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Abstract—Tree-ring growth represents the annual wood in-
crement for a tree, and quantifying it allows researchers to
assess which silvicultural practices are best suited for each
species. Manual measurement of this growth is time-consuming
and often imprecise, as it is typically performed along 4 to
8 radial directions on a cross-sectional disc. In recent years,
automated algorithms and datasets have emerged to enhance
accuracy and automate the delineation of annual rings in cross-
sectional images.

To address the scarcity of wood cross-section data, we intro-
duce the UruDendro4 dataset—a collection of 102 image samples
of Pinus taeda L., each manually annotated with annual growth
rings. Unlike existing public datasets, UruDendro4 includes
samples extracted at multiple heights along the stem, allowing
for the volumetric modeling of annual growth using manually
delineated rings. This dataset (images and annotations) allows the
development of volumetric models for annual wood estimation
based on cross-sectional imagery.

Additionally, we provide a performance baseline for automatic
ring detection on this dataset using state-of-the-art methods. The
highest performance was achieved by the DeepCS-TRD method,
with a mean Average Precision of 0.838, a mean Average Recall
of 0.782, and an Adapted Rand Error score of 0.084. A series
of ablation experiments were conducted to empirically validate
the final parameter configuration. Furthermore, we empirically
demonstrate that training a learning model including this dataset
improves the model’s generalization in the tree-ring detection
task.

Index Terms—image-processing, wood-cross-section, tree-
rings, tree-volume, deep-learning

I. INTRODUCTION

The annual growth of certain tree and shrub species pro-
duces a distinct pattern in the wood known as annual growth
rings. In a transverse cross-section of the trunk, these rings
appear as concentric shapes centered on the innermost ring,

This work was funded by ANII under project number ANII-FMV-176061.
979-8-3315-9170-0/25/$31.00 ©2025 IEEE

Fig. 1. Cross-section samples of Pinus taeda L. (T0_B3_N23_D and
T6_B3_N21_D from UruDendro4, respectively) and their tree-ring curve
delineations. The fifth growth ring area is highlighted in red in both samples.

referred to as the pith. The outermost ring corresponds to the
last year of growth. Figure 1 illustrates two samples of Pinus
taeda L. cross-sections and their delineated tree-ring curves.

In commercial forestry, where the primary objective is to
maximize timber production, silvicultural practices are applied
and evaluated to improve growth. These practices must be
studied over long periods; for example, the samples in Figure 1
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were subjected to different plantation densities and thinning
procedures. By analyzing how specific silvicultural treatments
influence tree growth year by year, it is possible to identify
which practices are effective or inadequate under a given
climatic and soil conditions and expected wood quality.

A common approach to assessing this relationship involves
measuring tree-ring widths on transverse stem cross-sections
(discs), typically along four to eight fixed radial directions
starting from the pith position. These measurements are often
taken manually or semi-automatically from images, such as
those shown in Figure 1. However, this one-dimensional
approach may provide limited insights. Several studies have
demonstrated stronger correlations between ring-based metrics
and climate variables, including temperature and precipitation.
For instance, Labrecque-Foy et al. [3] found that computing
the basal area increment (BAI) from ring-width data in shrubs
yielded a better correlation with climate signals than using raw
ring-width series.

Extracting two-dimensional features from tree-ring pat-
terns, such as the area enclosed between successive rings
(highlighted in red in Figure 1), may offer more accurate
information on silvicultural effects and wood production.
However, obtaining valuable 2D measurements from disc
images requires precise delineation of annual ring boundaries.
Manually performing this task is extremely time-consuming.
Although several open-source algorithms have been developed
for automatic ring detection, a manual postprocessing step is
still required to add missing rings or correct false detections.

To increase the diversity of publicly available data and
support the development of more robust tree-ring detection
algorithms in cross-section images, we make the following
contributions:

• We present UruDendro4, a publicly available dataset
containing 102 annotated images of P. taeda cross-
sections, supporting ring boundary detection.

• We describe the image acquisition protocol, annotation
methodology, and characteristics of the dataset.

• We benchmark recent ring boundary detection algorithms
on the dataset to provide a baseline and highlight the
challenges posed by the data.

II. RELATED WORK

The first publicly available dataset of 64 images of P. taeda
with manual annual ring delineation, named UruDendro, was
introduced in [10]. An automatic method for tree ring de-
lineation in cross-section images, named Cross-Section Tree-
Ring detector (CS-TRD), was proposed by the same authors
in [6]. The CS-TRD method operates by detecting edges
corresponding to annual tree ring boundaries and carefully re-
combining them using classical image processing techniques.
A second dataset of 53 images of P. taeda and manual
annual ring delineation, named UruDendro2, was introduced
in [7] together with a deep-learning modification of the CS-
TRD method, which improved the accuracy of the original
method in P. taeda. This modification, named DeepCS-TRD,
replaces the edge detection step in CS-TRD with the U-Net

deep learning architecture [13]. Additionally, they released the
UruDendro3a dataset, which consists of nine annotated cross-
section samples of the Gleditsia triacanthos species.

Kennel et al. [2] included a dataset of seven cross-section
images of Abies alba, although the ring annotations are
not fully accessible. Additionally, the authors proposed an
algorithm based on solving a partial differential equation,
incorporating terms related to both the image content and the
curve itself, to automatically delineate the tree rings. However,
the code is not available.

Gillert et al. [1] introduced three datasets of microscopy
images of shrubs of the Dryas octopetala, Empetrum
hermaphroditum, and Vaccinium myrtillus species, with 213
delineated samples. The Iterative Next Boundary Detection
method (INBD) was presented in the same work. It is a
deep-learning approach developed for tree ring detection in
microscopy images of shrubs, demonstrating superior perfor-
mance compared to the CS-TRD method in the species P.
taeda when trained properly [7]. This method comprises two
steps: first, the background, ring boundaries, and center region
are segmented. Secondly, a refinement stage is used, where
patches are extracted iteratively from the inner to the outer
rings, segmenting each ring individually. Both steps utilized a
U-Net architecture, which required separate training. Another
microscopy dataset of the Salix glauca shrub species was
released in [14], comprising 50 image samples with their
corresponding annual ring annotations.

Regarding image datasets with no manual ring annota-
tions, Longuetaud et al. [4] released the TreeTrace Douglas
database in November 2022, including several wood cross-
section image collections. This dataset includes images and
measurements, such as growth ring width and pith pixel loca-
tion, along with other wood properties, which were acquired
at various stages of the processing in a sawmill. A few months
later, in February 2023, Longuetaud et al. [5] introduced
the TreeTrace Spruce database, which contains images and
measurements of 100 Norway spruce samples. While both
databases are valuable contributions to the forestry community,
they lack digital tree-ring annotations for each image, which
are needed to assess computer vision algorithms.

Table I summarizes the public annotated cross-section
datasets. UruDendro4, introduced here, is the largest in terms
of the number of samples and the number of annotated rings.
In addition, the dataset contains systematic information of
different thinning schemes, allowing for the assessment of the
effect of different silvicultural practices on the growth of P.
taeda.

III. THE UruDendro4 DATASET

In this work, we introduce the UruDendro4 dataset, a new
collection of 102 high-resolution images with expertly anno-
tated tree-ring boundaries. Compared to previous collections,
this new release nearly doubles the number of annotated
P. taeda samples, increasing from 117 (64 samples form
UruDendro [10] and 53 from UruDendro2 [7]) to 219.



TABLE I
IMAGE CROSS-SECTION DATASETS ANNOTATIONS SUMMARY. NUMBER OF
SAMPLES (NB), NUMBER OF RINGS (NR), TREE OR SHRUB SPECIES, AND

IMAGE ACQUISITION METHOD.

Dataset NB NR Species Acquisition
Kennel et al. [2] 7 212 Abies alba Scanner
UruDendro3a [7] 9 219 G. triacanthos Professional Camera
Gillert et al. [1] VM 67 494 V. myrtillus Scanner
Gillert et al. [1] DO 66 544 D. octopetala Scanner
C. C. Power et al. [14] 50 654 S. glauca Scanner
Gillert et al. [1] EH 82 949 E. hermaphroditum Scanner
UruDendro2 [7] 53 1151 P. taeda Smartphone
UruDendro [10] 64 1630 P. taeda Smartphone
UruDendro4 102 1930 P. taeda Smartphone

A distinctive feature of UruDendro4 is that it includes
multiple cross-sections from the same tree. This enables the
estimation of annual volume increment per tree, expanding the
possibilities for growth analysis beyond traditional one-slice
ring-width measurements.

The trees were collected as part of a study examining the
impact of various silvicultural practices on wood production.
The treatments are summarized in Table II. The experiment
was a randomized complete block design, with block identi-
fiers labeled as B1 to B3. The discs were collected between
April and July of 2024.

Harvest Site

102 cross-sections of P. taeda were collected from the site
known as ”La Altura”, located approximately 4 km from the
city of Tranqueras (31°13’30.2” S, 55°46’53.6” W), in the
Department of Rivera, Uruguay. Trees were felled using a
chainsaw, and four discs per stem were extracted at heights
of 0m, 3m, 6m, and 9m. An additional disc was collected at
1.3m for the T0 treatment.

The soils in the area are very deep, with limited drainage,
a loamy-sandy texture, and extremely low fertility (a pro-
ductivity index of 53). The dominant soils are Umbric Albic
Luvisols, classified as priority forestry soils, belonging to the
7.42 group according to CONEAT scale (National Committee
of Agronomic Studies of Soils in Uruguay). The terrain
consists of gently rolling hills with slopes of up to 3%.

The meteorological data from the site were provided by
the Uruguayan Institute of Meteorology (INUMET). They
include minimum, mean, and maximum temperature records
[°C] and cumulative precipitation [mm] from January 2002
to April 2024. Temperature data were recorded at the Rivera
Meteorological Station (30°53’47.3”S, 55°32’33.6”W), the
closest station to the test site. Mean temperatures represent the
daily measurements at hourly intervals. Precipitation data were
obtained about 4 km from the study area. Data are presented as
daily, monthly, and annual averages (for temperatures, includ-
ing extremes) and as daily, monthly, and annual cumulative
values (for precipitation).

Image Acquisition

The discs were polished using an electric planer. The discs
were moistened before image capture. Photographs were taken
under varying lighting conditions: samples T2 and T4 (B1 and

B2) were photographed indoors under artificial white light;
T6 (B2) samples were photographed outdoors; T4 (B3), T6
(B1 and B3), and T0 samples were photographed outdoors
in shaded conditions. All photographs were taken using an
iPhone 15 Pro smartphone. The minimum image width is
1317 pixels, and the maximum width is 4695 pixels. Figure 2
illustrates some examples from the dataset.

Sample names follow the structure:

TX BY NZ W

Where TX indicates the treatment applied to the tree (0, 2,
4, or 6); BY refers to the block (1, 2, or 3); NZ refers to
the tree identifier (e.g., 3, 12, 23, etc.); and W refers to the
sample height (A = between 10 and 30 cm, B = 3m, C = 6m,
D = 9m, and ADAP = 1.3m).

Tree-Ring Annotation Procedure

Annual ring annotations were made using the Labelme tool
[12]. Each annual ring is represented as a continuous curve
formed by connected pixels. Rings are roughly concentric
around the pith, i.e., they don’t intersect with each other, and
each annual ring fully encloses the rings from previous years.

Initial annotations were automatically generated using the
CS-TRD method [6], in combination with the APD method for
pith detection [9]. These initial predictions were subsequently
post-processed and corrected by a human annotator to ensure
the accuracy of the ring delineations.

File structure

The dataset [8] is available at the Zenodo Repository at
https://doi.org/10.5281/zenodo.15653340. It is organized into
several files containing images and marks as described below:

• images/ - Folder with the image samples
• images no background/ - Folder with the images after

the background has been removed
• annotations/

– annual rings/ - Annual ring annotations

• pith location.txt - file with the pith pixel location for each
image

The name of each sample serves as its code. For example,
sample T4 B3 N1 C has three different files:

• images/T4 B3 N1 C.png
• images no background/T4 B3 N1 C.jpg
• annotations/annual rings/T4 B3 N1 C.json

IV. METHODOLOGY

We conduct a series of ablation experiments using our
dataset to evaluate the automatic detection of tree rings in
cross-section images. Details on the experimental setup and
the datasets used are provided in the following sections.

https://doi.org/10.5281/zenodo.15653340


TABLE II
DESCRIPTION OF SILVICULTURAL TREATMENTS: THINNING SCHEDULE, TREE DENSITIES BEFORE AND AFTER THINNING, PRUNING HEIGHT, AND

CURRENT STAND DENSITY. THE PRE-THINNING DENSITY FOR ALL TREATMENTS WAS 600 TREES HA−1 .

Treatment Thinning timing [years] Post-thinning density [trees.ha−1] Pruning height [m] Current density [trees.ha−1]
T0 – Commercial management 11 350 between 5.5 and 8.0 350
T2 – Heavy thinning / High pruning 8 250 8.0 250
T4 – Current thinning / High pruning 8 350 8.0 350

T6 – Two thinnings / High pruning 1st thinning: 8
2nd thinning: 18

1st thinning: 400
2nd thinning: 200 8.0 200

(a) T0 B1 N27 C (b) T2 B3 N9 C (c) T0 B1 N32 ADAP

Fig. 2. Example images from the UruDendro4 dataset.

Baselines

We evaluate the performance of 3 state-of-the-art methods
for the automatic detection of annual ring curves.

CS-TRD [6]: A classical image processing approach for
ring-edge detection. The parameters were set to σ = 3.0 and
α = 45. No internal resizing was applied to the input images.

DeepCS-TRD [7]: This deep learning-based model was
trained using a batch size of 8 for 100 epochs. The Adam
optimizer was employed with an initial learning rate of
1 × 10−3, and a cosine annealing schedule was used to
dynamically adjust the learning rate throughout training. The
Dice loss function was adopted to optimize the segmentation
performance. A ResNet18 backbone pre-trained on ImageNet
was used to enhance feature extraction in the encoder. The
model weights corresponding to the lowest validation loss
were selected as the final model. No tile overlap strategy was
applied during training (i.e., no patching, with the tile size
parameter set to 0). All parameters, including the encoder
weights, were optimized during training unless explicitly
stated otherwise.

INBD [1]: Both stages of the INBD model were trained
under the same configuration. A downsampling factor of 2 was
applied, meaning that the input images were internally resized
to half their original resolution. Each network was trained for
100 epochs using a batch size of 8, the AdamW optimizer, an
initial learning rate of 1×10−3, and a cosine annealing learn-
ing rate schedule. Only the decoder and classifier layers were
trainable. A MobileNetV3 backbone, pre-trained on ImageNet,
was used to enhance feature extraction in the encoder.

All models were trained on a NVIDIA A40 GPU with
48 GB of VRAM, utilizing the infrastructure provided by
ClusterUY [11] (site: https://cluster.uy).

Data

The UruDendro4 dataset is divided into training, validation,
and test sets using a 60%/20%/20% split, resulting in 62, 20,
and 20 images, respectively. All performance results reported
in this work are based on the test subset.

Additionally, for cross-domain validation, the DeepCS-TRD
method was trained on the UruDendro [10] and UruDendro2
[7] datasets, which contain 64 and 53 annotated images,
respectively. All images from each dataset were used for
training in the cross-domain experiments.

Moreover, we annotated a small subset of two images for
the Douglas fir species [4] (79 tree rings), aiming to assess
the model’s generalization capabilities to new species.

Preprocessing: The same preprocessing protocol described
in [7] was applied to the images. First, the background was
removed using the U2-Net network [15]. In addition, the
background margins were cropped to focus on the disc area,
ensuring a minimum distance of 50 pixels between the wood
cross-section and the image borders. Finally, images were
resized to 1504 pixels on the highest dimension using Lanczos
interpolation.

V. EXPERIMENTAL RESULTS

Metrics

Results are reported on the UruDendro4 test set using
the same input resolutions as during training. We report the



TABLE III
EVALUATION OF THE METHODS ON THE UruDendro4 DATASET. ENCODER

WEIGHTS WERE FROZEN IN BOTH INBD AND DEEPCS-TRD.

Method mAP (↑) mAR (↑) ARAND (↓)
CS-TRD .576 (.000) .568 (.000) .174 (.000)
INBD .736 (.006) .712 (.004) .099 (.003)
DeepCS-TRD .831 (.007) .775 (.007) .087 (.004)

mean Average Precision (mAP) and the mean Average Recall
(mAR) metrics. These metrics are averaged over multiple
Intersection-Over-Union (IoU) thresholds, from 0.5 to 1.0
with a step of 0.05. Additionally, we reported the Adapted
Rand error (ARAND) using the adapted_rand_error
method from skimage (version 0.25). Metrics are reported
as the mean and standard deviation over five independent
experiments.

Quantitative Evaluation

The three automatic tree ring detection methods, CS-TRD
[6], DeepCS-TRD [7], and INBD [1] are assessed over the
UruDendro4 test set. In all cases, the pith position was auto-
matically estimated with the Automatic Wood Pith Detector
(APD) method [9].

Table III illustrates the results. DeepCS-TRD and INBD
are deep-learning methods based on the U-Net architecture,
trained on the UruDendro4 training set. The CS-TRD method
is a classic image processing algorithm that doesn’t require
training. DeepCS-TRD method trained in the UruDendro4
dataset achieved the best results in all the metrics: 0.829 ±
0.006 mAP, 0.769±0.004 mAR, and 0.094±0.007 ARAND.

The INBD method, despite being developed for ring de-
tection in microscopy images of shrubs, achieved remarkable
performance, albeit not as good as that of DeepCS-TRD.
Compared to the DeepCS-TRD method, it required a longer
training time (18 hours vs. 33 minutes).

Furthermore, we evaluated the performance of automatic
tree ring detection by incrementing the dataset training size
and employing different training strategies. We used the
DeepCS-TRD method because it required less training time
than the INBD and achieved better performance. Table IV
illustrates the results. First, we evaluated the cross-domain
capabilities by training the method with the UruDendro (Uru)
dataset, the UruDendro2 (Uru2) dataset, and the union of
both datasets (Uru + Uru2). In all the cases, the DeepCS-
TRD models performed better than the CS-TRD method (see
Table III). The best results were obtained when the model was
trained using both the UruDendro1 and UruDendro2 datasets,
indicating that increasing the dataset size and diversity en-
hances the model’s ability to generalize to new domains.

Next, we trained the model using the UruDendro4 training
set, employing encoder weights pre-trained on ImageNet1k.
Two experiments were conducted: in the first, all layers of the
U-Net architecture (encoder, decoder, and classification head)
were trained jointly; in the second, the encoder weights were
frozen, and only the decoder and classification layers were
updated during training. This allows for a reduction in the

TABLE IV
EVALUATION OF THE DEEPCS-TRD METHOD OVER THE TEST SET IN

UruDendro4, INCREASING THE TRAINING SIZE. THE COLUMN’S DATASET
INDICATES THE DATASET USED FOR TRAINING THE METHOD. URU STANDS

FOR UruDendro, URU2 FOR UruDendro2, AND URU4 REFERS TO THE
TRAINING SUBSET OF THE UruDendro4 DATASET. ADDITIONALLY, WE

MADE EXPERIMENTS FREEZING THE ENCODER LAYERS DURING TRAINING
(✓).

Dataset Freeze mAP (↑) mAR (↑) ARAND (↓)
Uru .710 (.010) .683 (.011) .115 (.005)
Uru2 .694 (.009) .680 (.005) .112 (.005)
Uru + Uru2 .729 (.018) .705 (.015) .107 (.007)
Uru4 .829 (.006) .769 (.004) .094 (.007)
Uru4 ✓ .831 (.007) .775 (.007) .087 (.004)
Uru + Uru2 + Uru4 .820 (.007) .767 (.006) .087 (.003)
Uru + Uru2 + Uru4 ✓ .806 (.003) .750 (.009) .102 (.009)
Uru + Uru2 Uru4 .826 (.012) .775 (.018) .090 (.010)
Uru + Uru2 Uru4 ✓ .826 (.010) .774 (.007) .087 (.006)

TABLE V
DEEPCS-TRD α PARAMETER GRID-SEARCH OVER THE TEST SET IN

UruDendro4. MODELS TRAINED ON THE URU4 TRAINING SET AND USING
FROZEN ENCODER WEIGHTS ARE EMPLOYED (ROW 5 IN TABLE IV).

α(◦) mAP (↑) mAR (↑) ARAND (↓)
30 .799 (.014) .734 (.022) .121 (.017)
45 .831 (.007) .775 (.007) .087 (.004)
60 .838 (.016) .782 (.011) .084 (.006)
75 .834 (.011) .771 (.002) .098 (.007)
90 .789 (.006) .694 (.695) .125 (.121)

number of training parameters from 14.328.209 to 3.151.697.
Freezing the encoder weights improved the results in all the
metrics.

We then tested different combinations of datasets (Uru,
Uru2, and Uru4) and training strategies. In one approach,
the model was trained using data from all three datasets
simultaneously. In the alternative approach, we adopted a
two-step training procedure: first, the model was trained for
100 epochs using the combined Uru and Uru2 datasets; then,
starting from the weights that achieved the best performance
on the Uru+Uru2 validation set, we fine-tuned the model
for an additional 100 epochs using only the training subset
of UruDendro4. Among all the experiments presented in
Table IV, the highest performance was achieved when training
the model on the UruDendro4 dataset with frozen encoder
weights. This suggests that the pre-trained encoder has strong
feature extraction capabilities that generalize well to this task.

The DeepCS-TRD method has a filtering edge parameter
named α, which is set to 45◦ by default. We have tried
different values in an attempt to improve the results. We have
used the models trained with the UruDendro4 training set with
frozen encoder weights (row 5 in Table IV). Table V illustrates
the results. Setting the α value to 60◦ increased the method’s
performance, achieving 0.838± 0.016 of mAP, 0.782± 0.011
of mAR, and 0.084± 0.006 of ARAND.

Finally, we aimed to assess whether the UruDendro4 dataset
contributes to improved generalization of deep learning models
in the tree-ring delineation task. To this end, we trained
the DeepCS-TRD method using different combinations of
the UruDendro1, UruDendro2, and UruDendro4 datasets. We



TABLE VI
EVALUATION OF THE DEEPCS-TRD METHOD OVER THE Douglas fir

DATASET WHEN TRAINED WITH P. taeda IMAGES.

Dataset mAP (↑) mAR (↑) ARAND (↓)
Uru .629 (.054) .623 (.060) .208 (.041)
Uru2 .725 (.025) .688 (.037) .176 (.039)
Uru4 .465 (.038) .437 (.044) .339 (.032)
Uru + Uru2 .705 (.028) .682 (.023) .161 (.010)
Uru + Uru2 + Uru4 .728 (.013) .705 (.021) .145 (.009)

DeepCS-TRDINBD

CS-TRDGround Truth

Fig. 3. Automatic tree-ring detection results for sample T6_B3_N21_D (see
Figure 1). The CS-TRD method achieved a mAP of 0.256, a mAR of 0.241,
and an ARAND score of 0.487. INBD obtained 0.306 (mAP), 0.288 (mAR),
and 0.302 (ARAND). DeepCS-TRD outperformed both methods with scores
of 0.688 (mAP), 0.688 (mAR), and 0.245 (ARAND), respectively.

evaluated the performance of the model using two samples
from the Douglas fir dataset [4]. The results, presented in
Table VI, show that the model trained on a different species
performs decently on another. The best performance was
achieved when the model was trained using the combined
dataset (Uru + Uru2 + Uru4).

Qualitative Evaluation

In this section, we qualitatively illustrate how the tree-
ring automatic methods perform in the tree-ring detection
task. Figure 3 illustrates the tree-ring growth regions (Ground
Truth subfigure) and the predicted tree-ring of each method
for sample T6_B3_N21_D. Despite the presence of two
knots in the sample (see Figure 1), the automatic methods
performed notably well, with DeepCS-TRD achieving the best
results. Results for sample T0_B1_N32_ADAP (see Figure 2)
are presented at Figure 4. Again, the DeepCS-TRD method
achieved more accurate tree-ring predictions.

Ground Truth

DeepCS-TRDINBD

CS-TRD

Fig. 4. Automatic tree-ring detection results for sample T0_B1_N32_ADAP
(see Figure 2). The CS-TRD method achieved a mAP of 0.588, a mAR of
0.470, and an ARAND score of 0.200. INBD obtained 0.677 (mAP), 0.610
(mAR), and 0.135 (ARAND). DeepCS-TRD outperformed both methods with
scores of 0.800 (mAP), 0.680 (mAR), and 0.118 (ARAND), respectively.

VI. CONCLUSIONS

Research aimed at improving both the quantity and quality
of timber production in Uruguay is of great importance.
Understanding how various silvicultural practices impact tree
growth can help identify the most suitable practices for a
specific soil type and given climatic conditions.

Tree-ring delineation in cross-section images of P. taeda
requires high precision to enable meaningful correlations be-
tween ring-derived metrics and external factors such as tem-
perature, precipitation, or silvicultural treatments. To support
research in this area, we introduced the UruDendro4 dataset,
which consists of 102 manually annotated cross-section im-
ages along with associated silvicultural and climate metadata,
providing a valuable resource for forestry management and
dendrochronology research.

We also demonstrated empirically that including this new
dataset during training improves the generalization perfor-
mance of state-of-the-art tree-ring delineation methods. Specif-
ically, on the Douglas fir dataset, the inclusion of UruDendro4
led to performance gains of 0.003 in mAP, 0.017 in mAR, and
0.031 in ARAND.

Finally, we conducted extensive ablation experiments using
the DeepCS-TRD method, which established a strong baseline
on UruDendro4 with scores of 0.838 in mAP, 0.782 in mAR,
and 0.084 in ARAND.
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Brüchert, and A. Uhl (2023) TreeTrace spruce: Traceability and quality
assessment of Norway spruce (Picea abies (L.) H.Karst.) logs. Annals
of Forest Science, vol. 80, no. 1. 10.1186/s13595-023-01178-8.

[6] H. Marichal, D. Passarella, and G. Randall (2023) CS-TRD:
A Cross-Section Tree Ring Detection Method. IPOL preprint.
ipol.im/pub/pre/485/.

[7] H. Marichal, V. Casaravilla, C. Power, K. Mello, J. Mazarino, C. Lucas,
L. Profumo, D. Passarella, and G. Randall (2025) DeepCS-TRD: A
Deep Learning-based Cross-Section Tree Ring Detector. arXiv preprint.
10.48550/arXiv.2504.16242.

[8] H. Marichal, J. Blanco, D. Passarella, and G. Randall (2025) Uru-
Dendro4: A Benchmark Dataset for Automatic Tree-Ring Detection in
Cross-Section Images of Pinus taeda L.. V1. [Dataset]. 10.5281/zen-
odo.15653340.

[9] H. Marichal, D. Passarella, and G. Randall (2025) Automatic Wood Pith
Detector: Local Orientation Estimation and Robust Accumulation. Pro-
ceedings of the International Conference on Pattern Recognition (ICPR
2024). Pattern Recognition, vol 15317. 10.1007/978-3-031-78447-7 1

[10] H. Marichal, D. Passarella, C. Lucas, V. Casaravilla, M. N. Rocha Galli,
A. Serrana, L. Profumo, and G. Randall (2025) UruDendro: A public
dataset of 64 cross-section images and manual annual ring delineations
of Pinus taeda L.. Annals of Forest Science, 82, 25. 10.1186/s13595-
025-01296-5

[11] S. Nesmachnow and S. Iturriaga (2019) Cluster-UY: Collaborative
scientific high performance computing in Uruguay. Supercomputing, M.
Torres and J. Klapp. Communications in Computer and Information
Science, vol 1151. Springer, Cham. 10.1007/978-3-030-38043-4 16

[12] K. Wada (2024) Labelme: Image Polygonal Annotation with Python.
Licensed under GPL-3. 10.5281/zenodo.5711226.

[13] O. Ronneberger, P. Fischer, and T. Brox (2015) U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. Medical Image
Computing and Computer-Assisted Intervention (MICCAI 2015), pp.
234–241, Springer International Publishing, Cham. 10.1007/978-3-319-
24574-4 28.

[14] C. C. Power, H. Marichal, U. A. Treier, G. Resente, S. Normand, and G.
Randall (2025). Dataset of 50 cross-section images and manual annual
ring delineations of Salix glauca from Western Greenland. V1. [Dataset].
10.5281/zenodo.15311335.

[15] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M.
Jagersand (2020) U2-Net: Going deeper with nested U-structure for
salient object detection. Pattern Recognition, vol. 106, p. 107404.
10.1016/j.patcog.2020.107404.

https://doi.org/10.1109/CVPR52729.2023.01397
https://doi.org/10.1016/j.compag.2015.09.009
https://doi.org/10.3390/atmos14020319
https://doi.org/10.1186/s13595-022-01163-7
https://doi.org/10.1186/s13595-023-01178-8
https://www.ipol.im/pub/pre/485/
https://doi.org/10.48550/arXiv.2504.16242
https://doi.org/10.5281/zenodo.15653340
https://doi.org/10.5281/zenodo.15653340
https://doi.org/10.1007/978-3-031-78447-7_1
https://doi.org/10.1186/s13595-025-01296-5
https://doi.org/10.1186/s13595-025-01296-5
https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.5281/zenodo.5711226
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.5281/zenodo.15311335
https://doi.org/10.1016/j.patcog.2020.107404

	Introduction
	Related work
	The UruDendro4 Dataset
	Methodology
	Experimental results
	Conclusions
	References



