changes, or mu-
tations.

In this work, atomic models will be used as ground truth. The obtained recon-
structions will be compared against these models by fitting the atomic coordinates
into the corresponding density maps, using the flexible fitting procedures from
ChimeraX [40]. If the atomic model does not align well with the reconstructed
density, it may indicate problems such as poor map quality, incorrect orientation
assignments, or misaligned particles. Performing and validating this fitting is also
a common requirement when preparing data for deposition in the EMDB.

2.4 General Workflow

The traditional cryo-EM single-particle analysis workflow aims to reconstruct a
high-resolution three-dimensional model from a large collection of two-dimensional
images. This process involves multiple stages, many of which rely on signal pro-
cessing and computational techniques to enhance the SNR and extract relevant
structural information. Figure shows a traditional workflow for single-particle
cryo-EM image processing.

2.4.1 Motion Correction

In cryo-EM, motion correction refers to the computational process of compensating
for sample movement that occurs during image acquisition. Instead of producing
a single still image, modern cryo-EM cameras record a movie consisting of many
short-exposure frames (often 20-60 frames over a total exposure of 1-3 seconds).
Motion correction aligns and sums these frames to produce a sharp, high-contrast
final image of the particles.

Sample motion arises primarily from beam-induced effects. When the high-
energy electron beam interacts with the vitreous ice and the supporting film, it
can cause electrostatic charging, localized heating, and physical deformation of the
specimen. These effects are often anisotropic, meaning different parts of the image
can shift in different directions or by different amounts.
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Figure 2.6: Traditional workflow diagram of cryo-EM single particle analysis for 3D recon-
struction. Yellow blocks correspond to pre-processing steps, red blocks correspond to the 3D
reconstruction process, and the lightgray and blue blocks correspond to the initial input and
final result, respectivily. This diagram is based on the diagram from [6)].

Motion correction can be performed either globally or locally. In global motion
correction, the entire image is treated as if it shifts uniformly between frames,
which is effective for correcting mechanical drift but insufficient to fully compensate
for beam-induced deformations. Local motion correction addresses this limitation
by dividing the image into smaller patches, aligning each patch independently,
and then recombining them, allowing the recovery of fine structural detail that
would otherwise be lost. In addition to alignment, modern workflows incorporate
dose weighting, in which early frames are given higher weight for high-resolution
information, while later frames contribute primarily to low-resolution contrast due
to the progressive effects of radiation damage.

There are highly effective softwares such as MotionCor2 [64] and Warp [56]
that can align movie frames with sub-pixel precision and apply dose weighting,
producing near-optimal results for many datasets.

2.4.2 Contrast Transfer Function

The Contrast Transfer Function (CTF) is a fundamental concept in cryo-EM and
other imaging techniques that use wave-based signals like electrons or light. It
describes how the microscope modifies the contrast of different spatial frequencies
in the sample image.

The images obtained are not direct representations of the sample’s electro-
static potential distribution. The microscope introduces a series of aberrations to
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Figure 2.7: Output from CTF estimation showing the experimental and theoretical contrast
transfer functions in amplitude and phase. The top panel displays the raw experimental power
spectrum from the Fourier transform of the micrograph, the bottom-left panel presents the
theoretical CTF amplitude calculated from the estimated microscope parameters, and the
bottom-right panel shows the corresponding theoretical CTF phase, with alternating bright
and dark bands indicating phase reversals.

the signal, affecting both the amplitude and phase of the various spatial frequen-
cies present. One of these aberrations is caused by the defocus used to enhance
contrast, and imperfections in the lensystem.

Figure shows a CTF estimation, where the top half shows the raw exper-
imental power spectrum obtained from the Fourier transform of the micrograph.
It contains alternating light and dark rings (called Thon rings) along with the
original noise background, and the contrast of the rings is exactly as measured,
without any normalization or enhancement. The bottom-left quadrant is a noise-
free simulation of the CTF amplitude calculated from the estimated microscope
parameters such as defocus, astigmatism, spherical aberration, and amplitude con-
trast. It shows ideal Thon rings without any experimental imperfections and is
used to check whether the experimental rings align with the theoretical prediction.
The bottom-right quadrant represents the theoretical CTF in phase, displaying al-
ternating positive and negative regions across spatial frequencies. The dark and
bright bands correspond to opposite signs of the phase shift introduced by the
microscope optics, and like the amplitude representation, it is noise-free, making
the zero-crossings and phase reversals easy to identify. The middle grey disc is a
masked area ignored during adjustment because the very low frequencies are dom-
inated by variations in illumination, ice thickness, and other non-idealities that do
not follow the CTF. It does not contain useful information for adjusting defocus.

Currently, CTFFIND4 is used for CTF estimation and correction, although

14



2.4. General Workflow

there are variants that also work.

2.4.3 Particle Picking

Particle selection is a fundamental step in reconstructing high-resolution density
maps. Due to the low SNR present in micrographs, a sufficiently large number of
particles are required for reconstruction.

Historically, the approach used for this step has been template matching. Tem-
plate matching uses cross-correlation between patches of a micrograph and particle
templates. This method is highly dependent on image quality and has significant
difficulties with heterogeneous datasets, or even with particles that lack symmetry.
Other approaches based on edge detection or feature extraction also struggle with
heterogeneity and asymmetry.

Methods based on deep neural networks have gained traction in recent years.
One of the most widely used is TOPAZ [5], a method based on convolutional net-
works and trained under the positive-unlabeled data paradigm to avoid having to
label too many images. Another method used is WARP [56], which uses a resid-
ual architecture, enabling the training of deeper networks. Finally, crYOLO [59],
which uses the popular YOLO object detection algorithm, is worth mentioning.
This has the advantage of needing to go through the entire image only once.

2.4.4 2D Classification and Particle Filtering

Raw datasets often contain a significant fraction of unsuitable particles, including
contaminants, damaged molecules, ice artifacts, carbon edges, or poorly aligned
particles. Two-dimensional classification is a fundamental step for identifying and
removing such low-quality particles before proceeding to high-resolution refine-
ment. Modern 2D classification algorithms typically rely on maximum-likelihood
approaches to assign particles to classes based on their similarity in projection
space. In RELION [13], this is implemented through a Bayesian framework that
iteratively refines class averages while marginalizing over alignment parameters, al-
lowing for robust classification even at low SNR. CryoSPARC [47] uses a stochastic
gradient descent-based optimization of a probabilistic model, which achieves rapid
convergence and can handle very large datasets efficiently. Other packages offer
alternative implementations, including multivariate statistical analysis followed by
multi-reference alignment.

Strategies for effective 2D classification often involve an initial round with a rel-
atively large number of classes (e.g., 100-200) to capture the diversity of particle
projections, followed by manual inspection to discard classes lacking discernible
structural features. Iterative rounds of classification and filtering can progres-
sively enrich the dataset with high-quality particles while removing spurious or
misaligned images.
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2.4.5 Postprocessing

Significant advances in equipment and image processing algorithms have enabled
cryo-EM to achieve the ability to generate high-resolution three-dimensional maps,
from which detailed structural information of biomolecular complexes can be ex-
tracted. This progress has made the assessment and verification of resolution in
3D reconstructions an increasingly important aspect to ensure the reliability of the
results. However, in the field of electron microscopy, the concept of “resolution”
still lacks a unified and universally accepted definition, and the methodologies cur-
rently used differ significantly in both their approach and the results obtained. In
practice, the most widely used approach to estimate the overall resolution of a 3D
map is Fourier Shell Correlation (FSC). This method calculates the correlation,
in Fourier space and for different spatial frequency ranges, between two indepen-
dent reconstructions of the same molecule. Resolution is defined as the point at
which the FSC curve drops below a predefined threshold value (e.g., 0.143 or 0.5).
Although it is a de facto standard, this procedure has limitations: it requires set-
ting an arbitrary threshold and does not adequately reflect local quality variations
within the density map.

To overcome this last limitation, local resolution estimation methods have been
developed that assess the quality of different regions of the three-dimensional map.
One of the first was BlocRes [11], which applies the FSC principle to cubic windows
offset across the entire volume. In each window, the local resolution is calculated
independently, allowing for a resolution map to be obtained. However, this method
inherits the limitations of the global FSC and adds the need to define the size of
the analysis window, which influences the spatial resolution of the resulting map
and can introduce bias.

Another method, ResMap [12], takes a different approach: it analyzes the
presence of detectable three-dimensional sinusoidal waves above the noise level at
each point on the map. The rationale is that the ability to detect a periodic signal
at a given frequency is directly related to local resolution. This method avoids the
use of moving windows and works point-by-point, although its reliability depends
on an accurate noise estimate.

Subsequently, MonoRes [58] was developed. It uses a similar principle to
ResMap but uses the monogenic amplitude at different frequencies to quantify
resolution. The method compares the monogenic signal in the analyzed region
with the monogenic amplitude of the estimated noise, within a predefined reso-
lution range. This approach aims for a more robust detection of the frequencies
present, but also requires an accurate estimate of noise variance and intensive
computational processing.

Despite the usefulness of these approaches, they all share certain disadvantages:
they require long computation times, depend on user-defined parameters (such as
window size or frequency ranges), and can produce significantly different results
for the same map.

In recent years, the incorporation of deep learning techniques into the field of
cryo-EM has led to the development of new local resolution estimation methods
that attempt to overcome these limitations. Among them, DeepRes [48] stands out,
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a method based on convolutional neural networks (CNNs) trained to predict local
resolution directly from density maps. This approach is capable of detecting local
quality variations induced by different post-processing processes, such as isotropic
filtering, model-based and non-model-based sharpening, and noise suppression, all
of which are common in modeling workflows. By not relying on fixed thresholds or
window analysis, and by learning patterns directly from the data, DeepRes offers
greater flexibility and potential for generalization to different types of maps.

However, given that there is still no general consensus on the optimal method
for determining local resolution, and that estimates can vary significantly between
approaches, research in this area remains active. The development of methods
based on neural networks and other artificial intelligence techniques is emerging
as a promising avenue for improving the accuracy, reproducibility, and efficiency
of cryo-EM map resolution estimation.

2.4.6 Atomic Model Building

Atomic models play a fundamental role in structural biology, as they provide pre-
cise, interpretable representations of the three-dimensional arrangement of atoms
in macromolecules. While cryo-EM maps reveal the overall molecular shape and
density distribution, atomic models are essential for understanding the structural
basis of function. These models serve as the bridge between experimental density
maps and biochemical insight, and are critical for guiding hypotheses in mecha-
nistic studies, drug design, and protein engineering.

To address the challenges of model building in intermediate-resolution cryo-EM
maps, where manual interpretation is often difficult, several deep learning—based
methods have recently been proposed to automate this process. One of these
methods is Emap2sec [61], which uses a convolutional neural network to perform
local structure detection across the entire 3D map. Benchmarking on maps with
resolutions between 5 A and 10 A demonstrated that Emap2sec achieves more
accurate detection of secondary structure elements and improved validation scores
compared to traditional methods. However, the method shows limitations in accu-
rately modeling specific structural elements such as alpha-helices and beta-strands.

A more recent development, EMBuild [22], applies a nested U-Net architec-
ture (UNet++) [68], a fully convolutional network originally designed for image
segmentation, to the task of atomic model building from intermediate-resolution
maps. EMBuild has been evaluated on single-particle cryo-EM datasets with res-
olutions between 4 A and 8 A, demonstrating excellent performance in fitting
reliable atomic structures into the density maps. While further improvements are
still necessary, these deep learning—based approaches represent a promising direc-
tion for facilitating and accelerating model building in cases where the resolution
is insufficient for conventional, fully manual interpretation.

17



Chapter 2. Background

2.5 Image Formation Model
The imaging process can be mathematically modeled as:
I;(x) = Py, (V;) = PSF; 4+ n(x), (2.1)

where V is the volume representation of the specimen, Py(V') denotes the projection
of V' with orientation 6, PSF is the point spread function, which is the result
of applying the inverse Fourier transform to the CTF, ¢ is the index of a given
particle, and n(x) represents noise, typically modeled as a combination of Poisson
and Gaussian components.

In the frequency domain, Equation can be expressed as

Ii(k) = Py, (Vi) (k) - CTF;(k) + in(k), (2.2)

where I;(k) is the Fourier transform of the observed image, Py, (V;)(k) is the Fourier
transform of the projection of the i-th particle along orientation 6;, CTF;(k) is the
CTF, and n(k) represents noise in Fourier space. This formulation highlights
that the CTF acts as a multiplicative modulation of the projected signal in the
frequency domain.

Working in Fourier space is advantageous for cryo-EM image processing be-
cause the convolution with the microscope point spread function, which is compu-
tationally expensive in real space, becomes a simple element-wise multiplication
with the CTF in frequency space. This greatly reduces the computational cost
when simulating or correcting images. Moreover, the Fourier Slice Theorem allows
a practical reconstruction process in this domain.

2.6  Fourier-Slice Theorem

Also called Central-Slice Theorem or Projection-Slice Theorem, the Fourier-Slice
Theorem states that the 2D Fourier Transform of a projection of a 3D volume along
a given direction is equal to a central slice of the 3D Fourier Transform of that
volume, taken in the corresponding direction. Therefore, collecting Fourier Trans-
forms of different projections is equivalent to sampling the 3D Fourier Transform
of the volume over different planes.

For example, given the projection P(x,y) of a volume V (z,y, z) along axis z
as follows

P(z,y) = /V(az,y,z) dz, (2.3)

and the Fourier Transformations for 2D Fo{ P(x,y)} and for 3D F3{V(z,y,2)},
then the Fourier 2D Transform of P(x,y) is

‘FQ{P(x?y)} = ]:3{‘/(1:,:% Z)sz:ov (24)

where k, = 0 represents the projection along axis z.
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Figure 2.8: lllustration of the Fourier Slice Theorem applied to single-particle cryo-EM. The 3D
structure of a particle is projected along different orientations to generate 2D images. Each 2D
image undergoes a 2D Fourier transform, producing slices that correspond to central sections
of the 3D Fourier transform of the particle. These slices can be inserted into or extracted
from the 3D Fourier space, enabling the reconstruction of the full 3D volume via a 3D inverse
Fourier transform. The figure was extracted from .

The Figure [2.§] illustrates the Fourier Slice Theorem in the context of single-
particle cryo-EM reconstruction. According to this principle, each two-dimensional
projection image corresponds to a central slice through the three-dimensional
Fourier transform of the original particle density. By acquiring projections from
multiple orientations, it becomes possible to fill the 3D Fourier space with these
slices. The complete 3D structure can then be recovered by performing an in-
verse 3D Fourier transform on this assembled Fourier volume. This relationship
between 2D projections and the 3D structure forms the mathematical foundation
of single-particle reconstruction methods in cryo-EM.

2.7 Fourier Shell Correlation

The Fourier Shell Correlation (FSC) is the three-dimensional extension of the
two-dimensional Fourier Ring Correlation, a commonly used resolution criterion
in electron and fluorescence microscopy ,. The FSC measures the cross-
correlation between two volumes by comparing their respective frequency shells in
three-dimensional Fourier space. Mathematically, given two volumes and their 3D
Fourier Transformations, also called structure factors, Fj(r) and Fy(r), where r is
the 3D spatial frequency vector, then
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> Fi(r) - F5(r)

FSC(r) = ——=" , (2.5)
QFWMQE%)

where F3 denotes complex conjugation and the summations are taken over all
Fourier-space voxels r contained in the shell r;.

In practice, the FSC is computed by dividing the dataset into two independent
halves and performing separate reconstructions (commonly referred to as half-
maps). Since both reconstructions are expected to contain the same underlying
structural signal but different realizations of noise, their correlation provides an
estimate of the SNR at different spatial frequencies. As spatial frequency increases,
the amount of structural signal generally decreases relative to noise, and the FSC
curve decays accordingly.

To convert the FSC curve into a resolution estimate, it is compared against
a cutoff threshold. A commonly adopted criterion is the so-called gold-standard
threshold of 0.143 [51], which is derived from a variance-based statistical model.
This model shows that when two independent half-maps contain the same sig-
nal and uncorrelated Gaussian noise, an FSC value of 0.143 corresponds to the
frequency where the SNR is equal to 0.5. In other words, at this frequency the
structural signal is half as strong as the noise contribution, marking a practical
resolution limit beyond which the map is dominated by noise rather than reliable
structural features.

In this work, the reported FSC values correspond to the resolution at which
the FSC curve intersects the 0.143 threshold. This provides a standardized and
reproducible way to summarize the effective resolution of each reconstruction. The
units of every FSC intersection result will be represented in Angstroms (A).

2.8 UMAP

Uniform Manifold Approximation and Projection (UMAP) [39] is a non-linear di-
mensionality reduction technique designed to preserve local and global features of
the data. This technique belongs to the class of k-nearest neighbor (k-NN) based
graph learning algorithms, alongside methods like Laplacian Eigenmaps and t-
SNE. Like these algorithms, UMAP operates in two main stages. The first stage,
graph construction, involves computing a weighted graph that captures the local
relationships between points based on their k-NN. Although additional transfor-
mations may be applied, the fundamental structure is a weighted k-NN graph that
reflects the data’s local geometry. The second stage, often called graph layout, de-
fines an objective function that encodes the desired properties of the graph—typ-
ically the preservation of local connectivity—and then finds a low-dimensional
representation that optimizes this objective.
UMAP relies on three key mathematical assumptions:

e The data is uniformly distributed on a Riemannian manifold. This assump-
tion implies that the high-dimensional data points lie on, or close to, a
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smooth and continuous manifold embedded in the ambient space.

e The manifold is locally connected. Local connectivity assumes that small
neighborhoods within the manifold form connected regions.

o The Riemannian metric is locally constant (or can be approximated as such).
The Riemannian metric defines how distances and angles are measured on
the manifold. Assuming it is locally constant means that within small neigh-
borhoods, the geometry of the manifold can be approximated as Euclidean.

For the graph construction stage, given a dataset X = {x1, xo, ..., x, }, a hyper-
parameter k and a distance metric d, the k-nearest neighbors (k-NN) are computed
for each data point x;, yielding the set {z;,, zj,, ..., x;, }. The weights of the result-
ing weighted graph are then defined as:

d(zi,xi; ) — pi
w;j = exp (_(ac xj) p), (2.6)

op)

where p; is the distance to the closest neighbor of z; and o; is a normalization
factor. The resulting graph (or set of graphs) can be interpreted as encoding local
neighborhood probabilities.

In the dimensionality reduction stage, UMAP uses what the original paper
refers to as attractive and repulsive forces. Intuitively, this corresponds to bring-
ing closer the points that are neighbors in the original graph, and pushing apart
those that are not, but in a lower-dimensional space (typically 2D or 3D). The
corresponding similarity function in the low-dimensional space is given by:

1
Ty =yl

Wi = (2.7)
where y; and y; are points in the low-dimensional embedding, and a and b are
hyperparameters.

To ensure that the high and low-dimensional graphs are aligned, UMAP min-
imizes the cross-entropy between them as follows

L= wij log <7”i]”bj> —i—(l—wij)log <1 _ujzj) . (2.8)
(i) i b i
This objective is optimized using stochastic gradient descent.

Compared to t-SNE, UMAP offers several practical and theoretical advantages.
While both methods aim to preserve local structure, UMAP has been shown to
better retain global relationships in the data, producing embeddings that are more
faithful to the overall topology of the original high-dimensional space. In addition
to its improved preservation of global structure, UMAP also demonstrates sig-
nificantly better computational performance. Its scalability with large datasets
and faster runtime make it a more efficient choice, especially in modern workflows
involving thousands of data points [39].

For a stronger mathematical foundation, the reader is invited to read the orig-
inal work [39].
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Figure 2.9: 3D reconstructions showing conformational heterogeneity in particles from the
EMPIAR-10180 dataset, obtained with CryoDRGN. The figure was extracted from \\

2.9 Heterogeneity

The objective of cryo-EM processing algorithms is to obtain a 3D reconstruction of
a given macromolecule from a dataset of images, where each image corresponds to a
2D projection of the macromolecule with different poses. In order to obtain high-
resolution reconstructions, these algorithms must accurately estimate both the
orientations of the particles and the underlying structural variability present in the
dataset. Without accounting for such variability, the averaging process inherent
to reconstruction may blur important features, ultimately limiting resolution and
obscuring biologically meaningful information.

Structural heterogeneity is a fundamental characteristic of many macromolec-
ular complexes, particularly proteins, which can adopt multiple distinct structural
states under physiological conditions. Structural heterogeneity plays a critical role
in regulating protein function, facilitating molecular assembly, and enabling dy-
namic interactions with other biomolecules. In the context of cryo-EM, addressing
structural heterogeneity is essential for accurate reconstruction and interpretation
of macromolecular structures, as failure to do so can obscure biologically relevant
states or lead to artifacts in the final maps.

The structural heterogeneity of macromolecules can be classified as confor-
mational heterogeneity and compositional heterogeneity. The difference between
them has already been emphasized in this document, but a more exhaustive anal-
ysis is required. Conformational heterogeneity refers to differences in the shape of
a single molecular composition. That is, all particles have the same components
(proteins, subunits, ligands, etc.), but these molecules adopt different spatial ar-
rangements. An example of conformational heterogeneity can be seen in Figure[2.9
where each volume represents a different conformation of the same biomolecule,
demonstrating the structure’s ability to adopt multiple shapes.

Compositional heterogeneity refers to variations in the molecular composition
among particles, meaning that certain subunits are present in some particles but
absent in others. An example is shown in Figure where three main classes
can be distinguished: C, D, and E, each with its own subclasses. Class C lacks the
central protuberance (CP), class D exhibits reduced density at the ribosomal base,
and class E contains both the CP and the base density. Even within subclasses,
distinct compositional differences are still apparent.
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Figure 2.10: (A) Compositional heterogeneity in EMPIAR-10076. The classes differ in the
presence of the central protuberance (CP) and the density at the particle's base. (B) shows
the FSC curves for each reconstruction. The figure was extracted from .

In contrast, conformational heterogeneity involves subtle and often continuous
changes in density maps, reflecting smooth structural transitions between states.
Compositional heterogeneity is generally discrete, arising from the presence or
absence of specific subunits or domains. From a structural perspective, confor-
mational heterogeneity represents rearrangements in the tertiary structure, while
compositional heterogeneity reflects differences at the quaternary structure level,
affecting the actual assembly of the macromolecular complex.

2.10 Frealign

Frealign is a program for high-resolution refinement of 3D reconstructions from
cryo-EM images of single particles. Briefly, Frealign performs projection match-
ing to determine more accurate alignment parameters. Projections are calculated
using the reference map provided on input, and alignment parameters for each par-
ticle projection are updated according to the projection that generates the highest
correlation coefficient. Frealign is capable of performing global refinement through
a systematic grid search. However, since this type of search is computationally ex-
pensive and initial particle poses are already available for the dataset in use, it
will not be necessary in this case.

During the refinement stage, Frealign takes as input a reference density map,
the initial poses of the particles, and imaging parameters such as magnification,
defocus, and astigmatism. The particle images are transformed into the Fourier
domain, where they are multiplied by the estimated CTF. Pose refinement is then
carried out directly in Fourier space, which consists of maximizing a weighted
correlation coefficient between the Fourier transform of the particle image and a
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corresponding projection of the reference structure.

This optimization is carried out using a Powell optimization algorithm [45],
which is a derivative-free method particularly suited for problems where gradi-
ents are difficult or impractical to compute. Mathematically, the goal of these
algorithms is to minimize a scalar function f : R™ — R, which can be expressed as

min f(x). (2.9)

In Powell’s directional method, the procedure begins from an initial point
xo € R™ and a set of initial search directions uy, ..., u, (e.g., the canonical basis).
The algorithm proceeds as follows:

1. Unidimensional minimization: For each direction u;, a one dimensional
minimization is performed:
a; = argmin f(x;_1 + aw;) (2.10)
(0%
X; = Xi—1 +aju; (2.11)
This is repeated for i = 1,...,n.

2. Construction of a new direction: A new direction is defined based on
the total displacement:

d =x, — X (2.12)

3. Minimization along the new direction:

o = argmin f(x, + ad) (2.13)
Xpt1 = X, + a’d (2.14)

4. Direction update: The first direction u; is replaced by the new direction
d:

ul,u2,...,un,1,d (215)

5. Repeat: The process is repeated from x,41 using the updated set of direc-
tions.

For reconstruction, the Fourier transforms of each projection are translated and
oriented according to the poses calculated during refinement. These transforms
are then accumulated following the Fourier Slice Theorem. Since, in general, the
sample points of the discrete 2D Fourier transform of the image will not coincide
with sample points of the Fourier transform of the reconstruction, an interpolating
function has to be used. Such a function is derived from the Fourier transform of
a box with dimensions equal to the dimensions of the reconstructed volume. Thus,
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in the interpolation step, a box transformation is centered on each sample of the
2D Fourier transform of the image and evaluated at the nearest neighbor of the
3D Fourier transform of the reconstruction. In the process of the reconstruction
from images of all particles, sums are accumulated at each sample point of the 3D
Fourier transform:

>, wib?e; Py

A (wjbey)?
where R; is the final volume reconstruction in sample ¢, P;; is the contribution
of the particle j in sample ¢, ¢; is the CTF correction of the particle j, b is the
box transformation, w; is a weighting factor and f is a value used to avoid nu-
merical instabilities during reconstruction. The weighting factor allows weighting
of contributions from individual images according to their correlation with the
reference.

Frealign Fortran code is available. The pipeline in this work uses version 10,
also known as FrealignX.

R; (2.16)
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Chapter 3

Related Work

This chapter presents a selection of works that address the reconstruction of one
or more density maps using deep learning techniques. These works were chosen
based on their strategies for tackling key challenges in this stage, such as low
SNR, pose estimation, and the representation of structural heterogeneity. Their
advantages and limitations are discussed, along with relevant considerations and
decisions related to the reconstruction problem itself.

3.1 Problems to be addressed

Given the biological importance of accurately capturing the structural information
of macromolecules, and the complexity of this task, several deep learning-based
approaches have recently been proposed to address this challenge. Particularly
for modeling structural heterogeneity in macromolecular complexes, traditional
reconstruction pipelines often struggle to represent variability, especially when it
lies along continuous manifolds or when discrete states are not well separated. Deep
learning approaches have shown great promise in overcoming these limitations by
leveraging data-driven priors and flexible generative architectures.

A key difficulty in this context involves the estimation of nuisance variables,
which are the poses and the CTF parameters. While these variables do not carry
biological significance, they are essential for producing high-resolution reconstruc-
tions.

Another major challenge tackled by deep learning techniques is the inherently
low SNR of cryo-EM images, a consequence of the need to minimize electron dose
to preserve the integrity of the sample. Neural networks must therefore learn to
extract meaningful structural features from highly noisy data.

The works presented in this chapter were selected for their relevance in ad-
dressing the central issues in cryo-EM reconstruction. For readers interested in
a more comprehensive overview of deep learning methods applied to cryo-EM re-
construction, it is recommended to read the following review on the subject [17],
which was very useful for this work.
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3.2 Homogeneous Methods

The homogeneous methods presented in this section were selected because, al-
though they follow a homogeneous reconstruction strategy, they propose alterna-
tive approaches to pose estimation. Traditional homogeneous methods typically
rely on aligning particles to a consensus volume to estimate their poses. In macro-
molecules with structural heterogeneity, this can lead to poor results, since a single
volume is not representative of all particles, and consequently, the alignment of
some particles with the volume is poor.

In contrast, the methods discussed here avoid relying on a single-volume align-
ment for pose estimation. While they still generate only one density map, they
explore alternatives such as bypassing pose estimation entirely or inferring poses
through neural networks, thus mitigating the limitations imposed by structural
variability.

3.2.1 CryoGAN

CryoGAN [21] is a reconstruction technique based on Generative Adversarial Net-
works (GANs) [19] that aims to reconstruct a consensus density map without the
need for pose estimation. To achieve this, it adopts the traditional GAN frame-
work, but replaces the generator with a cryo-EM physics simulator, which gener-
ates projections of an estimated volume X according to the image formation model
described in Equation The CryoGAN framework is illustrated in Figure
where H,, represents the convolution with the CTF, the projection of the volume,
and the translation and rotation of the particle. In this approach, a physics-based
cryo-EM simulator generates 2D projections from the current estimate of the 3D
density map, which is the quantity that the network learns to reconstruct. The
parameters of CryoGAN are directly the voxels of the volume, which are passed
through the cryo-EM physics simulator. In contrast, the pose and CTF parameters
are sampled from a prior probability distribution.

One of the main advantages of CryoGAN is that it avoids the computation-
ally expensive and highly non-convex problem of pose estimation. Additionally,
CryoGAN is a reference-free method, meaning that it does not require an initial
volume to begin the reconstruction (it is initialized with a zero-valued volume).

Despite these advantages, the method has several limitations. First, it assumes
structural homogeneity and is therefore not suited for analyzing conformational or
compositional variability of macromolecules. This limitation is closely linked to the
relatively low resolution achieved by the method, with reported results reaching
only 10.8A. Another commonly cited drawback in the context of these algorithms is
the lack of validation on experimental data. CryoGAN reports results exclusively
on synthetic datasets, which may not accurately reflect the inherent challenges
of real cryo-EM data. Moreover, the field lacks a standardized synthetic bench-
mark dataset for evaluating such methods, making comparisons across different
approaches difficult.
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Figure 3.1: Comparison of a classical GAN and CryoGAN extracted from [21]. (a) In a
classical GAN, a generator network produces synthetic images from random inputs, which are
then evaluated by a discriminator that distinguishes real images from generated ones. Both
networks are updated adversarially. (b) In CryoGAN, instead of a neural network generator,
a physics-based cryo-EM simulator generates projections from an estimated 3D density map
using imaging parameters and noise models. The discriminator distinguishes real experimental
cryo-EM projections from simulated ones. The density map is updated iteratively so that its
simulated projections increasingly resemble experimental data.
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Figure 3.2: In CryoPoseNet, each noisy cryo-EM particle image y is passed through an encoder
that estimates the particle's orientation . This information is then used by a decoder to
generate a simulated projection of the 3D structure in that specific orientation. The projection
process is modeled using the Fourier slice theorem: the current estimate of the structure z is
transformed into Fourier space, a plane orthogonal to ¢ is extracted, and the result is modified
by the known CTF with parameter d. During training, both the encoder’'s convolutional and
multilayer perceptron weights v and the 3D structure x itself are refined. The optimization
minimizes a loss function L that measures the discrepancy between the experimental particle
image y and its corresponding reconstruction H,x. This figure was extracted from the original
CryoPoseNet work [43].

3.2.2 CryoPoseNet

Another homogeneous framework worth mentioning is CryoPoseNet [43], which in-
troduces a fully unsupervised method for reconstructing a density map along with
the rotations of individual particles projections, without requiring any reference
volume (it is also reference-free). The implementation consists of a convolutional
neural network that learns shift-invariant features, followed by a multilayer percep-
tron (MLP) that maps these features to Euler angles. A cryo-EM physics model,
similar to that used in CryoGAN, is then applied to generate a projection that
resembles the input image. The decoder operates in Fourier space in order to lever-
age the Fourier Slice Theorem. Figure illustrates the basic architecture, where
~ denotes the network parameters, ¢ the predicted poses for each projection, and
d the CTF parameters (which are assumed to be pre-estimated).

A major strength of CryoPoseNet is the fact that it is capable of estimating
particle orientations, where the computational cost is independent of the number of
input images. This is achieved by learning a mapping function ¢ from particles to
rotations, parameterized by v (the trainable parameters of the encoder). Crucially,
the number of parameters does not scale with the number of orientations to be
estimated. It is important to note, however, that the method assumes known
CTF parameters and in-plane translations. Also, CryoPoseNet is a global method
(using a shared encoder function across all particles), which allows it to integrate
information from the entire dataset when estimating individual poses.

Nonetheless, the method also has several limitations. Like CryoGAN, it oper-
ates under the assumption of structural homogeneity and has only been evaluated
on synthetic data. The authors report challenges in handling noise, which is a
major characteristic of real cryo-EM datasets. Additionally, the cryo-EM physics
model used in the framework is subject to limitations due to interpolation artifacts
when extracting 2D projections from the 3D volume in Fourier space.
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3.3 Heterogeneous Methods

The focus of the present work is to exploit protein heterogeneity to improve pose
estimation. This section focuses on deep learning methods for heterogeneous re-
construction, where neural networks are used to model conformational or compo-
sitional variability in macromolecular structures.

It is important to note that this is not intended as an exhaustive review of
all deep learning applications in cryo-EM. For example, methods such as Topaz
and DeepEM apply neural networks during the particle picking stage, performing
classification directly from micrographs and obtaining labels that are used to gen-
erate multiple reconstructions. These approaches operate at different stages of the
processing pipeline and are not included in the focus of this section.

Additionally, traditional methods for modeling structural heterogeneity, such
as Multibody Refinement or 3D classification, are not included either, as they do
not involve deep learning techniques.

3.3.1 3DFlex

3DFlex [46] is a deep learning framework designed to model continuous structural
heterogeneity in cryo-EM data. It is based on the hypothesis that conformational
variability arises from physical processes that tend to preserve mass and local ge-
ometry. To capture this, the method leverages a neural network architecture that
simultaneously learns a canonical 3D density map (consensus volume) and a defor-
mation field. The deformation field is conditioned on the location of each particle
projection in a latent space, effectively allowing each particle to be represented as
a deformed version of the shared canonical volume.

A distinguishing feature of 3DFlex is its ability to model smooth, physically
plausible motions while maintaining high-resolution features in the parts of the
structure that remain rigid. The deformation is applied in real space rather than
Fourier space, which enables the incorporation of spatial constraints but increases
the computational cost. This approach avoids the Fourier Slice Theorem and in-
stead performs real-space convolutions with the PSF rather than frequency-domain
multiplications with the CTF. Although a reference volume is used, it is not pro-
vided externally but is instead learned jointly during training.

Importantly, 3DFlex is trained on real cryo-EM datasets, and its authors report
that it captures characteristic motions associated with conformational heterogene-
ity. However, the method is not primarily designed for high-resolution refinement.
The resulting reconstructions can often be further refined using conventional tech-
niques. This is aligned with the common observation that conformational hetero-
geneity tends to manifest as local blurring in the density map—regions undergoing
variability appear diffuse due to averaging over different states. In contrast, compo-
sitional heterogeneity typically results in partially visible features, as components
may be present in some particles but not in others.

The core components of the model include the canonical map, the latent vectors
that represent particle-specific conformations, and a flow generator that maps each
latent vector to a deformation field applied to the canonical volume. The use of a
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Figure 3.3: Overview of the 3DFlex model for capturing continuous conformational variability
in cryo-EM. The model starts from a canonical 3D map V and latent coordinates z that
describe the conformational state of each particle. A flow generator network fy predicts a
deformation flow field u from the latent coordinates, which is then applied to the canonical
map through a convection operator to produce a convected 3D map. This map is projected
into 2D according to the particle’s pose ¢, modulated by the CTF and corrupted with noise to
generate a simulated image. The model is trained end-to-end by comparing these simulated
images to the experimental images /, simultaneously inferring latent coordinates, deformation
fields, poses, and imaging parameters. The bottom panel illustrates the processing pipeline:
starting from the canonical 3D map, through the latent space, deformation flow field, and
convected map, to the projected CTF-corrupted image and its corresponding experimental
image. The green blocks indicate components with learnable parameters. This figure was
extracted from the original 3DFlex work [46].

global latent space ensures that information is shared across the dataset, and the
learned deformation fields offer interpretable insights into the structural flexibility
of the molecule.

Compared to other deep learning-based methods, 3DFlex focuses on physically
constrained modeling of continuous motions. Alongside cryoDRGN, it is consid-
ered one of the most promising approaches for characterizing structural variability
in cryo-EM , particularly in the context of continuous heterogeneity. Unlike
traditional autoencoders, the inference mechanism in 3DFlex is tightly coupled
to its deformation model, enabling the system to disentangle structural dynamics
from static features.

Similarly to CryoGAN, 3DFlex performs backpropagation directly through the
image formation process to update the voxel values of the 3D density map. This
means that the gradients are propagated from the comparison between experimen-
tal and simulated projections all the way back to the underlying volume, allowing
the network to iteratively refine the density itself.

The main limitations of 3DFlex come from its design assumptions and compu-
tational requirements. First, the method is not intended to model compositional
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heterogeneity, which involves the presence or absence of distinct molecular compo-
nents, rather than smooth deformations of a common structure. As such, 3DFlex
may not adequately capture discrete or large-scale structural differences across
particles. Second, its reliance on real-space operations introduces significant com-
putational overhead compared to Fourier-based methods, which can exploit the
efficiency of the Fourier Slice Theorem. Additionally, 3DFlex assumes that nui-
sance variables such as particle poses, in-plane translations, and CTF parameters
are known a priori. These must therefore be estimated through separate prepro-
cessing steps using other tools or algorithms, which can add further complexity to
the workflow.

3.3.2 DynaMight

DynaMight [54] is another deep learning framework designed to address continu-
ous structural heterogeneity in cryo-EM data. Unlike methods that aim to explore
the full conformational landscape, DynaMight focuses primarily on identifying and
modeling conformational variability with the specific goal of improving the reso-
lution of the consensus density map. Its objective is not to recover the spectrum
of conformations per se, but rather to correct for structural flexibility in order to
refine the averaged structure.

The method is based on a variational autoencoder (VAE) architecture, where
the decoder outputs 3D deformations of Gaussian pseudo-atoms. In this repre-
sentation, each particle is modeled as a conformational variation of a shared set
of pseudo-atoms—simple Gaussian density components that together approximate
the macromolecule. This formulation assumes that all particles belong to a contin-
uum of conformational states and does not support compositional heterogeneity.
In fact, the authors explicitly state that datasets containing compositional vari-
ability must be pre-filtered before applying DynaMight.

Figure [3.4] illustrates the architecture, including the use of two encoders to
compute the FSC between resulting density maps, which serves as a proxy for
resolution. This dual-encoder setup is used to ensure that the model produces
consistent and reproducible reconstructions, and to monitor structural variability
across reconstructions.

DynaMight has been applied to real data, including the well-known EMPIAR-
10180 dataset, and demonstrates its ability to improve map resolution in regions
affected by conformational flexibility. By accounting for continuous variability
during the reconstruction process, it aims to reduce local blurring and sharpen
flexible regions of the molecule, which are typically problematic in traditional
consensus averaging.

One of the strengths of DynaMight lies in its targeted approach: rather than
attempting to model the full deformation field like 3DFlex or cryoDRGN, it focuses
on a constrained, interpretable representation via pseudo-atoms. This can be ad-
vantageous for resolution-driven applications but limits its use for conformational
landscape analysis.
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Figure 3.4: Schematic representation of the DynaMight architecture for modeling continuous
heterogeneity in cryo-EM data. The particle images are split into two independent halves to
enable cross-validation. Each half-dataset is processed through its own encoder—decoder, which
maps the particle images into a latent space representation. The latent vectors are aligned to
consensus positions, and particle-specific displacements are predicted. These displacements are
inverted and applied to the corresponding particle images before 3D reconstruction through
backprojection. The resulting unfiltered half-maps are then used to compute the FSC for
resolution estimation and to generate the final postprocessed maps. The loss function enforces
consistency between the latent representations learned from each half-dataset, ensuring that
the model captures genuine structural variability rather than overfitting to noise. This figure
was extracted from the original DynaMight work .

3.3.3 CryoDRGN

CryoDRGN (Cryo-EM Deep Reconstructing Generative Network) is a method de-
signed to address the problem of structural heterogeneity. It is based on a VAE.
The input consists of 2D particle images already selected and cropped, which are
passed through an encoder that maps each image to a Gaussian distribution in a
continuous, low-dimensional latent space. The idea is that each Gaussian in latent
space represents the conformational and/or compositional state of the particle.

The decoder samples a latent vector from this distribution using the repa-
rameterization trick and, together with the particle’s pose vector, generates a 2D
projection of an implicit density map. The training process minimizes the differ-
ence between the real particle image and the simulated image generated from the
volume, using the estimated poses and CTF parameters. As a result, the model si-
multaneously learns a latent space that captures the heterogeneity of the particles
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Figure 3.5: Block diagram of the cryoDRGN framework for heterogeneous cryo-EM recon-
struction using deep generative models. A particle image x; is passed through an encoder
network that infers a low-dimensional latent variable z;, representing the particle's conforma-
tion. Along with the known or estimated image pose ¢;, the latent variable is provided to a
decoder network that reconstructs the corresponding 3D density map V/;. By jointly learning
the encoder, decoder, and latent space, cryoDRGN models continuous structural variability
across the dataset, enabling the generation of a range of conformations consistent with the
experimental images. This figure was extracted from the original cryoDRGN work .

and a continuous 3D generative model.

To represent the density maps, cryoDRGN uses what is referred to as a coordinate-
based neural network. This network learns a representation of the density map
through a function that takes 3D coordinates and the latent vector as input and
returns a density value. Formally, this can be described as V : R3*" — R, where
V' is the learned function and n is the dimensionality of the latent space.

It is important to note that the pose vector in this case is 3D, as the decoder
does not model translations. Instead, it only applies a rotation to the coordi-
nate system in Fourier space and compares the simulated projection with the
translation-corrected and CTF-corrected particle image.

CryoDRGN also includes a suite of interactive tools that are highly valuable
for exploring and interpreting results. Some of these tools enable visualization of
the latent space by applying dimensionality reduction techniques such as PCA, t-
SNE, or UMAP to the learned latent vectors. This allows for the inspection of how
particles are distributed according to their conformational or compositional states.
Clustering techniques such as K-Means or Gaussian Mixture Models (GMMs) can
also be applied, either directly on the latent vectors or on their low-dimensional
representation. This facilitates the identification of discrete structural states or
compositional classes within the dataset.

Furthermore, it is possible to reconstruct density maps for arbitrary points
in latent space, enabling the generation of as many 3D reconstructions as there
are particles used during training. In fact, cryoDRGN can even be used as a
synthetic data generator by sampling new points from the latent space (e.g., from
a standard normal distribution) and generating corresponding 2D projections using
the decoder.

Another useful functionality is the ability to filter out particles, either by re-
moving entire clusters or using an interactive selection tool to manually exclude
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Figure 3.6: Residual block from cryoDRGN architecture

undesired particles. This is particularly helpful for cleaning up the dataset before
further analysis or refinement.

One of the main advantages of cryoDRGN is its ability to represent both
conformational and compositional heterogeneity in a continuous and data-driven
manner. In various studies, trajectories in PCA or UMAP space have been used to
investigate conformational changes, while clustering has been employed to uncover
discrete compositional variability.

Its interactive tools are especially practical for exploring large and complex
datasets, providing an intuitive way to interpret the latent space and generate
hypotheses about structural variability.

However, a notable limitation of cryoDRGN is that it does not currently achieve
high-resolution reconstructions. The reconstructions are typically limited to low
or intermediate resolution, which may not be sufficient for atomic model building
or fine structural interpretation.

The encoder from cryoDRGN’s VAE maps 2D particle images to a distribu-
tion in a low-dimensional latent space, and the decoder maps coordinates in 3D
space together with a latent variable back to a density value. The model learns a
continuous function

fg:(X,Z)'—)pER,

where x € R? are spatial coordinates in the volume, z € R% is a latent vector
describing the conformation, and p is the predicted electron density at that point.

In the residual decoder architecture, the function fy is parameterized by a mul-
tilayer perceptron (MLP) composed of residual linear blocks. Each block computes

y=ReLU Wz +b+ 1), (3.1)

where z is the block input, W and b are the learnable weights and biases, and Re LU
is the nonlinear activation function. The skip connection ensures that the block
can learn residual corrections to the identity mapping, which improves gradient
flow and stabilizes training in deeper networks. An example of a residual block
from cryoDRGN can be seen in Figure

During training, the encoder network g4(z | I, R) processes each 2D particle
image I together with its known or estimated orientation R, producing the mean
p and log-variance log o2 of the approximate posterior distribution in latent space.
A latent vector z is then sampled using the reparameterization trick,

z=p+o0e €~N(0,Id),
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and concatenated to the 3D coordinates x when evaluating the decoder. The de-
coder output is compared against the Fourier transform of the experimental images,
projected to the same orientation R, yielding a reconstruction loss in Fourier space.
The total loss is the sum of the reconstruction term and the Kullback—Leibler di-
vergence between the approximate posterior ¢4(z | I, R) and the prior (0, I), as
in a standard VAE.

In this setup, the residual architecture improves the ability of the decoder to
represent high-frequency details and subtle conformational changes in the protein
structure, while maintaining stability during optimization. The network can be
evaluated on any z in latent space to generate a corresponding 3D density, enabling
both continuous conformational analysis and discrete clustering in the learned
manifold.

3.4 Summary

The methods discussed above address, through various deep learning approaches,
the challenges of pose estimation and structural heterogeneity in cryo-EM data.
Some, such as CryoPoseNet, propose explicit solutions for estimating individual
particle poses. Others, like cryoDRGN, 3DFlex, and DynaMight, are focused on
modeling structural variability through continuous latent spaces or deformation
fields. CryoGAN, in contrast, avoids direct pose estimation and learns a 3D volume
via an adversarial learning framework. In general, these methods tend to focus
on either pose estimation or heterogeneity modeling, but not both simultaneously,
which limits their ability to accurately reconstruct structurally diverse systems
where these two aspects are strongly interdependent.

Another common limitation among these approaches is the difficulty in achiev-
ing high-resolution density maps. Some of these methods have only been validated
on synthetic datasets, where particle orientations and ground-truth structures are
known. This is related to the low SNR problem.

Notably, cryoDRGN and DynaMight can generate one density map per parti-
cle, which is particularly valuable for studying continuous conformational changes
or discrete subpopulations. However, these reconstructions pose significant chal-
lenges for validation: since they are not based on well-defined subsets of particles,
traditional resolution metrics such as FSC cannot be applied, making it difficult
to objectively assess the quality of the resulting maps.

The following chapter presents the method proposed in this work, which aims
to jointly address structural heterogeneity and pose estimation. By leveraging
structural variability as a source of information, the method improves pose es-
timation and captures structural diversity. It combines the noise robustness and
feature learning capabilities of VAEs with a reconstruction and refinement strategy
grounded in maximum likelihood estimation.
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Chapter 4

Proposed Method and Experimental
Setup

This chapter presents the proposed method, detailing each step of the processing
pipeline. Preliminary results are provided to justify specific design choices. Ad-
ditionally, the expected advantages and potential limitations of the method are
outlined based on theoretical considerations.

4.1 Workflow

This work aims to integrate cryoDRGN’s particle feature learning capability with
Frealign’s high-resolution reconstruction and refinement techniques. In addition,
the structural heterogeneity of particles will be leveraged to improve pose esti-
mation by applying various clustering and dimensionality reduction techniques to
identify distinct conformations and/or compositions. These clusters are then pre-
processed to enable refinement and density map reconstruction for each group.
Finally, the resulting poses from Frealign’s refinement are processed to make them
compatible for reuse in cryoDRGN.

This workflow can be seen on Figure The colors are intended to differen-
tiate the Frealign, cryoDRGN, and other blocks implemented in this work. The
yellow block represents Frealign reconstructions and refinements, the red repre-
sents the cryoDRGN VAE training, and the blue blocks are blocks implemented
in this work to achieve compatibility between both tools. The purple block is in-
tended to be a combination of red and blue because the analysis function used was
based on the one proposed by cryoDRGN, but many modifications were made to
it. The light gray blocks outside the iterative cycle represent initial preprocessing,
and various cryo-EM image processing tools can be used.

The iterative block was automated using a main bash script that iteratively
calls the scripts corresponding to each block in the diagram in Figure [4.1
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Figure 4.1: Proposed pipeline for discrete heterogeneous reconstruction and refinement. The
yellow block represents Frealign code, the red block represents cryoDRGN code and the blue
blocks represent code implemented in this work. The purple block intends to be a mix between
red and blue, due to cryoDRGN analysis function was heavily modified. The light gray blocks
are preprocessing steps that can be than with any cryo-EM software.

4.1.1 Reconstruction ab-initio and Initial Refinement

There are no strict constraints for the ab initio reconstruction and initial refinement
steps. The user may use CryoSPARC for both stages, or use cryoDRGN decoder
to generate density maps to be used as reference, and the refinement may be done
with Frealign. The important step here is to obtain initial poses and the CTF
estimation, which will not be refined in this work.

The pipeline also requires at least one reference density map, since Frealign
needs it for pose refinement. There are several possible approaches to obtain such
references. One approach is to use the consensus map employed in each class
refinement; however, this forces all clusters to start from the same initial condi-
tion, which may obscure the true structural heterogeneity of the macromolecule.
A second option is to use the maps generated by cryoDRGN for each cluster.
Importantly, these are not reconstructions of the clusters themselves, but rather
particle-level reconstructions. A practical strategy to obtain representative density
maps in this case is to select the particle closest to the centroid of each cluster and
use its reconstruction. Finally, another option is to perform a dedicated clustering
and reconstruction step with Frealign prior to iteration, thereby generating high-
resolution reference volumes for each cluster. While this last approach is the most
computationally demanding, it provides the most accurate reference density maps
for the initial iteration without compromising the heterogeneous representation.
The latter option was used in the pipeline to achieve the best possible resolution
results.
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4.1.2 CryoDRGN Training

For cryoDRGN training, some hyperparameters had to be defined, such as the
architecture size, minibatch size, number of epochs, and latent space size, among
others. For this purpose, some experiments were conducted using only the training
and analysis blocks, evaluating the network’s performance using the reconstruc-
tions generated by the decoder instead of Frealign. Due to the training compu-
tational time, a smaller model with subsampled images was also used, and the
model’s capacity was evaluated for this case.
The hyperparameters used were as follows:

Hyperparameter Value
Number of initial epochs 40
Number of iterative epochs 5
Batch size 8
Learning rate 0.0001
Number of hidden layers (enc) 3
Number of nodes in hidden layers (enc) | 256/1024
Number of hidden layers (dec) 3
Number of nodes in hidden layers (dec) | 256/1024
Activation function ReLU
Dimension of latent space 8

Table 4.1: Hyperparameters used in the cryoDRGN training block. The number of nodes in
the hidden layers depends on the size of the images; downsampled images use 256 nodes in
each layer, while full-size images use 1024. This decision is due to the fact that smaller images
do not require as much network capacity as full-size images.

The iterative training of the cryoDRGN neural network does not start from
zeros or a random initial condition, as this would entail very high computational
costs. For this stage, an initial training session was performed, which was cut off
before convergence. The weights from the last epoch of this training session were
used as the initial condition for the iterative cycle. This logic is repeated in each
iteration, starting from the weights from the last epoch of the previous iteration
and only training a few epochs. The weights do not change substantially if the
initial pose estimate is relatively good, so it is not necessary to train for many
epochs.

4.1.3 CryoDRGN Analysis

The cryoDRGN analysis block was adapted to emphasize the low-dimensional rep-
resentation of latent space vectors and clustering. Although cryoDRGN supports
3D UMAP projections, their use is not commonly reported in the literature. In this
work, 3D UMAP is incorporated to better capture both local and global structures
in the latent space. Compared to 2D UMAP, the additional degree of freedom in
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Figure 4.2: Different views from 3D UMAP plot of EMPIAR-10076. The colors correspond to
labels that represent the clustering results of applying K-Means in 2D UMAPs.
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Figure 4.3: Figure with zoomed clusters. It can be seen that some of the points were
classified to diferent clusters acording to 2D UMAP, but expanding to 3D it looks like miss-
clasification (blue points around both yellow and orange clusters).

3D allows for a more faithful separation of points, reducing cases where distant vec-
tors in the latent space are projected closely together or even overlap. Figures [£.2]
and [.3]illustrate these benefits. Figure presents two different 3D visualizations
colored by K-Means labels derived from the 2D UMAP, while Figure zooms in
on a region with potentially misclassified points.

Another key component of the analysis is the incorporation of clustering tech-
niques. Previous work has shown that clustering techniques can be improved
with dimensionality reduction algorithms. More specifically, K-Means has shown
improvements in its accuracy with UMAP . But for clusters with arbitrary
shapes, K-Means does not work that well. For this reason, density-based algo-
rithms were added to this analysis, more specifically DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) and HDBSCAN (Hierarchical
DBSCAN).

A major advantage of these methods over K-Means is the fact that they do not
necessarily associate each particle projection with a cluster; some projections can
be considered noise. Figure [4.4] shows an example of 2D UMAP clustering with
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Figure 4.4: 2D UMAP representation of EMPIAR-10076 with different clustering techniques.
Gray dots in Figure represent particle projections that were not assigned to any cluster.

K-Means and HDBSCAN, where the gray dots were not assigned to any cluster.

The fact that some projections are not assigned to any cluster implies that
their poses are not refined. The effect this has on cryoDRGN’s feature learning
will be studied in the next chapter.

4.1.4 Clusters Processing

To achieve iterative refinement by re-estimating clusters on each iteration, it is
essential to ensure that the clusters are consistent between iterations. Otherwise,
a reference density map from another cluster will be used, resulting in particles
being aligned with an unrepresentative volume.
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Figure 4.5: Example of clustering results before and after labels correction using
clusters assighment with the previous iteration

An example of this can be seen in Figure where Figure shows the
2D UMAP clustering results from a previous iteration, Figure shows the 2D
UMAP and calculated clusters on the current iteration, and Figure shows the
results after the cluster assignment between iterations. If consistency in clusters
between iterations is not ensured, it will be difficult to obtain improvements in the
pose estimation. This is why it is necessary to correctly assign the clusters to each
other.

In order to do this, a distance matrix where the number of rows is defined by
the number of clusters in iteration ¢ — 1 and the number of columns is defined
by the number of clusters in iteration ¢ is calculated. The optimal assignment
between clusters is sought by minimizing the total sum of label differences, based
on the Hungarian Algorithm . Readers interested in the details of the algorithm
can refer to the original publication or to standard tutorials that clearly illustrate
its procedure.
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In the case of clustering techniques where the number of clusters is not fixed
(DBSCAN, HDBSCAN), the problem arises of how to handle this. If the number
of clusters in iteration i-1 is greater than the number of clusters in i, there is no
problem; some of the previous clusters are simply ignored. Otherwise, the clusters
that can be assigned are assigned, and the clusters that do not have a counterpart
in the previous iteration are aligned to the consensus volume.

In addition to cluster assignment, this block handles the preprocessing re-
quired to run Frealign. This involves splitting the dataset and generating Frealign
parameter files (.par) by cluster.

4.1.5 Refinement and Reconstruction

Once the clustering and preprocessing are complete, pose refinement is performed
for each cluster in Frealign [20]. To do this, each of the .par files generated in
the previous block is iterated over. The main inputs are the particles in the cor-
responding cluster, along with their .par file and a reference density map. Both
the .mrc file with the projections and the .par file with the parameters were gen-
erated in the cluster processing block. The reference volume is the density map
corresponding to this cluster generated in the previous iteration. In this way, the
projections of each cluster are aligned with a more representative volume. This
processing pipeline can be seen in Figure where the .mrc with projections and
the .par with parameters from the particles are the ones generated in the cluster
processing block. The other parameters are microscope parameters (e.g. beam en-
ergy, spherical aberration, amplitude contrast), macromolecule information (e.g.
molecular mass, symmetry) and preferences of the algorithm (e.g. masking, fre-
quency thresholds, normalization).

4.1.6 Poses Processing

Once the refinement is complete, there are as many .par files with the new poses
as there are clusters. This block groups all the Frealign output files, recovering the
previously saved indices, and generates a pickle file for cryoDRGN to read. This
can be seen in Figure where the number of clusters is K (therefore the number
of .par files is also K). The .par files are unified and converted to a pickle file to
be used as input by cryoDRGN.

For the conversion from a parameter file into a pickle file, it is necessary to
extract the Euler angles and translations from the .par file, then convert the angles
to a rotation matrix and change the translation units from Angstroms to pixels.
In the case of methods that do not necessarily assign a cluster to each projection
(DBSCAN and HDBSCAN), the final pose file will not match the number of pro-
jections used. To avoid this, the particles from the previous iteration are taken
and inserted into the current pose file. Note that this means that the poses of
those projections were not refined in this iteration.
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Figure 4.6: Workflow of the 3D refinement and reconstruction block for a single cluster. The
inputs are the particle projections of a particular cluster (K for example), a parameter file of this
cluster, a reference map and parameters associated with the microscope, the macromolecule,

and Frealign's options.
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processing.
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Figure 4.8: Consensus volume generated with the EMPIAR-10076 dataset from different views.

4.2 Datasets

4.2.1 EMPIAR-10076

One of the datasets used in this work is EMPIAR-10076, titled CryoEM Dataset
of L17-Depleted 50S Ribosomal Intermediates, which contains cryo-EM images of
ribosomal particles from Plasmodium falciparum, the parasite responsible for the
most severe form of malaria [16]. Although this organism is eukaryotic, the dataset
focuses on mitochondrial or apicoplast ribosomes, which are structurally similar
to prokaryotic ribosomes. These consist of a small (30S) and a large (50S) subunit
that together form the functional 70S ribosome.

The ribosome can be viewed as a modular molecular machine whose function
depends on the correct assembly of its components. In this dataset, particular
attention is given to intermediates of the 50S subunit lacking the L17 protein,
which plays a role in the maturation and assembly process. The observed hetero-
geneity is not only due to continuous conformational changes, but also to discrete
compositional variability arising from the stepwise assembly of the 50S subunit
and its potential association with the 30S subunit. Understanding this variabil-
ity is essential for characterizing different structural states and interpreting how
assembly defects may affect ribosomal function. Figure shows a 3D density
map reconstruction of the consensus volume obtained from this dataset from two
different views.

4.2.2 EMPIAR-10180

The second dataset, EMPIAR-10180, corresponds to the pre-catalytic spliceo-
some , a large and transient ribonucleoprotein complex involved in the removal
of introns from precursor messenger RNA. The spliceosome undergoes a complex
assembly and activation process involving large-scale rearrangements of its RNA
and protein components. Capturing these intermediate states experimentally is
extremely challenging due to their short lifetimes and structural diversity.

This dataset is particularly valuable for testing methods aimed at modeling
structural heterogeneity, as it contains particles representing a continuum of con-
formations rather than a single, stable structure.
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Figure 4.9: Consensus volume generated with the EMPIAR-10180 dataset from different views.

4.3 Complementary Tools

All density map visualizations in this document were generated using ChimeraX.
ChimeraX is a molecular visualization program developed by the Resource for
Biocomputing, Visualization, and Informatics (RBVI). The version used in this
document is 1.6.1 and 1.10.1 for fitting atomic models in density maps.

Another tool used to a lesser extent was CryoSPARC . CryoSPARC is a
commercial software widely used by researchers for cryo-EM image analysis and
processing. CryoSPARC was initially part of the pipeline, but due to its incompat-
ibility with the proposed framework (it did not allow for a fully automatization),
it was replaced by Frealign for density map refinement and reconstruction.

Also worth mentioning is IMOD , an open-source software package de-
veloped at the University of Colorado Boulder for the processing, analysis, and
visualization of electron microscopy data. IMOD was useful for efficiently man-
aging the metadata of large .mrc and .mrcs files, and data visualization using
3dmod.

Finally, much of the work was done in the nextPYP container. nextPYP
is an end-to-end cryo-EM and cryo-ET image processing platform. This platform
integrates, among other things, the functionality of cryoDRGN and Frealign, so
the dependencies of both codes are in the container.

4.4  Advantages and Limitations

As mentioned above, three of the main difficulties in macromolecule reconstruction
are low SNR, pose calculation, and their structural heterogeneity.

In the low SNR regime, the processing pipeline does not include an explicit
denoising step. Instead, reconstruction is performed directly from the noisy parti-
cle images, while clustering is carried out in the latent space of a VAE. VAEs are
known to learn latent representations that can be relatively robust to noise, as the
encoder-decoder architecture tends to focus on features that are consistent across
samples and contribute meaningfully to reconstruction. Since random noise does
not help minimize the reconstruction loss, it is often not represented in the latent
space. This property has been leveraged in several applications for denoising and
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dimensionality reduction, even though the model is not explicitly trained for de-
noising in this case. This property makes the identification of heterogeneity more
robust to image noise.

Pose estimation is refined iteratively as distinct compositions or conformations
are revealed within the dataset. This iterative process benefits reconstruction,
since improved identification of heterogeneity leads to better alignment during
refinement with Frealign, ultimately increasing pose accuracy.

The central goal of the proposed method is the identification of structural
heterogeneity. Specifically, it is tailored to detect compositional heterogeneity
through a discrete clustering strategy. Nonetheless, the method will also be ap-
plied to datasets exhibiting significant conformational variability, with the aim of
identifying dominant conformations and evaluating whether this alone can lead to
improvements in the resolution of the reconstructed volumes.

In addition to this, the pipeline offers several advantages. One of them is that,
by updating the poses every certain number of epochs, it helps prevent the network
from getting stuck in local minima, potentially improving cluster identification.

Another advantage is the ability to visualize how clusters evolve throughout
the iterations. This enables better tuning of hyperparameters in clustering tech-
niques such as K-Means or GMM, where the number of clusters is often chosen
only once at the beginning of the process. This approach aligns with the idea be-
hind Multibody Refinement [42], which involves selecting a number of clusters and
classifying the data (either softly or rigidly). The pipeline thus provides support
for determining this critical hyperparameter—a nontrivial benefit.

Additionally, by using Frealign instead of cryoDRGN’s decoder, the pipeline
produces higher-resolution structures, which is inherent to the reconstruction meth-
ods—cryoDRGN does not generate high-resolution density maps. Furthermore,
cryoDRGN reconstructs density maps per particle, while Frealign generates one
map per group of particle projections (in this case, one per cluster).

The cryoDRGN analysis function was modified to incorporate clustering tech-
niques such as DBSCAN and HDBSCAN, and to be able to operate on three-
dimensional UMAP representations.

Although the conformational changes of many macromolecules are, in prin-
ciple, continuous, the use of discrete clustering methods to group particles into
different states can be justified from both practical and theoretical perspectives.
First, in complex biological systems, certain conformational states are often more
stable and therefore more populated. This means that, within a continuous con-
formational space, there may exist local energy minima that act as “attractors”
where the molecule tends to remain for longer periods. These dominant states can
appear experimentally as frequent discrete modes, and discrete clustering can effec-
tively capture them, enabling more accurate reconstruction of these representative
conformations.

Moreover, even if transitions between conformations are smooth, current 3D
reconstruction and pose estimation techniques face limitations in resolution and
sensitivity to noise. In this context, discrete clustering can serve as a form of
regularization, segmenting the latent space into relatively homogeneous regions
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and thereby improving reconstruction quality by averaging similar particles.
Finally, discrete clustering can be useful as an initial exploratory step for an-
alyzing structural diversity in a dataset. By dividing the particles into a limited
number of groups, it provides a simplified representation of the conformational
space, which can aid both in the interpretation and visualization of structural
heterogeneity.
The code of this work is available at https://github.com/DiegoSC13/master
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Chapter 5

Results and Discusion

This chapter provides a comprehensive analysis and comparison of the results
obtained from the various experiments performed. It begins by studying the rele-
vance of poses and showing how they affect the features of the reconstructions. It
then discusses different clustering techniques, and finally presents the experimental
setup.

5.1 Poses Relevance

As intuitive as it may seem, it is important to verify that particle poses play a
significant role in the reconstruction of density maps and the resolution achieved.
To assess this, an initial experiment was conducted in which the original poses
were randomly altered, and cryoDRGN was trained using these modified orien-
tations. This was accomplished by adding random uniform noise to the initial
poses, varying the distribution to analyze its impact on the cryoDRGN’s training
and resulting volumes. The result can be seen in Figure [5.1] which illustrates the
reconstruction of a single particle using cryoDRGN’s decoder. In this case, the
input translations were deliberately perturbed by adding random noise sampled
from a uniform distribution, U(—n,n), with n € 3,5,10,20.The reason for using
the cryoDRGN decoder instead of Frealign is to make the results easily compa-
rable. Since they are different models, the representation of each particle can be
different, and this can affect clustering. The cryoDRGN decoder allows for the
reconstruction of each particle, so only one was selected to display the results.

It can be seen that particle features are lost as the additive noise increases.
One way to assess whether features are being lost is by observing the visibility
of elements such as alpha helices. The presence of well-defined alpha helices in a
density map is an indicator of a high-quality reconstruction. Figure shows a
zoomed area of each particle reconstruction, where some alpha helices can be seen.
The degradation of the helices is more evident in those on the right, where the char-
acteristic helical shape progressively fades and the structures start looking more
cylindrical. The reconstruction with noise sampled from U(—20,20) completely
lost these features.
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Figure 5.1: CryoDRGN reconstruction of a single particle with corrupted translations. The
translations were corrupted by adding random noise sampled from an uniform distribution
U(—n,n). The four maps show the results for n € {3,5,10,20}, arranged from left to right
and top to bottom.

The same experiments were performed for rotations. In this case, uniform
noise is added to the angles before being converted to the rotation matrix used by
cryoDRGN. Instead of representing pixels, the noise in this case represents errors
in degrees.

The results of adding uniform noise to the Euler angles can be seen in Fig-
ures 5.3 and 5.4

The results of both experiments show that incorrect pose estimation leads to
feature loss in the computed reconstructions. This indicates that pose estimation
is indeed a sensitive parameter in reconstruction, and its correct estimation is key
to achieving good resolutions.

5.2 Low-Dimensional Representation

A fundamental part of the proposed pipeline is the accurate identification of dis-
tinct structural states. Without this, it would not be possible to exploit the het-
erogeneity of the macromolecule to refine poses. To achieve this, various clustering
techniques were employed in combination with different low-dimensional represen-
tations. The spaces explored include the original latent space, its representation
in the first two principal components, and UMAP.
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£

Figure 5.2: Zoomed area with some alpha helices for the reconstructions from Figure The
ellipses show the location of alpha helices in each of the reconstructions.

For this analysis, a cryoDRGN model was trained, and the different represen-
tations of the results were evaluated. Figure shows the two-dimensional PCA
and UMAP representation of the EMPIAR-10076 dataset, and Figure [5.6| shows
the same representations of EMPIAR-10180.

Figures and show that it is very difficult to identify clusters in PCA.
This seems to coincide with the variance represented in each of the principal com-
ponents, which represents 39% and 40%, respectively. To further this analysis, the
explained variance ratio was calculated and plotted for both datasets, which can
be seen in Figure Explained variance is a statistical measure of how much
variation in a dataset can be attributed to each of the principal components gen-
erated with PCA. In other words, it tells us how much of the total variance is
“explained” by each component.

Both plots show that variance is spread across many components, so much
of the data’s diversity is lost when using this technique for low-dimensional rep-
resentation. Given this, it is very difficult for PCA to capture the structural
heterogeneity of the proteins under study. Neither the explained variance ratios
nor the difficulty in identifying clusters using PCA on the latent space is unex-
pected, and may in fact generalize to other VAEs under certain conditions. When
the input data contain complex structures and the latent space is low-dimensional,
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Figure 5.3: CryoDRGN reconstruction of a single particle with corrupted rotations. The rota-
tions were corrupted by adding random noise sampled from an uniform distribution U(—n,n).
The four maps show the results for n € {3,5,10,20}, arranged from left to right and top to
bottom.

it is reasonable to assume that the model avoids allocating capacity to represent
redundant information.

This is similar to results already discussed regarding VAEs being good denois-
ers; this is because noise does not contribute to minimizing the VAEs’ loss function.
Likewise, if two features are highly redundant (for example, a linear combination),
then it makes no sense for the model to use two different dimensions to represent
them. The goal of VAE (minimizing a reconstruction loss plus a KL regulariza-
tion term, as can be seen on pushes it toward a compact, non-redundant
representation.

This may also explain why no sharp drops are seen in the explained variance
ratios in Figure The latent space is a dense informative representation, with
little redundancy between components, and therefore applying PCA does not re-
veal structures dominated by a few principal components.

In contrast, Figure shows the presence of very well-defined clusters, and
others that are not so well-defined. The existence of such discrete clusters demon-
strates high compositional heterogeneity in the ribosome and is closely aligned with
the working hypothesis of the proposed pipeline. This is due to UMAP’s ability
to model nonlinear relationships, which allows it to preserve both the global and
local structure of the data.
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Figure 5.4: Zoomed area with some alpha helices for the reconstructions from Figure The
ellipses show the location of alpha helices in each of the reconstructions.
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Figure 5.5: Two-dimensional representations of the latent space learned by cryoDRGN for
the EMPIAR-10076 dataset, using PCA (a) and UMAP (b). These embeddings are used for
clustering and identifying distinct structural states.
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Figure 5.6: Two-dimensional representations of the latent space learned by cryoDRGN for the
EMPIAR-10180 dataset, using PCA (a) and UMAP (b). These visualizations support the
identification of structural variability in the dataset.
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Figure 5.7: Explained variance ratios for the principal components of EMPIAR-10076 (Fig-
ure[5.7a) and EMPIAR-10180 (Figure[5.7b]). The plots show that the variance is spread across
many components, with the first few accounting for less than half of the total variance. This
supports the observation that PCA may not yield easily separable low-dimensional embeddings
for clustering in these datasets.
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Figure 5.8: UMAP representation and classification of structures with and without the central
protuberance (CP) subunit from EMPIAR-10076.

In fact, the subunit called central protuberance (CP) can easily be identified,
and data can easily be classified between particles with this subunit and particles
without it. This separation can be seen in Figure [5.8] where a linear boundary
was drawn to differentiate the two classes. The clarity of this separation suggests
that UMAP preserves relevant structural information present in the latent space,
likely by exploiting nonlinear relationships among the latent variables that PCA
fails to capture.

Unfortunately, Figure shows that probably there will be problems with
the performance of the pipeline in EMPIAR-10180. These results seem to break
with the initial hypothesis that there could be predominant conformations, since
there are no obvious clusters.

For these experiments, the particle filtering proposed by the cryoDRGN exam-
ple repository was used, which retains 139722 of the 327490 particles. A cryoDRGN
model was trained with all the particles, and some clusters were observed. Initially,
running the pipeline with all particles instead of using the cryoDRGN indices was
considered, but this was computationally very expensive; not in training, but in
the pose refinement stage.

Despite this, it was decided to run the pipeline on the filtered EMPIAR-10180
dataset to experimentally evaluate its performance and analyze the results.

As a final analysis for low-dimensional representation, the points closest to the
K-Means centroids with K = 5 in EMPIAR-10076 were reconstructed to view the
volumes found, which in principle should be representative of different ribosomal
compositions. The results can be seen in Figures and which are
the closest points to the centroids for K-Means with K=5 applied to the latent
vectors, their first two components of PCA embeddings, and UMAP embeddings,
respectively.

Both the original latent space and its UMAP representation achieved good
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Figure 5.9: Reconstruction of nearest particles from K-Means centers with K = 5 applied to
z. Each reconstruction should represent a different composition or conformation.

Figure 5.10: Reconstruction of nearest particles from K-Means centroids with K = 5 applied
to PCA. Each reconstruction should represent a different composition or conformation.
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Figure 5.11: Reconstruction of nearest particles from K-Means centers with K = 5 applied to
UMAP. Each reconstruction should represent a different composition or conformation.

results representing heterogeneity with K-Means. Given the potential challenges
associated with the curse of dimensionality, as well as the need for more inter-
pretable visualizations, clustering will be performed in the UMAP space. However,
it is known that dimensionality reduction inevitably entails some degree of infor-
mation loss, which may imply loss of subtle variations present in the original latent
space. To mitigate this problem, three-dimensional UMAPs will also be used. This
way, there is less loss of information, but the results remain interpretable.

5.3 Clustering

The proposed pipeline is capable of applying K-Means, GMM, DBSCAN, and
HDBSCAN clustering techniques. It can even switch between methods across
iterations, although this feature is not explored in the present work. Figure [5.12
illustrates the results of each technique applied to the 2D UMAP representation
of EMPIAR-10076.

Considering the computational cost of each experiment, and the fact that not
only the clustering technique but also the dataset, the input image size, and
the UMAP embedding dimension vary between experiments, we decided to fo-
cus on only two methods for the reported results. The first method chosen was
K-Means, due to its straightforward interpretation and its comparability with pre-
vious works . The second method was HDBSCAN, selected because of its
ability to identify dense clusters regardless of their geometric shape. In addition,
HDBSCAN offers a natural way of handling minority clusters and varying densi-
ties, which stands in contrast with K-Means. Although DBSCAN shares some of
these advantages, HDBSCAN extends the method by removing the need to pre-
define an absolute distance threshold and by providing a hierarchical structure of
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Figure 5.12: Result of applying different clustering techniques to 2D UMAP representation of
EMPIAR-10076

clusters from which the most stable ones can be extracted. This makes HDBSCAN
more robust in high-dimensional embeddings such as those obtained from UMAP,
where density can vary substantially across regions of the latent space. For these
reasons, HDBSCAN is preferred over DBSCAN in this work, as it combines the
flexibility of density-based clustering with improved stability and adaptability to
heterogeneous datasets. This can be seen by comparing the results in Figures
and where the need to find another absolute distance threshold for
DBSCAN is clearly visible. This hyperparameter can vary between iterations,
making the method highly unstable.
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5.4 Workflow

To run the pipeline on the datasets, it was first necessary to ensure that suitable
initial conditions were available. Two key requirements are the initial pose esti-
mations of the particles and the estimation of the CTF. Pose estimation requires
at least one reference density map, which allows the particles to be aligned. This
density map can either be generated with CryoSPARC, Frealign, or any cryo-
EM reconstruction software, or downloaded from EMDB. CTF parameters, on
the other hand, can be obtained using tools such as CTFFIND [41},50], which
is the standard choice in cryo-EM. A practical advantage of working with EM-
PIAR datasets is that they often already include these estimates. In this work,
both the initial poses and CTF parameters were taken directly from EMPIAR.
For EMPTAR-10076, however, the poses were further refined, since the consensus
volume generated from the provided poses initially had very low resolution. These
refined poses, together with the CTF estimates, serve as the input for the iterative
block shown in Figure

The other thing the pipeline needs outside of the iterative block is one or more
volumes for the initial pose refinement. Remember that refinement is performed
first, followed by reconstruction with the refined poses. Refinement requires both
a pose file (in local refinement, which is the case) and a volume to align the poses.
For this step, there are several alternatives.

One is to align all particles with the consensus volume generated for the ini-
tial pose estimation (if a pose file is not used or available). This option has the
advantage that the initial volume likely has better overall resolution because it
was generated with all the data. This is because, with such noisy images, more
particles generally mean better SNR. In fact, this may be one of the reasons why
DynaMight and 3DFlex start from a consensus volume even when they want to
represent data heterogeneity.

On the other hand, if the goal is to emphasize heterogeneity, refining each
cluster on the same density map doesn’t seem like the best approach. This can
lead to heterogeneity being poorly represented for some clusters and pose refine-
ment being suboptimal, since part of the motivation for this work is that aligning
under-represented particles to the consensus volume can lead to poor results. For
this reason, instead of using a single volume, a clustering and density map recon-
struction stage was performed for each cluster. The clusters and volumes obtained
are those used for the first iteration, aligning the clusters as appropriate and using
the logic outlined in Subsection [4.1.4

The selected approach also has a disadvantage, which is essentially obtaining a
structure with lower local resolution. It is important to understand that although
the resolution measure with half FSC maps will be reported in this chapter, a
significant part of the project is based on local resolution, which will be evaluated
by visualizing regions not well represented in the consensus volume or early itera-
tions of the pipeline, and seeing how these regions better fit the atomic model as
iterations progress.

For the experiments reported below, several modifications were introduced to
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Dataset Architecture | Clustering UMAP | ID
and Image Technique
Size
256x3 layers, 2D 1
D=128 3D 2
EMPIAR-10180 102453 Tayors, K-Means (K=7) 5D 5
D=320 3D 4
256x3 layers, - 2D 5
D198 K-Means (K=6) i) 5
K-Means (K=15) gg ;
EMPIAR-10076 5D 9
HDBSCAN D 10
1024x3 layers, B 2D 11
D—320 K-Means (K=6) 5D B
2D 13
HDBSCAN D 11

Table 5.1: Overview of the experimental configurations evaluated, varying the dataset
(EMPIAR-10180 and EMPIAR-10076), the cryoDRGN architecture (number of neurons per
layer and number of hidden layers in both encoder and decoder) and input image size (images
have D x D pixels), the clustering method used (K-Means or HDBSCAN), and the dimension-
ality of the UMAP projection (2D or 3D).

the pipeline. First, the input images were downsampled to evaluate whether mean-
ingful features can still be learned at a lower resolution; accordingly, the cryoDRGN
architecture was also reduced, under the assumption that a smaller network may
be sufficient to capture the relevant variability in smaller images. In addition,
different clustering techniques were tested in order to compare the performance
of approaches based on partitions versus those based on density estimation, thus
assessing the robustness of the results to the choice of method. Finally, the dimen-
sionality of the UMAP embeddings was varied to explore whether increasing the
number of latent dimensions preserves additional structural variability that could
be lost in a strict two-dimensional representation. The experiments performed can
be seen in Table

54.1 EMPIAR-10180

To appreciate the conformational heterogeneity of EMPIAR-10180, one of the first
steps was to visualize the reconstructions of volumes sampled along the first prin-
cipal component obtained with PCA. PCA was chosen in this context not as a
superior alternative to UMAP for clustering, but simply as a straightforward way
to explore the main axis of variability in the latent space. By reconstructing vol-
umes along this principal direction, one can be confident that structural differences
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Figure 5.13: Conformational heterogeneity of EMPIAR-10180 represented along the first prin-
cipal component (PC1) of the latent space obtained with PCA. The scatter plot shows the
distribution of particles, with density indicated by the color intensity. The marginal histograms
display the distribution of values for each component separately. To explore conformational
variability, six points (1-6) were sampled along the first principal component, which captures
the largest source of variance in the data.

present in the dataset are being captured, even if the method is limited to a linear
projection. UMAP remains the preferred technique for nonlinear dimensionality
reduction and clustering, while PCA is used here exclusively to provide an intu-
itive validation that the learned latent space encodes meaningful conformational
variability. Figure shows the PCA results in a hexbin plot along equidistant
points taken along the principal axis, choosing the 5th percentile as the starting
point and the 95th percentile as the ending point.

To visualize conformational changes, the nearest embeddings to those selected
on the principal axis were reconstructed, using the cryoDRGN decoder to recon-
struct the desired particles. The resulting density maps can be seen in Figure [5.14
where it is possible to observe, for example, how the reconstructions get curved.
This result is consistent with the density maps in Figure

Another way to visualize these results is by aligning the density maps, as can
be seen in Figure[5.15a]and [5.15b] where the first shows all the maps in Figure[5.14
aligned, and the second shows only the maps corresponding to the start and end
points.

These figures provide a better comparison of the relative motion of the particle,
where it can be seen that not the entire macromolecule is moving, but only the so-
called SF3b subcomplex [65]. This rotation occurs continuously, which is consistent
with the idea of conformational heterogeneity. Since the motion is continuous, if
there are no predominant conformations, it is very difficult for UMAP to identify
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Figure 5.14: Reconstructed density maps of EMPIAR-10180 corresponding to the six points
sampled along the first principal component in Figure Each map is labeled (1-6) according
to its position in the PCA plot, ordered from left to right along the principal axis. The gradual
structural changes observed across these reconstructions (e.g., how maps become curved)
illustrate the conformational heterogeneity encoded in the latent space.

(a) Reconstructions of the particles nearest (b) Reconstruction of the first and the last
to each point from Figure point from Figure

Figure 5.15: Superimposed density maps of EMPIAR-10180 along the first principal compo-
nent, corresponding to the reconstructions shown in Figure Figure [5.15a| overlap of all
six reconstructions, highlighting the gradual structural variability observed across the princi-
pal axis. Figure is a direct comparison between the first and the last reconstruction,
which makes the conformational change more apparent. The region that exhibits the most
pronounced movement corresponds to a subunit called SF3b, providing visual evidence of con-
formational heterogeneity.
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Figure 5.16: Clustering results from applying K-Means with K = 7 to 2D UMAP from
EMPIAR-10180.

clusters. This is partly because there are none, and the proposed method will not
perform well a priori, but it was decided to verify this experimentally anyway.

To evaluate the pipeline, both large and small network architectures were
tested, and clustering was performed on 2D and 3D UMAP embeddings. HDB-
SCAN was not employed, as Figure 5.6 does not reveal well-separated, high-density
clusters. Under these conditions, the algorithm would be unable to identify mean-
ingful clusters. A value of K = 7 was selected based on the EMPIAR-10180
dataset and the density maps deposited in the EMDB from that study. However,
this number should not be considered a strict reference, since a substantial fraction
of particles was filtered out during their processing.

The results of applying K-Means clustering with K=7 to the 2D UMAP em-
bedding obtained from the small architecture are shown in Figure [5.16

These clusters do not appear to have any major significance, but rather appear
to be forced limitations to obtain the requested groupings. This result is consistent
with what was expected, since no well-defined groupings were initially visible.

It is important to note that for datasets dominated by continuous conforma-
tional changes, this approach is not expected to perform particularly well. Methods
such as the original cryoDRGN pipeline or 3DFlex are specifically designed to ad-
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Figure 5.17: Example of reconstruction obtained after clustering. The SF3b subunit noticeably
loses its local resolution.

dress this type of variability. At best, clustering on UMAP embeddings might
capture discrete differences associated with the most prevalent conformations, or
subtle variations within each group. However, in the case of EMPIAR-10180,
UMAP does not produce well-defined clusters, and consequently, clustering algo-
rithms applied to these embeddings are unlikely to reveal clear conformational
heterogeneity.

When reconstructing the different clusters, it was observed that most were very
similar. One of the reconstructions can be seen in Figure where a significant
loss of resolution can be seen in the subunit called SF3b subcomplex, while the
rest of the particle appears to retain it. This is because different conformations
are not being captured by clustering; rather, this conformational heterogeneity is
still present in each cluster, causing averaging to return poor results for the mobile
part.

Because most of the reconstructions are similar to the one in Figure it
can be concluded that the method fails to detect conformational heterogeneity,
at least in cases where the transition between states is smooth and there are no
predominant states that can be visualized as clusters in UMAP. This was expected,
given the nature of both UMAP and the clustering used.

UMAP is a dimensionality reduction method that seeks to preserve the neigh-
borhoods of the data, making it naturally useful for maintaining clusters in high-
dimensional data. In the case of conformational heterogeneity, it does not seek to
identify clusters, but rather trajectories, which is why analyses such as reconstruct-
ing density maps along the principal component of the data are more revealing.
In fact, due to the nature of particle motions, it is possible that some particles
have similar features, but others do not. This prevents UMAP from correctly
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interpreting this heterogeneity.

On the other hand, the clustering in both cases is rigid. Techniques that allow
the data to partially belong to more than one cluster were not used, which could be
useful for showing transitions between clusters and relating them to conformational
variations. For this purpose, it may be an option to study clustering techniques
such as GMMs or their variants, where each particle has a probability of belonging
to each cluster.

5.4.2 EMPIAR-10076

For K-Means clustering, two different K values were tested, based on the results
obtained in the original work of this dataset [16]. In this work, the first 3D clas-
sification produced six structural groups (A-F) with average resolutions ranging
from 3.7 A to 7.9 A.

o Group A: incomplete structure with several missing regions.
e Group F: a complete small subunit, expected from the sample preparation.

Groups A and F were not analyzed further. Groups B-E correspond to a larger
subunit at different formation stages, mainly differing in the presence or absence
of two key regions: the top (CP) and the base.

e B: missing both regions, the least complete.

e C: includes the base but still missing the top.
e D: includes the top but missing both the base.
e E: includes both the top and the base.

A second classification of C, D, and E produced twelve subgroups at 4-5 A resolu-
tion, without revealing additional clear differences. Overall, this process described
about 80% of the particles, ranging from very incomplete structures to ones almost
identical to the final form. Figure shows these results, along with the number
of particles and resolution achieved in each class.

Given these results, K = 6 and K = 15 were selected for K-Means clustering.

The results obtained for the small architecture with downsampled images, K-
Means with K = 6 and 2D UMAP can be seen in Table

The results show notable improvements in all clusters. This is partly due to
a low initial resolution, possibly due to poor clustering performance. Neverthe-
less, the improved resolution is consistent, and even better resolutions than those
obtained in the original work can be seen.

In this case, we must also be careful with the performance of K-Means, as it can
group the data differently between iterations, making them truly representative of
the same composition. This can be seen in Figure [5.19] where clusters 2 and 3
are now considered a single cluster, and cluster 0 is now considered two distinct
clusters.
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Figure 5.18: Hierarchical scheme of EMPIAR-10076 heterogeneity. (A) Density maps recon-
structions of each class. Labels show the number of particles included at each refinement
stage and the global resolution (Res) of the resulting maps. The super-classes (A-F) and the
sub-classes (C1-E5) obtained from a second classification/refinement round are shown. (B)
Side, front, and top views illustrate regions of EM density missing in each super-class compared
to a native 50S subunit. The reference subunit is displayed as EM density derived from the
mature ribosome LSU model (PDB: 4YBB). All structures are aligned for direct comparison,
with dotted lines indicating key reference points. The figure was extracted from [16].
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Cluster iterQ iterl iter2 iter3 iterd iterb iter6 iter7 iter8 iter9
cluster0 6.62 3.63 347 357 348 3.46 3.74 38 392 3.65
clusterl 6.85 4.14 397 396 4.00 3.98 398 3.95 399 4.03
cluster2 7.22 7.46 6.69 6.09 587 500 3.99 483 824 990
cluster3 723 7.66 6.33 590 579 5.08 561 545 538 5.50
cluster4 6.82 396 378 3.8 383 383 381 3.74 377 3.85
clusterb 749 549 509 504 5.14 511 4.09 3.7% 3.75 6.82

Table 5.2: FSC values for EMPIAR-10076 with K-Means, 128x128 images and 2D UMAP.
The numbers in bold represent the best resolution for a given cluster.

Iteration 6 Clusters
Iteration 5 Clusters Cluster 0

Cluster 1
Cluster 2
Cluster 3

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Cluster 4
Cluster 5

UMAP2
UMAP2

5o 75 0
UMAP1 UMAP1

(a) Iteration 5 (b) Iteration 6

Figure 5.19: UMAP plots with the clustering results of K-Means in different iterations. Fig-
ure represents the clustering at Iteration 5, while Figure shows the clustering at
Iteration 6. The figure demonstrates how K-Means can adjust the number and boundaries of
clusters between iterations, sometimes merging clusters that were previously separate or vice
versa.

This case is not corrected by align_clusters.py because it is not really an
alignment problem between clusters, but rather a performance issue of the clus-
tering technique by taking random centroids in each iteration. This alters the
performance of the algorithm because the affected clusters will be aligned with
density maps that correspond to them, in this case clusters 3 and 5. One way to
solve this is by fixing the initial centroids. This can be counterproductive as a
standard approach, because you are biasing the algorithm based on the clusters
obtained in a certain iteration. Furthermore, although UMAP maintains global
and local features, phenomena like those in Figure can occur. These are due
to the fact that UMAP does not preserve the orientation or scale of the original
space, which implies that the embeddings can be rotated, mirrored, or even scaled
even if the data are very similar to each other. What is preserved in UMAP are
actually the k nearest neighbors and, consequently, the closeness between points.

Note that in this case, align_clusters.py is able to correctly align the clus-
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Iteration 3 Clusters
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(a) Tteration 2 (b) Iteration 3

Figure 5.20: UMAP representation of the data in iterations 2 and 3 [5.20b} illustrating
how projections of very similar data can appear mirrored, while still preserving both the global
and local structure of the clusters.

Cluster iterQ iterl 1iter2 iter3 iterd iterb iter6 iter7 iter8 iter9
cluster0 7.93 7.38 6.54 6.26 6.07 6.07 5.89 636 7.81 8.68
clusterl 7.88 586 5.07 5.05 509 509 507 524 534 547
cluster2 3.92 3.78 3.72 3.81 3.82 383 3.77 3.73 3.79 3.79
cluster3 5.31 391 3.67 374 374 369 371 373 380 3.79
clusterd 4.15 395 3.89 394 394 396 394 394 397 4.02
cluster5 3.64 3.87 386 4.04 4.00 398 394 395 399 4.03

Table 5.3: FSC values for EMPIAR-10076 with K-Means, 128x128 images and 3D UMAP.
The numbers in bold represent the best resolution for a given cluster.

ters. This is because the general structure of the data is maintained, and the
performance of the clustering algorithm is similar in both cases.

Similar to the K-Means problem, in UMAP, one could also start from a non-
random initial arrangement (i.e., the results of a previous iteration). In fact, by
setting the initial conditions for K-Means and UMAP, more stable results could
be achieved. This approach seems reasonable after a certain number of iterations,
where the pipeline does not show large variations in the results obtained between
iterations. Although it seems like a promising idea, it will not be explored in this
work.

The results for the three-component UMAP case can be seen in Table In
this case, the improved resolutions occur at earlier iterations. This may be partly
due to the fact that the initial iterations in this case are much better than those
in the two-component UMAP case, which may be due precisely to the additional
degree of freedom in representing the data.

Another way to analyze the obtained density maps, in addition to calculating
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(a) Region of initial density map (b) Region of iterative refined density map

Figure 5.21: Comparison between the initial density map and the refined density map
after iterative processing (5.21H), overlaid with the corresponding atomic model. The black
ellipse highlights a region where the refined map more closely follows the atomic structure:
the density better encloses the backbone and side chains of the model, aligning with bonds
and atoms. Such correspondence between density and the atomic model is an indicator of
improved local resolution.

the FSC and looking for features such as well-defined alpha helices, is to compare
both results with the atomic model.

To do this, the atomic model is fitted to the obtained density maps, in the
same way as shown in Figure and their similarity to each other is studied.

Remembering that an atomic model shows the location of each atom in the
protein and its peptide bonds, the goal is for the model to accurately reflect these
geometries. When an atomic model is aligned with a density map, each atom
or group of atoms should correspond to a density peak in the correct location.
In high-resolution maps, these peaks are not diffuse, but rather well-defined and
centered on the atom’s position. Figure [5.21] illustrates this principle. In the
initial map , the density around the highlighted region is diffuse and does
not fully capture the features of the atomic model. After iterative refinement
, the same region shows a much better match. The density follows the
contour of the polypeptide more closely, with bridges and bulges that align with
the positions of bonds and side chains. This improvement demonstrates the effect
of refinement in enhancing the quality of the reconstruction, providing maps that
are more consistent with the atomic model and therefore more useful for structural
interpretation.

Tables and [5.3] show that the last iterations can become unstable. This is
due to a Frealign parameter that defines a resolution threshold. This parameter
acts as a low-pass filter when aligning the images, filtering out high frequencies to
avoid overfitting with the noise. There is a trade-off in this component because by
not using high-frequency information, image details may be lost when aligning, and
a very low threshold can make it difficult to obtain high-resolution reconstructions.
The decision was to lower this threshold depending on the iteration number, using
the values in Table [5.4]
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Iteration | EMPIAR-10076 | EMPIAR-10180
0 6 6
1 6 6
2 ) 5
3 4 4
4 3 4
) 3 3.5
6 3 3.5
7 2.7 3.5
8 2.7 3
9 2 -

Table 5.4: High-resolution limit values by iteration in Angstroms, for EMPIAR-10076 and
EMPIAR-10180.

It is important to note that this parameter does not directly apply a filter to the
images, nor does it cause information loss. Instead, it limits the information used
for image alignment to frequencies below the specified threshold. High-resolution
reconstructions can still be obtained even with a relatively high value for this
threshold, if the alignment is accurate enough using only low-frequency informa-
tion. The strategy of iteratively decreasing the resolution limit is standard practice
in cryo-EM, as it helps the alignment algorithm by eliminating high-frequency noise
components. In fact, it is common in global refinement approaches to start with
a resolution limit of 10A or even higher [32].

It is also important to ensure that this threshold does not exceed the Nyquist
frequency, which is defined as:

1

_ 5.1
2 x pizel size (5.1)

fNyquist =

If the frequency threshold is higher, there will be no information and therefore
the only thing added to the alignment is noise. The final iteration intentionally
exceeds fnyquist t0 show how this affects the FSC.

The pipeline results using HDBSCAN for two- and three-component UMAP
can be seen in Tables and respectively.

In both cases, it can be observed that there are incomplete rows. This is
because HDBSCAN does not have a fixed number of clusters, so they do not nec-
essarily match between iterations. An example of this can be seen in Figure [5.22]
where an additional cluster was identified in iteration 3. In fact, in both experi-
ments, the incomplete row corresponds to that specific cluster.

One limitation of the method is that if no reconstruction of that cluster is found
in the previous iteration, the particles are aligned with the consensus volume. In
this case, this can be particularly detrimental, as it is a very small cluster, which
might not be well represented by the consensus volume due to the weight of all the
other particles in the reconstruction. This, coupled with the few particles used for
refinement, results in a very low resolution for that class.
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Cluster iterQ iterl iter2 iter3 iterd iterb iter6 iter7 iter8 iter9

clusterO 3.94 3.78 3.72 3.80 3.81 3.77 3.77 374 3.77 3.83
clusterl 5.35 5.20 5.00 5.01 5.09 5.09 503 515 536 5.37
cluster2 4.16 395 3.91 394 396 394 393 393 400 4.03
cluster3d 3.66 3.52 3.47 354 349 3.43 344 3.37 343 3.45
cluster4 10.18 9.59

clusterb 7.75 746 7.15 6.09 572 484 4.79 721 782 884
cluster6 9.85 10.52 10.75

Table 5.5: FSC values for EMPIAR-10076 with HDBSCAN, 128x128 images and 2D UMAP.
The numbers in bold represent the best resolution for a given cluster. Incomplete rows corre-
spond to clusters that were not identified in all iterations.

Cluster iterQ0 iterl iter2 iter3 iterd 1iterd iter6 iter7 iter8 iter9

cluster0 3.65 3.51 348 354 3.46 343 341 3.34 3.34 4.65
clusterl 7.74 742 6.70 6.16 6.00 5.89 5.77 6.57 7.85 9.27
cluster2 4.14 395 3.91 394 395 395 396 478 490 9.53
cluster3 5.33 521 504 4.99 509 5.04 1037 14.37 16.73 10.56
cluster4 394 3.76 3.72 381 383 3.76 370 3.68 3.74 388
cluster6 10.05 10.59

Table 5.6: FSC values for EMPIAR-10076 with HDBSCAN, 128x128 images and 3D UMAP.
The numbers in bold represent the best resolution for a given cluster. Incomplete rows corre-
spond to clusters that were not identified in all iterations.

Regarding the overall workflow, it is worth asking whether updating the clus-
ters actually has any effect. An important experiment to validate the workflow is
to use only refinement and reconstruction, without updating the clusters in the
iterative block. This would involve modifying the block diagram to function like
the one in Figure where the training of cryoDRGN, the analysis of the results
obtained, and the processing of the clusters with the various techniques mentioned
above are all performed once. In this case, the .par file generated by the refine-
ment function becomes the reference parameter file for the next iteration, and
reconstructions are generated at each iteration to be used as the reference volume
for the next iteration.

These experiments were performed using the high-resolution limits in Table
so that the results are comparable. The FSC results for each cluster and iteration
can be seen in Tables and

The results appear promising; however, an unexpected observation emerges.
The resolution continues to improve even when operating below the Nyquist fre-
quency, a behavior that should not occur. After inspecting the volumes, it was
found that they were identical beyond a certain point, and that what was aligning
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HDBSCAN, where six clusters are identi- ing seven clusters.

fied.

Figure 5.22: UMAP plots showing the clustering results of HDBSCAN at different iterations.
Figure[5.223] represents the clustering at Iteration 2, while Figure [5.22b] shows the clustering at
Iteration 3. The figures show that the number of clusters detected by HDBSCAN can change

between iterations.
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Figure 5.23: Workflow without iterative clustering.
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Cluster iterl iter2 iter3 iterd iterd iter6 iter7 iter8 iter9

cluster0 3.67 3.53 3.58 348 341 338 335 334 3.28
clusterl 4.21 4.02 4.00 396 391 387 384 382 3.75
cluster2 7.53 6.57 596 580 5.73 5.69 5.69 5.69 7.52
cluster3 7.66 6.53 6.12 6.04 599 5.96 598 598 7.67
cluster4 4.00 3.85 3.87 3.82 374 3.69 3.63 3.60 3.53
clusterb 5.70 5.19 5.13 521 5.18 5.13 5.06 4.99 5.09

Table 5.7: FSC values for EMPIAR-10076 with K-Means (K=6), 128x128 images and 2D
UMARP iterating only the refinement. The numbers in bold represent the best resolution for a
given cluster.

Cluster iterl iter2 iter3 iterd iterd iter6 iter7 iter8 iter9

cluster0 7.63 7.40 7.26 724 721 7.20 723 724 7.79
clusterl 7.61 737 7.16 7.06 593 590 590 5.89 7.59
cluster2 3.81 3.77 3.84 378 370 3.66 3.62 3.60 3.54
cluster3 5.19 5.04 5.03 5.08 5.07 5.06 5.01 4.99 5.05
cluster4 399 395 396 393 388 38 383 381 3.76
clusterdb 3.56 3.52 3.56 3.46 3.39 337 335 334 3.28

Table 5.8: FSC values for EMPIAR-10076 with K-Means (K=6), 128x128 images and 3D
UMAP iterating only the refinement. The numbers in bold represent the best resolution for a
given cluster.

Cluster iterl iter2 iter3 iterd iter5 iter6 iter7 iter8 iter9

cluster0 3.83 3.79 3.84 3.79 3.72 3.68 3.64 3.62 3.54
clusterl 5.21 5.03 5.00 5.04 5.03 5.02 499 4.97 5.05
cluster2 4.00 395 396 392 388 3.8 383 381 3.79
cluster3 3.58 3.52 3.59 348 339 337 335 334 3.28
cluster4 9.86 9.77 9.65 9.62 9.65 9.70 9.98 10.18 14.85
clusterb 7.43 7.11 598 575 494 489 486 4.84 6.97

Table 5.9: FSC values for EMPIAR-10076 with HDBSCAN, 128x128 images and 2D UMAP
iterating only the refinement. The numbers in bold represent the best resolution for a given
cluster.
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Cluster iterl iter2 iter3 iterd iterb iter6 iter7 iter8
cluster0 3.57 3.53 3.58 3.48 341 338 336 3.35
clusterl 7.43 7.06 6.15 6.01 5.93 5.88 590 5.88
cluster2 4.01 3.97 396 394 390 3.88 3.85 3.84
cluster3 5.21 5.05 5.02 5.06 5.04 5.03 5.00 4.98
cluster4 3.82 3.78 3.82 3.81 372 368 3.62 3.59

Table 5.10: FSC values for EMPIAR-10076 with HDBSCAN, 128x128 images and 3D UMAP
iterating only the refinement. The numbers in bold represent the best resolution for a given
cluster.

was particle noise due to overfitting.

Overfitting in the context of cryo-EM occurs when the refinement algorithm
begins to fit not only the true structural signal of the particle images but also the
random noise inherent to the dataset. This happens because, with repeated expo-
sure to the same particles in the same grouping, the algorithm progressively adapts
its model to reproduce small, noise-driven variations that are not representative
of genuine structural features. As a result, the refined map may appear to display
high-resolution details that are not supported by reproducible signals, leading to
artificially inflated resolution estimates and potentially misleading structural in-
terpretations.

The mechanism behind this overfitting is straightforward. Each refinement it-
eration updates particle orientations, shifts, and weighting parameters to maximize
the agreement between the 3D reconstruction and the experimental data. When
the same set of particles and their corresponding noise patterns are repeatedly
presented to the algorithm, these adjustments become increasingly specialized to
the dataset, rather than to features common to all possible instances of the un-
derlying structure. This phenomenon is especially problematic when working with
low SNR data, where noise patterns can be mistaken for structural information,
and when the dataset contains conformational or compositional heterogeneity that
is not explicitly modeled.

Figure shows an example of overfitting, where even the noise features
are matched between maps, a clear sign that the reconstruction is fitting to noise
rather than the true signal.

The dynamic clustering proposed in the pipeline helps to mitigate this ef-
fect. By reassigning particles to different clusters between refinement cycles, the
refinement process is exposed to slightly different noise realizations in each iter-
ation. This approach reduces the likelihood of the algorithm overfitting to the
noise associated with a fixed subset of particles, as it effectively acts as a form
of regularization similar in spirit to stochastic optimization techniques in machine
learning. In this way, the refinement is forced to adapt to structural features
that are consistent across varying subsets, thereby improving the robustness and
generalizability of the final reconstruction.

To avoid confusing good reconstructions with overfitting, it is necessary to
visualize the reconstructions, compare them with each other, and fit them with
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(a) Density maps from different iterations. (b) Noise captured in both reconstructions.

Figure 5.24: Example of overfitting during excessive Frealign iterations. Figure shows
nearly identical density maps despite the intersection of the FSC with the threshold increasing,
indicating overfitting. Figure shows that even the noise features are matched between
maps.

the corresponding atomic model.

Experiments were then performed using a larger architecture and with the
original image size (D = 320). The results of applying UMAP with two and three
components for this architecture can be seen in Figures and

In both results, the appearance of a new outlier-like cluster can be observed.
This may be more consistent with the results reported in the original work on the
dataset, where there are two classes with around two thousand particles.

Figure shows a reconstruction of this new cluster, which appears to have
a new subunit that none of the previous particles had. This ribosomal subunit is
called the 308S.

Figure [5.28 shows an example of the atomic model of the ribosome, which is
made up of two main parts: the large subunit, called 50S, and the small subunit,
called 30S. The 50S subunit can be thought of as the part where the assembly
of proteins takes place, while the 30S subunit is mainly responsible for reading
the genetic instructions. When both come together, they form the complete 70S
ribosome.

The results for the larger architecture can be seen in Tables and

Regarding clustering with HDBSCAN, the results can be seen in figures [5.29
and These show that the method can be very unstable, with the number of
clusters changing abruptly between iterations.

Another observation that can be made about clustering with this architecture,
and which could even be seen in unclassified UMAPs, is that by working with a
deeper architecture and the original size of the images, the network may be able
to identify more clusters.

This raises the question of whether, in this dataset and with this architec-
ture, it is possible to identify predominant conformations. This was reviewed, but
the reality is that even in HDBSCAN iterations with more clusters identified, all
reconstructions have compositional differences.
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UMAP 2D

UMAP2

UMAP1

Figure 5.25: 2D UMAP of EMPIAR-10076 for the large cryoDRGN architecture and the original
image size.
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Figure 5.26: 3D UMAP of EMPIAR-10076 for the large cryoDRGN architecture and the original
image size.
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(a) Atomic model of 50S subunit

(¢) Atomic model of 70S subunit

Figure 5.28: Atomic models of 50S subunit, 30S subunit and 70S subunit. The 70S subsunit
is composed by subunits 50S and 30S.
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Cluster iter0 iterl iter2 iter3 iterd iterd iter6 iter7 iter8 iter9
cluster0 531 5.23 591 585 524 549 567 5.21 546 6.20
clusterl 7.77 747 723 7.06 563 479 439 406 3.88 7.35
cluster2 4.10 3.89 388 394 395 393 395 388 3.83 3.89
cluster3 3.63 3.51 346 356 3.53 350 348 344 344 3.42
cluster4 3.89 3.77 3.69 3.80 382 381 377 3.72 372 3.75
clusterb 5.18 5.03 491 4.53 469 460 4.55 4.64 4.75 4.94
Table 5.11: FSC values for EMPIAR-10076 with K-Means (K=6), 320x320 images and 2D

UMAP. The numbers in bold represent the best resolution for a given cluster.

Cluster iterQ iterl iter2 iter3 iterd iterd iter6 iter7 iter8 iter9
cluster0 5.34 5.23 592 583 5.23 559 554 536 534 6.18
clusterl 7.75 7.46 721 586 5.71 567 4.73 4.68 4.66 7.27
cluster2 5.23 5.08 4.95 489 5.03 499 498 4.79 481 5.03
cluster3 393 3.77 3.71 381 382 379 377 371 3.69 3.73
cluster4 3.66 3.52 347 3.56 352 347 347 346 343 3.41
clusterb 4.14 393 387 394 395 391 391 387 3.84 3.87
Table 5.12: FSC values for EMPIAR-10076 with K-Means (K=6), 320x320 images and 3D

UMAP. The numbers in bold represent the best resolution for a given cluster.
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Figure 5.29:
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Figure 5.30: 3D UMAP clustering with HDBSCAN between consecutive iterations.

The FSCs for HDBSCAN can be seen in Tables and In these
experiments, it can be seen that the number of clusters identified increases in both
cases, and the number of clusters identified in each iteration is considerably more
irregular than in other experiments with HDBSCAN. This becomes a problem
during refinement, because both the number of clusters and the size of each cluster
vary significantly, and this can lead to instability between iterations. In fact, the
results obtained show poor resolution in most of the clusters.

To conclude the experiments, and continuing along the line of conformational
heterogeneity, an experiment with K = 15 was performed. Figure [5.31] shows
the clustering results obtained with the smaller architecture using downsampled
images at 128 x 128 pixels.

The clustering performance remains poor, once again suggesting that the data
are being forced into an inappropriate number of clusters. It is worth noting that,
even when predominant conformations are present and correctly captured by the
network, the expected outcome in UMAP visualizations is to observe some degree
of clustering, even if the clusters appear less distinct or more diffuse than in the
case of compositional heterogeneity.
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Cluster iterl iter2 iter3 iterd iterd iter6 iter7 iter® iter9

cluster0O 5.19 599 590 536 563 531 514 5.10 5.89
clusterl 525 3.76 5.05 3.66 350 516 344 3.41 5.02
cluster1l0 4.30 3.53 4.28 4.18
cluster1ll 4.90

clusterl2 5.31

cluster2 3.80 3.75 3.82 384 379 378 374 3.70 3.82
cluster3 7.76 6.39 538 599 591 535 522 504 5.02
clusterd  7.45 7.18 584 485 477 4.63 594 579 5.63
cluster& 4.14 4.32 4.18
cluster9 3.54 4.19 3.49 3.51

Table 5.13: FSC values for EMPIAR-10076 with HDBSCAN, 320x320 images and 2D UMAP.
The numbers in bold represent the best resolution for a given cluster. Incomplete rows corre-
spond to clusters that were not identified in all iterations.

Cluster iterl iter2 iter3 iterd iterd iter6 iter7 iter8 iter9

cluster0  5.18 594 593 546 550 549 5.15 5.18 5.82
clusterl 746 720 698 6.84 6.06 4.74 595 581 5.65

cluster10 430 431 4.28 4.19
clusterll 514 4.98 498
cluster12 5.19 4.90

cluster? 3.78 3.73 3.79 3.75
cluster3 3.49 3.44 5.07 5.50

clusterb 496 4.36 4.38

cluster7 3.51 349 3.33 3.41 3.48 3.45 3.56
cluster8 419 4.35 422 424 4.18 4.27
cluster9 3.72 3.72 3.71 3.80

Table 5.14: FSC values for EMPIAR-10076 with HDBSCAN, 320x320 images and 3D UMAP.
The numbers in bold represent the best resolution for a given cluster. Incomplete rows corre-
spond to clusters that were not identified in all iterations.
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Iteration 8

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9
Cluster 10
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Figure 5.31: 2D UMAP K-Means clustering with K = 15.

Cluster iterl iter2 iter3d iterd iterb iter6 iter7 iter8 iter9
cluster0 860 7.74 7.56 807 831 827 990 14.74 5.06
clusterl 806 791 764 791 783 4.89 818 9.79 6.15
cluster2 796 793 762 816 777 821 9.64 11.02 5.78
cluster3 7.97 796 784 7.88 785 839 9.53 1043 4.62
cluster4 800 5.61 5.32 503 800 861 600 563 4.27
clusterb 4.21 526 4.74 7.78 523 521 4.64 893 5.06
cluster6 442 4.60 4.25 440 432 458 437 4.06 3.93
cluster7 4.12 4.03 4.40 4.08 4.01 4.27 4.35 4.25 848
cluster8 4.06 4.14 490 429 423 426 442 454 839
cluster9 430 495 4.83 4.82 4.77 484 485 513 872
clusterl0 4.14 4.32 464 4.86 4.75 4.86 481 5.09 9.24
clusterll 5.15 4.40 4.04 3.97 4.04 4.12 4.13 4.02 &8.17
cluster12 4.61 422 4.02 3.94 409 4.15 4.15 395 4288
cluster13 4.22 430 4.31 4.08 4.08 4.17 426 4.19 4.16
clusterl4 4.31 481 4.05 455 467 434 479 498 4.06

Table 5.15: FSC values for EMPIAR-10076 with K-Means (K=15), 128x128 images and 2D
UMAP. The numbers in bold represent the best resolution for a given cluster.
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Class | Method | Iteration | Resolution | Reference
A 11 7 5.21 6.5
B 11 3 4.53 4.5
C 11,12 2,8 3.69 3.7
D 11 8 3.83 4.0
E 10 7,8 3.34 3.7

Table 5.16: Comparison of results obtained with different methods. Class labels were assigned
according to their definitions in the original study [16]. Clusters were aligned to each class to
determine their correspondence.

5.5 Concluding Remarks

The density maps with the highest resolutions were compared against the corre-
sponding entries available in the EMDB. Reconstructions whose reported resolu-
tion limits exceeding the Nyquist frequency were excluded from further considera-
tion. Additionally, each map was inspected to ensure that the observed resolution
genuinely reflected structural detail rather than artifacts caused by overfitting,
thus confirming that the resolution values were supported by meaningful signal.

Table 5.16]shows the resolution obtained for each class, the method used (using
the IDs from Table , the iteration in which this resolution was obtained, and
the resolution of the EMDB density maps used as a reference.

The results obtained show that the K-Means method with K = 6 on the
large architecture and 2D UMAP performed better, achieving the best resolution
in four of the five density maps. This is due in part to the stable performance
of K-Means across the iterations and the unstable behavior of HDBSCAN, but
also to the architecture’s ability to better capture the image features. This is
particularly noticeable in class A, which could be identified as a class, allowing for
a substantial improvement in its reconstruction. It is also worth mentioning that
better resolutions are obtained for classes D and E in most experiments.

Figure [5.32] shows in the top row the EMDB density maps, and in the bottom
row the best density maps obtained with the proposed method.

At first glance, it is very difficult to distinguish improvements between the
different maps. The most notable case is in class A, which also shows the greatest
improvement in resolution. Figures [5.33] and [5.34] show examples where the
improvement can be seen in this class. It is worth noting that the best resolution
can be observed in the 50S subunit. Although the network managed to capture
this class, the representation of the 30S subunit is still poor.

In the local comparisons between the atomic model and the density maps, clear
differences can be observed in the degree of fit depending on the region analyzed.

In Figure which corresponds to an area containing helices and loops, the
map obtained with the proposed pipeline (5.35a)) shows a density that is more cen-
tered and confined around the polypeptide chain. As a result, both the backbone
and the side-chain carbons of the model remain enclosed within the density enve-
lope. In contrast, in the reference EMDB map , the density appears shifted
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Figure 5.32: Comparison between EMDB density maps (top row) and the best density maps
achieved (bottom row) for each class (A, B, C, D and E).

Figure 5.33: Comparison between the EMDB density map corresponding to class A (left) and
the density map achieved with the proposed method corresponding to this class (right).
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" o

(b) Result from the proposed pipeline

Figure 5.34: Density maps from class A. appears to be degraded, losing features such
as the alpha helices present in the protein. Figure also shows some degradation, but to
a lesser extent.

relative to the atomic coordinates, leaving parts of the chain outside the high-
est density regions. This misalignment suggests that the reconstruction obtained
with the proposed pipeline provides a more accurate description of the molecular
structure in this region.

In Figure which corresponds to a different area of the same class, a
similar trend is observed. The map reconstructed by the pipeline follows
the trajectory of the backbone more consistently and provides clear density around
the side chains. In the reference map , however, the density is more diffuse
and in some cases does not fully enclose the model, with atoms extending beyond
the density contours. These differences indicate that the proposed pipeline is able
to capture local structural features more faithfully, resulting in a closer match
between the atomic model and the experimental density.

In Figure the comparison highlights complementary strengths between
the two reconstructions. In the map generated with the proposed pipeline (5.37a)),
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(a) Result from the proposed pipeline (b) Reconstruction from EMDB

Figure 5.35: Comparison of the density map obtained from the proposed pipeline ((5.35a]) and
the density map from EMDB ([5.35b) for class E. It can be seen that the polypeptide chain is
more centered in the first figure, indicating a more accurate reconstruction in that region of
the map.

7 ‘ : - ’ T \ ,
(a) Result from the proposed pipeline (b) Reconstruction from EMDB

Figure 5.36: Comparison of the density map obtained from the proposed pipeline ((5.36a]) and
the density map from EMDB (5.36b|) for class E. The pipeline results better capture information
in this region of the density map.

one end of the polypeptide chain is more clearly captured, with density fea-
tures that better represent this local region. However, in the reference EMDB
map (fig:compa32), the density appears more consistently aligned with the overall
atomic model, with the backbone fitting more centrally within the envelope. These
observations indicate that the two maps emphasize different aspects of the struc-
ture: while the pipeline result seems to better resolve specific local features, the
EMDB map provides a more globally consistent alignment with the model. This
suggests that improvements in the reconstruction may come from combining the
strengths of both approaches—accurate local detail and robust global alignment.

It’s important to clarify that even if one density map has better resolution
than another, not all features are necessarily better. In the search to identify
improvements between EMDB density maps and the results obtained, differences
that favor the EMDB results were also seen.
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(a) Result from the proposed pipeline (b) Reconstruction from EMDB

Figure 5.37: Comparison of the density map obtained from the proposed pipeline and
the density map from EMDB for class E. In this case, the pipeline result better captures
one end of the polypeptide chain, but the EMDB result appears to be better aligned with the
atomic model.

This clarifies that it is absolutely necessary to find a more reliable metric of
resolution, especially in cases where heterogeneity is involved. In these cases, there
is an intrinsic trade-off between accurately capturing structural heterogeneity and
achieving high global resolution. A reconstruction that better preserves subtle
conformational or compositional differences may present a lower nominal resolu-
tion, even though it provides more biologically relevant information. On the other
hand, maximizing global resolution can lead to an averaging effect that suppresses
heterogeneous features.

These could be addressed with metrics that integrate both spatial and struc-
tural variability, rather than relying on a single global value. This would provide
a more meaningful and accurate measure of reconstruction quality in the presence
of heterogeneity.
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Conclusions

This work presents an iterative framework for pose refinement and heterogeneous
macromolecule reconstruction from cryo-EM projections. The work successfully
exploits the inherent heterogeneity of the particles studied to refine poses and
achieve improved resolutions. However, this method has limitations.

The first conclusion drawn from the results is that the current pipeline is
not well-suited for exploring conformational heterogeneity. The continuous nature
of conformational changes is inherently incompatible with the UMAP algorithm,
since one favors continuous trajectories while the other prioritizes local neighbor-
hood preservation. In contrast, compositional changes appear to be accurately
captured by this dimensionality reduction approach.

At high resolution, pipeline stability becomes critical. Achieving good resolu-
tions without overfitting is challenging. Iterative clustering is essential, as over-
fitting in Frealign mainly occurs when pose and parameter refinements begin to
fit the noise of individual particles after excessive iterations on the same dataset.
Nevertheless, allowing excessively large variations between clusters destabilizes the
pipeline and does not lead to improved resolutions. One possible solution is to ini-
tialize UMAP or K-Means centroids from the previous iteration, or to perform a
hyperparameter grid search for HDBSCAN to maintain a consistent number of
clusters between iterations.

The ability of cryoDRGN to represent features in a lower-dimensional space is
particularly valuable, as it enables the use of clustering techniques while avoiding
the curse of dimensionality. This approach is notably more effective than applying
algorithms directly to noisy particle images.

Furthermore, the use of nonlinear dimensionality reduction methods such as
UMAP facilitates the visualization and interpretation of results, thanks to their
ability to preserve both local and global data structure. UMAP also captures
compositional heterogeneity effectively, aiding the clustering process—something
that linear techniques like PCA fail to achieve. This limitation arises because
variational autoencoders tend to distribute information across all latent dimen-
sions. In datasets with high variability and a low-dimensional latent space, the
different latent dimensions will not be redundant nor simple linear combinations
of each other, provided that the network has sufficient capacity to learn the data’s
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features.

Another important conclusion is the need for a faster decoder. While Fre-
align’s pose refinement yields excellent resolution, it is a CPU-based tool whose
computational cost scales steeply with the number and size of input images. Re-
cent advances in this area, driven by the boom in generative deep learning and
the evident need for efficient heterogeneous refinement methods, offer promising
alternatives [34] [36]. However, developing a decoder capable of achieving high-
resolutions in heterogeneous settings remains an open challenge.

Pipeline automation is valuable, but at high resolution, careful inspection and
hyperparameter tuning between iterations are essential. Precision in parameter
selection becomes increasingly important as resolution increases.

Refining poses after a set number of epochs can be viewed as a form of network
regularization, helping to prevent convergence to local minima. This strategy may
lead to clusters that favor certain structural classes over others, even if not all
clusters benefit equally. While this does not guarantee improvements across all
clusters, it may enable higher resolution for specific ones.

Finally, the postprocessing block from Figure is gaining more relevance and
is becoming increasingly necessary when working in high resolution. The devel-
opment and adoption of more reliable resolution assessment metrics is essential,
especially those capable of quantifying local resolution variations and evaluating
the fidelity of heterogeneous features.

6.1 Future Directions

Reconstruction of heterogeneity density maps with cryo-EM images still has many
unsolved problems. One of the main challenges is incorporating a decoder that
effectively generates high-resolution reconstructions. All the works presented in
Chapter have issues with the decoder generating high-resolution structures.
This could be explored by incorporating more modern architectures in the image
processing area, such as diffusion models or transformers. To date, there are
already works with these approaches [30] [38], but no good results have been
obtained so far.

Another option is to dedicate efforts to cryo-electron tomography (cryo-ET)
processing. Cryo-ET is an acquisition technique that, instead of taking a single
projection of each particle, acquires a series of images, called a tilt series, of the
same particle as it is tilted in the microscope. This provides multiple projections
of the same particle, opening the possibility of obtaining complementary views of
complex regions of the protein and facilitating reconstruction when the particle
adopts a minority conformation or composition. However, the problem of pose
estimation is not completely resolved, since cryo-ET only provides the relative tilt
geometry of the series, while the absolute orientations of the particles within the
tomogram remain unknown. The main disadvantage of these methods today is
the limitation of the electron beam dose, which must be lower than that of cryo-
EM. This is because the sample is irradiated multiple times, so the power must be
reduced to avoid damaging the sample.
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Another promising direction would be the development of a foundation model
for protein density map reconstruction. Unlike AlphaFold, which operates at the
folding level by taking amino acid sequences as input, such a model would work
directly with experimental density data from cryo-EM. Current approaches are
usually trained on a single protein, but structural motifs such as -helices and -
sheets are shared across all proteins. Leveraging datasets from multiple proteins
could therefore improve generalization and lead to more robust reconstructions.
This approach, however, introduces challenges in data preprocessing, network de-
sign, and the computational demands of training on large-scale datasets. As a
proof of concept, one could start with a more contained problem, such as training
on the ribosome family, where many datasets are publicly available.

6.2 Personal Reflections

My master’s degree in electrical engineering gave me the opportunity to study in
depth such an interesting, important, and difficult topic as macromolecule recon-
struction using cryo-EM images. This allowed me to learn a lot about research,
an area I've been delving into since completing my undergraduate degree. One of
the most important things I think I'm beginning to understand is the difficulty
involved in delving deeply into a particular topic. Despite having studied, used,
and partially implemented image processing and volume reconstruction techniques
in this area, I feel there’s still a lot of ground to cover and a huge amount to learn.

This master’s degree also inspired me to pursue a PhD, something that was
unthinkable for me before starting this path. I'm aware that I still have a lot to
learn, but I’'m excited to continue advancing in my career, and I think a PhD is a
great way to do that. I hope and trust that everything I've learned here can be
useful in this new step of my career.

91



Esta pagina ha sido intencionalmente dejada en blanco.



Appendix A

Generative Models

A.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [19] are a class of generative models that
frame training as a two-player minimax game between a generator and a discrimi-
nator. The generator learns to map samples from a simple prior distribution (e.g.,
Gaussian noise) into realistic data, while the discriminator learns to distinguish
between real data and generator-produced samples.

A.1.1 Adversarial Objective

Let pgata(z) denote the true data distribution and p.(z) a prior (e.g., N(0,1)).
The generator Gy(z) transforms latent noise z into a synthetic sample Z. The
discriminator Dy(z) € (0,1) outputs the probability that x is real. The value
function is

min1max V(Dp. Gg) = Exvy,[108 Do(a)] + Bory l05(1 — Dy(Go(2)))]- (A1)

At equilibrium, Gy produces samples indistinguishable from real data, and Dy
outputs 1/2 for both real and fake inputs.

A.1.2 Training Dynamics

The training of GANs follows a minimax game between the generator Gy and the
discriminator Dg. The two networks are trained alternately in an iterative process:

1. Discriminator step: Update Dy to maximize its ability to distinguish
between real and generated samples. This typically involves maximizing

ED = Ewwpdata [log D¢($)] + IEzwp(z) Dog(l - D¢<G9(z)))]

2. Generator step: Update Gy to minimize the probability of the discrimina-
tor correctly identifying its outputs as fake. A naive formulation minimizes

L= Ezwp(z)[log(l - D¢(G9(Z))>]
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However, this objective often leads to vanishing gradients when the discrim-
inator is too strong. In practice, one instead maximizes

/G = Ezwp(z) [lOg D¢(G9(Z))]u
which provides stronger gradients for learning.

This adversarial dynamic resembles a two-player zero-sum game, where the
generator improves by “fooling” the discriminator, and the discriminator improves
by better distinguishing real from synthetic data. In theory, the equilibrium is
reached when py = pgata, meaning the generator has learned to replicate the true
data distribution, and the discriminator cannot distinguish real from fake samples
better than random guessing.

In practice, the dynamics are far more complex. If the discriminator learns too
quickly, it may perfectly classify real and fake samples, providing no useful gradient
to the generator. Conversely, if the generator improves faster, the discriminator
may fail to adapt, leading to unstable training and oscillatory behavior. It may
even be able to learn to fool the discriminator with a small sample of nearly
identical images, which is called mode collapse.

A.1.3 Evaluation

Evaluating GANSs is non-trivial because they do not provide an explicit likelihood,
making direct statistical comparison with the true data distribution difficult. As
a result, evaluation typically relies on quantitative metrics and qualitative assess-
ments.

A straightforward approach is manual inspection of generated samples. While
subjective, this remains informative for perceptual quality, especially in image
synthesis.

Another alternative is the Inception Score [52], which uses a pretrained classi-
fier (commonly the Inception-v3 network) to evaluate both the quality and diver-
sity of generated samples. For a set of generated images {Z; }, the conditional label
distribution is p(y|%), and the marginal class distribution is p(y) = + 3, p(y|F;).
The score is defined as

IS = exp (Ez [Dkr (p(y|2) | p(v))]) - (A.2)

A high IS indicates (i) low-entropy conditional distributions (the classifier is con-
fident, suggesting high-quality samples), and (ii) high-entropy marginal distribu-
tion (samples are diverse across classes). Limitations include sensitivity to the
pretrained classifier and lack of direct comparison with the real data distribution.

The Fréchet Inception Distance (FID) [23] compares the feature statistics of
real and generated images using embeddings from a pretrained network (again,
typically Inception-v3). If N'(p,, X,) and N (ug, Xy) are Gaussian approximations
to the real and generated feature distributions, then

FID = [|ptr — pigl2 + Tt (2r + 8, 2(2@9)1/2) . (A.3)
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Lower FID values indicate closer alignment between the real and generated distri-
butions. FID is widely used as it accounts for both sample quality and diversity,
though it is still dependent on the choice of embedding network and may not
correlate perfectly with human perception.

Additional methods include Kernel Inception Distance (KID), precision-recall
tradeoffs for generative models, and task-specific evaluations (e.g., downstream
classification accuracy when augmenting training data). These highlight the im-
portance of choosing evaluation metrics aligned with the intended application.

A.1.4 Limitations

Despite their successes, GANs face several fundamental challenges stemming from
the adversarial training dynamics.

GAN optimization is formulated as a minimax game between the generator and
the discriminator. In practice, this dynamic can fail to converge: the generator
may oscillate between strategies, or the discriminator may saturate and provide
vanishing gradients. Carefully balanced learning rates, architecture choices, and
regularization are required to maintain stability.

Another common issue is mode collapse, where the generator learns to produce
a limited variety of outputs that successfully fool the discriminator. This occurs
because the generator is rewarded for exploiting weaknesses of the current discrimi-
nator rather than learning the full data distribution. Techniques such as minibatch
discrimination, unrolled GANs, or Wasserstein-based objectives partially mitigate
this phenomenon. Otherwise, if the discriminator learns too quickly, it can per-
fectly separate real from fake samples, providing no useful gradient signal to the
generator.

Unlike VAESs or autoregressive models, GANs do not assign explicit likelihoods
to data. This complicates tasks such as density estimation, anomaly detection, or
model comparison. Evaluation thus depends on proxy metrics (IS, FID), which
may not always reflect real-world utility.

Overall, the strengths of GANs—sharp, realistic generations—come at the
cost of complex training dynamics and evaluation challenges. Ongoing research
addresses these limitations through alternative objectives (e.g., Wasserstein dis-
tances), architectural innovations, and hybrid models combining the advantages
of GANs with those of likelihood-based approaches.

A.2 Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) [28/49] are latent-variable generative models
that combine deep neural networks with approximate Bayesian inference. A VAE
specifies a prior over latent variables z € R? typically p(z) = N(0,1), and a
likelihood (decoder) py(zx | z) parameterized by 6. An inference network (encoder)
¢s(2z | ) with parameters ¢ amortizes variational inference across the dataset.
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A.2.1 Objective: the Evidence Lower Bound (ELBO)

For data & ~ pgata(x), maximizing the marginal likelihood log pg(z) is intractable
in general. Introducing a variational posterior g4(z | x) yields the standard de-
composition:

logpy(z) = Eq,(zlx)[ logpo(x | 2)] — Dxufas(z [ 2) [ p(2)) + Dxw(as(z | ) [[pa(z | 2)),

£(0,¢32) (ELBO)

(A.4)
where the last term is always nonnegative. Thus, maximizing the evidence lower
bound (ELBO)

L(0,¢;2) = Eq, 21y log pe(x | 2)] — Dxwlge(z | ) [ p(2)) (A.5)

provides a tractable surrogate. The reconstruction term encourages faithful re-
constructions, while the KL divergence ensures that the approximate posterior
remains close to the prior.

A.2.2 Reparameterization Trick

Directly sampling z ~ g4(z | «) would prevent gradients from flowing through
the encoder parameters. The reparameterization trick addresses this issue. For a
Gaussian posterior g (2 | ) = N (z; pg(2), diag(ai(:p))), one writes

z = pg(x) + og4(x) Ok, e ~N(0,1). (A.6)

This isolates randomness in €, which is independent of ¢, enabling low-variance
gradient estimates via backpropagation. Without this trick, training VAEs with
stochastic latents would require high-variance estimators such as score-function
gradients.

A.2.3 Common Likelihoods and Losses

The reconstruction term depends on the choice of likelihood. For real-valued data
(e.g., images scaled to [0, 1]), a Gaussian likelihood yields a mean-squared-error
loss. For binary or bounded intensities, a Bernoulli likelihood leads to a cross-
entropy loss. The minibatch objective for {z;}2 , is:

B
T0.6) = 53 (Egymllozpolei | 2)] - Dxelas(z | 2 19()). (A7)

=1

A.2.4 [B-VAE and Variants

A common extension introduces a scaling factor 8 > 0 on the KL term [24]:
Eﬁ(ﬁ,(ﬁ,l‘) - Eq¢(z\x)[logp9(x ‘ Z)] - BDKL(QQb(Z ’ iL’) Hp(Z)) (AS)
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When § > 1, the model enforces stronger regularization, often yielding more disen-
tangled latent representations, where independent factors of variation in the data
are captured by distinct dimensions. This comes at the expense of reconstruction
fidelity. Conversely, 8 < 1 prioritizes reconstruction but weakens regularization.
Other extensions include richer priors (e.g., VampPrior), more flexible posteriors
via normalizing flows, and hierarchical latent-variable structures.

A.2.5 Practical Considerations

o Architecture: Encoders and decoders often mirror each other (e.g., con-
volutional networks for images). Latent dimensionality is task-dependent:
too small limits expressivity, too large weakens regularization.

o Training stability: VAEs are generally stable to train, but KL collapse
can occur when the decoder is overly expressive, causing gy(z|z) ~ p(z2).
Remedies include KL annealing, “free bits,” or restricting decoder capacity.

o Evaluation: Metrics include the ELBO or tighter bounds such as the
importance-weighted ELBO, reconstruction quality (e.g., PSNR/SSIM for
images), and downstream utility of the learned latent space (e.g., clustering,
interpolation).

¢ Uncertainty and interpretability: The probabilistic formulation natu-
rally provides uncertainty estimates and enables meaningful interpolation in
latent space, useful for anomaly detection and scientific modeling.

A.2.6 Limitations

Despite their probabilistic appeal, VAEs face several limitations:

e Blurry outputs: With simple Gaussian decoders, reconstructions and sam-
ples tend to be overly smooth compared to GANs. Richer decoders (e.g., au-
toregressive, diffusion) improve sharpness but increase computational cost.

e KL collapse: When the KL term vanishes, the encoder ignores latent vari-
ables, leading to poor generative performance.

« Posterior mismatch: The Gaussian assumption for g4 (z|x) may not cap-
ture complex true posteriors. Techniques like normalizing flows expand pos-
terior flexibility.

e Tradeoff between disentanglement and fidelity: Methods like 8-VAE
reveal a fundamental tension between interpretable latent factors and accu-
rate reconstructions.
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