english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52719 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorCodello, Alessandro-
dc.contributor.authorBeretta Tassano, Piero Sebastian-
dc.date.accessioned2025-11-28T16:34:58Z-
dc.date.available2025-11-28T16:34:58Z-
dc.date.issued2025-
dc.identifier.citationBeretta Tassano, P. A new functional renormalization group syudy of universality classes with O(N) symmetry [en línea] Tesis de maestría. Montevideo : UR. FC - PEDECIBA. 2025es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/52719-
dc.description.abstractThe functional renormalization group (FRG) is a powerful tool that has facilitated the investigation of various strongly interacting theories, encompassing systems characterized by both bosonic and fermionic variables. Specifically, this project focuses on the analysis of theories with O(N) symmetry with bosonic scalar fields. These theories are of particular interest due to their broad applicability in real physical systems. For example, Z2 symmetry (the O(1) model) describes the well-known Ising universality class, which in turn models the liquid-gas transition. On the other hand, the O(2) model belongs to the universality class of the XY model, used to describe the transition from fluid to superfluid in 4 He, while the O(3) model, known as the Heisenberg model, describes the ferromagnetic transition in isotropic materials. Finally the O(0) model is related to the self-avoiding walk (SAW). To characterize these theories, various methods have been implemented within the framework of the renormalization group. Perturbation theory has been applied since the early days of the subject, specifically in the form of the ε-expansion, which has reached high loop order in recent years. Alternatively, a non-perturbative approach can be chosen, which is known as the non-perturbative renormalization group (NPRG). Within the NPRG, there are several approximation schemes, with the derivative expansion being particularly noteworthy. The ultimate goal of these efforts is to calculate the critical exponents, which define the given universality class. The standard non-perturbative method involves solving an equation that depends on a regulator or cut-off, which represents one of the main challenges of this approach. Although the regulators are designed so that the theory does not depend on them at the scales of interest, the results for the critical exponents can vary depending on the regulator used once approximations are made. In this project, we propose an approach that eliminates the need for an explicit mass cut-off significantly simplifying the calculation of critical exponents while mitigating the regulator dependence of the results. In particular, we show that it is possible to use dimensional regularization (DR) beyond the ε-expansion in the context of RG calculations of critical properties. Based on this we propose a new functional RG scheme called Functional Dimensional Regularization (FDR) and apply it to the O(N) model in three dimension, finding excellent agreement with state-of-the-art computationses
dc.description.sponsorshipCSIC: I+D 22520220100174UDes
dc.format.extentxiii, 121 h.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherUdelar. FCes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subject.otherRENORMALIZATION GROUPes
dc.subject.otherCRITICAL PHENOMENAes
dc.subject.otherNON PERTURBATIVE RENORMALIZATION GROUPes
dc.subject.otherUNIVERSALITYes
dc.titleA new functional renormalization group syudy of universality classes with O(N) symmetryes
dc.typeTesis de maestríaes
dc.contributor.filiacionBeretta Tassano Piero Sebastian-
thesis.degree.grantorUniversidad de la República (Uruguay). Facultad de Ciencias - PEDECIBA.es
thesis.degree.nameMagíster en Físicaes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Tesis de posgrado - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
uy24-64515.pdf5,88 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons