Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/53417
Cómo citar
| Título: | UruDendro4 : A benchmark dataset for automatic tree-ring detection in cross-section images of Pinus taeda L. |
| Autor: | Marichal, Henry Blanco, Joaquín Passarella, Diego Randall, Gregory |
| Tipo: | Preprint |
| Palabras clave: | Image-processing, Wood-cross-section, Tree-rings, Tree-volume, Deep-learning, Training, Measurement, Adaptation models, Temperature, Precipitation, Trees (botanical), Production, Soil, Performance gain, Pattern recognition |
| Fecha de publicación: | 2025 |
| Resumen: | Tree-ring growth represents the annual wood increment for a tree, and quantifying it allows researchers to assess which silvicultural practices are best suited for each species. Manual measurement of this growth is time-consuming and often imprecise, as it is typically performed along 4 to 8 radial directions on a cross-sectional disc. In recent years, automated algorithms and datasets have emerged to enhance accuracy and automate the delineation of annual rings in cross-sectional images.To address the scarcity of wood cross-section data, we introduce the UruDendro4 dataset?a collection of 102 image samples of Pinus taeda L., each manually annotated with annual growth rings. Unlike existing public datasets, UruDendro4 includes samples extracted at multiple heights along the stem, allowing for the volumetric modeling of annual growth using manually delineated rings. This dataset (images and annotations) allows the development of volumetric models for annual wood estimation based on cross-sectional imagery.Additionally, we provide a performance baseline for automatic ring detection on this dataset using state-of-the-art methods. The highest performance was achieved by the DeepCS-TRD method, with a mean Average Precision of 0.838, a mean Average Recall of 0.782, and an Adapted Rand Error score of 0.084. A series of ablation experiments were conducted to empirically validate the final parameter configuration. Furthermore, we empirically demonstrate that training a learning model including this dataset improves the model?s generalization in the tree-ring detection task. |
| EN: | 2025 15th IEEE International Conference on Pattern Recognition Systems (ICPRS), Viña del Mar, Valparaiso, Chile, 01-04 dec. 2025, pp. 1-7. |
| Financiadores: | Beca doctorado ANII Proyecto ANII-FMV-176061 |
| Citación: | Marichal, H., Blanco, J., Passarella, D. y otros. UruDendro4 : A benchmark dataset for automatic tree-ring detection in cross-section images of Pinus taeda L. [Preprint] Publicado en: 2025 15th IEEE International Conference on Pattern Recognition Systems (ICPRS), Viña del Mar, Valparaiso, Chile, 01-04 dec. 2025, pp. 1-7. DOI: 10.1109/ICPRS66293.2025.11302831. |
| Departamento académico: | Procesamiento de Señales |
| Grupo de investigación: | Tratamiento de Imágenes |
| Licencia: | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| MBPR25.pdf | Preprint | 17,35 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons