english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/53417 Cómo citar
Título: UruDendro4 : A benchmark dataset for automatic tree-ring detection in cross-section images of Pinus taeda L.
Autor: Marichal, Henry
Blanco, Joaquín
Passarella, Diego
Randall, Gregory
Tipo: Preprint
Palabras clave: Image-processing, Wood-cross-section, Tree-rings, Tree-volume, Deep-learning, Training, Measurement, Adaptation models, Temperature, Precipitation, Trees (botanical), Production, Soil, Performance gain, Pattern recognition
Fecha de publicación: 2025
Resumen: Tree-ring growth represents the annual wood increment for a tree, and quantifying it allows researchers to assess which silvicultural practices are best suited for each species. Manual measurement of this growth is time-consuming and often imprecise, as it is typically performed along 4 to 8 radial directions on a cross-sectional disc. In recent years, automated algorithms and datasets have emerged to enhance accuracy and automate the delineation of annual rings in cross-sectional images.To address the scarcity of wood cross-section data, we introduce the UruDendro4 dataset?a collection of 102 image samples of Pinus taeda L., each manually annotated with annual growth rings. Unlike existing public datasets, UruDendro4 includes samples extracted at multiple heights along the stem, allowing for the volumetric modeling of annual growth using manually delineated rings. This dataset (images and annotations) allows the development of volumetric models for annual wood estimation based on cross-sectional imagery.Additionally, we provide a performance baseline for automatic ring detection on this dataset using state-of-the-art methods. The highest performance was achieved by the DeepCS-TRD method, with a mean Average Precision of 0.838, a mean Average Recall of 0.782, and an Adapted Rand Error score of 0.084. A series of ablation experiments were conducted to empirically validate the final parameter configuration. Furthermore, we empirically demonstrate that training a learning model including this dataset improves the model?s generalization in the tree-ring detection task.
EN: 2025 15th IEEE International Conference on Pattern Recognition Systems (ICPRS), Viña del Mar, Valparaiso, Chile, 01-04 dec. 2025, pp. 1-7.
Financiadores: Beca doctorado ANII
Proyecto ANII-FMV-176061
Citación: Marichal, H., Blanco, J., Passarella, D. y otros. UruDendro4 : A benchmark dataset for automatic tree-ring detection in cross-section images of Pinus taeda L. [Preprint] Publicado en: 2025 15th IEEE International Conference on Pattern Recognition Systems (ICPRS), Viña del Mar, Valparaiso, Chile, 01-04 dec. 2025, pp. 1-7. DOI: 10.1109/ICPRS66293.2025.11302831.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imágenes
Licencia: Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MBPR25.pdfPreprint17,35 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons