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Abstract

The functional renormalization group (FRG) is a powerful tool that has facilitated the
investigation of various strongly interacting theories, encompassing systems character-
ized by both bosonic and fermionic variables. Specifically, this project focuses on the
analysis of theories with O(N) symmetry with bosonic scalar fields. These theories are
of particular interest due to their broad applicability in real physical systems. For exam-
ple, Z2 symmetry (the O(1) model) describes the well-known Ising universality class,
which in turn models the liquid-gas transition. On the other hand, the O(2) model be-
longs to the universality class of the XY model, used to describe the transition from fluid
to superfluid in 4He, while the O(3) model, known as the Heisenberg model, describes
the ferromagnetic transition in isotropic materials. Finally the O(0) model is related to
the self-avoiding walk (SAW).

To characterize these theories, various methods have been implemented within the
framework of the renormalization group. Perturbation theory has been applied since the
early days of the subject, specifically in the form of the ε-expansion, which has reached
high loop order in recent years. Alternatively, a non-perturbative approach can be cho-
sen, which is known as the non-perturbative renormalization group (NPRG). Within the
NPRG, there are several approximation schemes, with the derivative expansion being
particularly noteworthy. The ultimate goal of these efforts is to calculate the critical expo-
nents, which define the given universality class. The standard non-perturbative method
involves solving an equation that depends on a regulator or cut-off, which represents
one of the main challenges of this approach. Although the regulators are designed so
that the theory does not depend on them at the scales of interest, the results for the criti-
cal exponents can vary depending on the regulator used once approximations are made.

In this project, we propose an approach that eliminates the need for an explicit mass
cut-off significantly simplifying the calculation of critical exponents while mitigating the
regulator dependence of the results. In particular, we show that it is possible to use di-
mensional regularization (DR) beyond the ε-expansion in the context of RG calculations
of critical properties.

Based on this we propose a new functional RG scheme called Functional Dimensional
Regularization (FDR) and apply it to the O(N) model in three dimension, finding excel-
lent agreement with state-of-the-art computations.

Keywords: Non-perturbative renormalization group, universality, critical phenomena.
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Resumen

El grupo de renormalización funcional (FRG, por sus siglas en inglés) es una herramienta
poderosa que ha facilitado la investigación de diversas teorı́as fuertemente correlacionadas,
abarcando sistemas caracterizados tanto por variables bosónicas como fermiónicas. En
particular, este proyecto se centra en el análisis de teorı́as con simetrı́a O(N) confor-
madas por campos escalares bosónicos. Estas teorı́as son de interés particular debido a
su amplia aplicabilidad en sistemas fı́sicos reales. Por ejemplo, la simetrı́a Z2 (el modelo
O(1)) describe la bien conocida clase de universalidad de Ising, que a su vez modela la
transición lı́quido-gas. Por otro lado, el modelo O(2) pertenece a la clase de universal-
idad del modelo XY, empleado para describir la transición de fluido a superfluido en
4He, mientras que el modelo O(3), conocido como el modelo de Heisenberg, describe
la transición ferromagnética en materiales isotrópicos. Finalmente, el modelo O(0) está
relacionado con la caminata autoevitante (SAW, por sus siglas en inglés).

Para caracterizar estas teorı́as, se han implementado diversos métodos dentro del
marco del grupo de renormalización. La teorı́a de perturbaciones se ha aplicado desde
los inicios de este campo, concretamente en la forma de la expansión en ε, la cual ha
alcanzado altos órdenes de bucle en los últimos años. Alternativamente, se puede optar
por un enfoque no perturbativo, conocido como grupo de renormalización no perturba-
tivo (NPRG). Dentro del NPRG existen varios esquemas de aproximación, siendo la ex-
pansión en derivadas particularmente destacable. El objetivo final de estos esfuerzos es
calcular los exponentes crı́ticos, que definen una clase de universalidad dada. El método
no perturbativo estándar implica resolver una ecuación que depende de un regulador o
corte, lo que representa uno de los principales desafı́os de este enfoque. Aunque los reg-
uladores están diseñados de manera tal que la teorı́a no dependa de ellos en las escalas
de interés, los resultados para los exponentes crı́ticos pueden variar según el regulador
utilizado.

En este proyecto, proponemos un enfoque que elimina la necesidad de un corte de
masa explı́cito, lo que simplifica significativamente el cálculo de los exponentes crı́ticos
y, al mismo tiempo, reduce la dependencia de los resultados respecto al regulador. En
particular, demostramos que es posible usar la regularización dimensional (DR) más allá
de la expansión en ε en el contexto del RG en el cálculo de propiedades crı́ticas.

Basándonos en esto, proponemos un nuevo esquema de renormalización funcional
llamado Functional Dimensional Regularization (FDR) y lo aplicamos al modelo O(N) en
tres dimensiones, encontrando una excelente concordancia con los cálculos del estado
del arte.

Palabras clave: Grupo de renormalización no perturbativo, universalidad, fenómenos
criticos.
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Chapter 1

Introduction

In thermodynamics, systems can exist in different states or phases which, when in
equilibrium, are characterized by a set of parameters known as thermodynamic vari-
ables. One of the main objectives of thermodynamics is to properly define the phys-
ical quantities (or state variables) that describe the macroscopic properties of mat-
ter—known as macrostates—and to relate these quantities through valid universal
equations, namely equations of state and thermodynamic laws. Many systems ex-
perience changes in the macroscopic behavior of their properties when some control
parameter is varied, typically the temperature. These changes in macroscopic be-
havior are called phase transitions. The order parameter is a property of the system
which tells the degree of order on the two sides of the transition. Sometimes the or-
der parameter varies continuously during the transition and there is no latent heat
associated; therefore, this kind of transition is denominated as ”continuous phase
transition”.

Almost every day we witness a phase transition, such as water boiling in a kettle.
Another example one can find in nature, though only observable in colder climates, is
a lake freezing over. The state, of water in this case, is physically described1 by a set
of macroscopic parameters such as pressure and temperature, for instance. Another
example of a phase transition took place in the early universe [1]. Shortly after the Big
Bang it is thought that the three fundamental forces of the Standard Model2 (which
manifest independently nowadays) were unified at the high temperatures of the early
universe [2, 3]. At this same stage the Quark-Hadron transition is another example
of phase transition, where quarks and gluons were free3 and as the universe cooled

1This is when the substance to describe is in equilibrium.
2Weak, strong and electromagnetic forces.
3This state is known as the quark-gluon plasma.

1



CHAPTER 1. INTRODUCTION 2

they combined to form hadrons. As seen, phase transitions are central not only to our
daily lives but also in understanding the universe.

In physics, when we want to describe or characterize a system (from a thermody-
namic point of view), we appeal to the statistical mechanics formalism. It is known
that the vast majority of these systems fall into one of the following two categories.
On one side, the microscopic constituent of the system can be treated as nearly non-
interacting, which leads to smooth and continuous thermodynamic functions. Nor-
mally the solution to the problems is straightforward, for example, it is possible to
solve it with a perturbative approach. On the other side, system which are strongly
correlated (like a second-order phase transition) presents analytic discontinuities or
singularities in the thermodynamic functions which give rise to the phase transi-
tion. Materials that undergo a second-order phase transition are those whose sec-
ond derivatives of the free energy, like the specific heat or the magnetic susceptibility,
show a divergence while the first derivative – such as the entropy or the magnetiza-
tion –are continuous functions.

Critical phenomena is characterized by universality, which – broadly speaking –
means that systems which are completely unalike at the microscopic level present the
same power law behavior, of their macroscopic thermodynamical quantities, when
criticality is approached. Later we will see that a set of critical exponents characterize
a universality class – among other quantities; then we say that two systems belong
to the same universality class if they share the same critical exponents. Among the
extensive list of universality classes, we will focus on those characterized by O(N)-
symmetry. It is important to say that in order to characterize a universality class we
need two parameters, the order parameter itself and also the dimension, for instance.
As an example, the O(2) universality class differs in the critical exponents as well as
the symmetry displayed, when d = 2 or d = 3.

Since the solutions to problems like these are hard to handle, due to the great
number of degrees of freedom involved, it was proposed by Wilson a framework to
deal with this kind of system which is known as the renormalization group (RG). This
approach not only gives us a way to treat critical systems but also explains the phe-
nomena of universality. The renormalization group consist in formulating effective
theories where the main ingredient is the effective action, a functional that encapsu-
lates the coarse-grained physics at different scales. The renormalization group has
two branches, either one can formulate it perturbativly or non-perturbativly. In the
latter way, together with the path integral formalism, we can derive an exact equa-
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tion4 describing how the effective action changes when the scale changes. The prob-
lem is that this functional partial differential equation has no analytic solution and
thus approximation are required. Among several approaches, the one most used in
the literature is the derivative expansion. This methods consist in an ansatz for the
effective action which includes up to a certain degree of derivatives of the field.

This thesis is organized as follows. In Chapter 2 we give the basic notions of phase
transitions and critical phenomena, we also present an introduction to the Wilson’s
renormalization group and to universality classes. At the end of this chapter we
briefly indicate which are the universality classes of interest and explain how they
manifest in nature giving real life examples. In Chapter 3 we introduce the two differ-
ent approaches to the renormalization group well known in the literature, the func-
tional perturbative renormalization group (FPRG) and the non-perturbative renor-
malization group (NPRG), to this we add our new approach baptized as Functional
Dimensional Regularization (FDR). Moreover, we apply our new approach to one com-
ponent scalar fields and give a connection between the FDR and the NPRG.

Later, on Chapter 4 we generalize our theory and analyze the multi-component
case where we study O(N) models for certain values of N by means of the derivative
expansion up to order O(∂2) with the FDR. We also compare our results with the state
of the art corresponding to the conformal bootstrap and O(∂4) NPRG calculations
when available . Finally, we present our conclusion and discuss which improvements
are possible.

4Sometimes called the Wetterich/Morris equation.



Chapter 2

Phase Transitions and Critical
Phenomena

One of the main goals of statistical mechanics is the computation of macroscopic prop-
erties of systems composed by a large number of particles from the knowledge of the
microscopic interactions between the constituents. In particular, one is interested in
the study of the phenomena of phase transitions; in this thesis we focus on second
order phase transitions that constitute the main subject in the theory of critical phe-
nomena.

In this chapter, basic concepts of phase transitions are introduced with the aim of
preparing the reader for subsequent chapters. We introduce a few toy models in order
to fix ideas – in particular the Ising model – which will serve us as an example when
defining Wilson’s renormalization group [4], one of the main pillars of the theory of
critical phenomena; after this is settled up, we explain the phenomena of universality,
another key point of this project. Then we explain what are O(N) models and briefly
describe the different universality classes arising from it. Finally, we summarize the
most recent results for the critical exponents of O(N) models calculated using the
different known methods available.

2.1 Phase Transitions

In this section, we will define what a phase transition is and present examples of
first- and second-order phase transitions. In particular, we are interested in second-
order transitions, since they allow us to define very interesting properties, such as
universality.

4
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2.1.1 Types of Phase Transitions

In general, it is understood that a phase transition is produced when some prop-
erty of a system changes abruptly by fine-tuning a parameter. As an example, this it
what happens in the case of the liquid-steam or paramagnetic-ferromagnetic transi-
tion. Formally, we say that phase transitions occur when some thermodynamic func-
tion presents a non-analytic point. This is because the equation of state arises from
derivatives of the free energy, therefore a discontinuity on the derivative implies the
equations of state of the two phases be different. One way to classify a phase transi-
tions is to use the Ehrenfest’s classification which says that the transition is of order-n
if the n-derivative of the free energy is singular. The most extensively studied types of
transitions are first-order or second-order, with the latter being of particular interest
for this project.

2.1.2 Liquid-gas Phase Transition

In a P − v diagram of a simple liquid, there exist a region on which the two phases
coexist, liquid and steam. In that region, the pressure is constant along an isotherm,
P = Pcoex(T). Hence, if we impose a constant pressure P∗ = Pcoex(T∗) for the tem-
perature T1 = T∗ − δT the system will be on the liquid phase and at T2 = T∗ + δT it
will be on steam phase, regardless of how small δT is. Consequently, by changing the
temperature at constant pressure, the specific volume undergoes a jump from T < T∗

to T > T∗. This same thing happens with the entropy S. At each point of the process
we fix T, P then we use the Gibbs free energy G. Writing T = T∗ this is represented in
Figure 2.1. Since the entropy present a jump, there will be a latent heat involved

∆S =
δQ
T

(2.1)

Note that

S =

(
∂G
∂T

)
P

(2.2)

there is a discontinuity on the first derivative of G, hence the transition is of first-order.
It is also possible to have a second-order transition where the singularity appears on
the heat capacity which is the second derivative. For a system to undergo this type
of transition, there must exist an interaction between particles that is attractive for
some distances and repulsive for others. The Lennard-Jones potential [5] is a good
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Figure 2.1: P − v diagram of a simple fluid.

approximation for such interaction (2.3):

u(r) = 4ϵ

[(σ

r

)12
−
(σ

r

)6
]

(2.3)

In order to simplify the computation it is useful to use the following model
u(r) = ∞ r ≤ σ

0 > u(r) > −ϵ σ < r < r∗

u(r) = 0 r ≥ r∗
(2.4)

with this potential we can think that each particle is a hard sphere of diameter σ

situated in an attractive potential of range r∗ which has a maximum depth ϵ. If we
compute the exact partition function ZN(V, T) (here N is the total number of particles
of the system) this will exhibit the following properties: in the thermodynamic limit,
that is, when N, V → ∞ and the ratio N/V stays constant, the quantity ln (Z)

N tends
to be a function of the specific volume v and the temperature. From the partition
function one computes the Helmholtz free energy of the system which allows us to
compute the thermodynamic pressure P given by

P(v, t) = −
( ∂F

∂V

)
N,T

= kT
(∂ f

∂v

)
N,T

(2.5)

which is a strictly non-negative quantity. Moreover, the function f (v, T) is every-
where concave, hence the slope (∂P/∂v) of the (P, v) curve is never positive. At high
temperature the slope is negative for all v but at lower temperatures there may exist
regions in which the slope is zero, therefore the systems is infinitely compressible.
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The existence of such regions emerge from the coexistence of two or more phases of
different density of the system. We are in the presence of a phase transition. It is im-
portant to distinguish two different cases, whether one use the exact partition function
or an approximation. If one use the former, there will be no isotherms with positive
slope, otherwise it would appear unphysical regions like it does if one uses the van
der Waals model as it will be described below. In order to solve this problem it is
common to introduce a flat region where the isotherms slope is positive, then we go
from ∂P

∂v > 0 → ∂P
∂v = 0. To do so we use the Maxwell construction of equal areas.

This unphysical regions emerge since as one use an approximate partition function,
the density is constrained to be constant thus hindering the system from undergoing
a transition, where the phases on either side have different densities.

Van der Waals Model

The Van der Waals gas model [6] was one of the first used to describe the gas-liquid
phase transition, which can be derived by doing an approximation of rigid sphere.
This model obeys the equation of state

P =
RT

v − b
− a

v2 (2.6)

where a and b are constant that measure the attractive force among the molecules and
the repulsive force when two particles come too close respectively.

For T above the critical temperature, P decreases monotonically with v. For T < Tc

in Figure 2.2 the isotherms shows regions where ∂P/∂v > 0 hence the condition of
stable equilibrium is not satisfied. This is corrected with the Maxwell construction,
which has a result the flat portion of isotherms as shown in the picture. In that flat
interval the substance is in a mixed phase where the transition from liquid to gas state
results in a ∆v ̸= 0 and ∆P = 0. In the Figure 2.2 the coexistence curve is represented.
This curve delimits the zone under which the two phases can coexist, this means that
for vl < v < vg, the system is in a mixed phase and the transition below this curve
correspond to a first order phase transition. As the temperature increase, the values
of vg along this curve decreases and the values of vl increase up to a common value
for vc known as the critical volume which is part of the set known as the critical point.
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Figure 2.2: Isotherms of a van der Waals system (taken from [7]).

The critical point is the one that verify(
∂P
∂v

)
T

= 0,

(
∂2P
∂v2

)
T

= 0

under these conditions in the Van der Walls model we define

Pc =
a

27b2 , vc = 3b, Tc =
8a

27bR
.

It is possible to define the number K as

K =
RTc

Pcvc
=

8
3
= 2.666···

the values of the temperature, pressure and volume at the critical point differ in one
system or another, but the quantity K is the same for every system that satisfy the van
der Waals equation of state, thus value of K is universal. Usually we define reduced
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variables1 as

Pr = P/Pc, Tr = T/Tc, vr = v/vc

Thus the equation of state can be written as(
Pr −

3
v3

r

)(
3vr − 1

)
= 8Tr (2.7)

Now let us study what happen with the isothermal compressibility κt as we approach
to the critical point. By definition at the critical point we have that Pr = 1,vr = 1 and
Tr = 1. Hence, we write close to the criticality

Pr = 1 + π

vr = 1 + ψ

Tr = 1 + t

where in the case of the temperature t is defined as t = T−Tc
Tc

. We need to compute

κt = −1
v

(
∂v
∂P

)
T

Using the reduced variables

P =
8
3

T
(v − 1/3)

− 3
v2 (2.8)

Thus

−
(

∂v
∂P

)
T
= − 6

v3 +
8
3

T
(v − 1/3)2

Now, let us examine how κ varies as T → Tc with T > Tc and v = 1 that is the critical
volume then

1
κt

= −v
(

∂P
∂v

)
T

= −(6 − 8
3

T
(2/3)2 ) = −6(1 − T) = 6t

1This is because it enables us to abstract away from the specifics of individual systems to uncover
and analyze the universal behaviors and properties that many systems share. Besides, it simplifies the
mathematical expressions and makes the equations more manageable.
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κT =
1
6t

Therefore we see that as T → 1, (i.e., we approach to the critical point), the isother-
mal compressibility diverge. This is the typical behavior of a second-order transition
where some properties diverge close to the critical point. In order to characterize these
kind of divergences we define critical exponents. In the case of the compressibility
the critical exponent γ is defined such that close to the critical point

κt ∝ (T − Tc)
−γ

We found that
κT =

1
6t

=
1

6(Tr − 1)
∝

1
T − Tc

so the critical exponent γ = 1.
A problem in the phase transition theory is that as close as we approach to the

criticality it is harder and harder to tell on which side of the phase we are, therefore
we need a tool in order to infer on which side of the phase we are. To do so, we
define a function called order parameter, which serves to distinguish each phase. The
density ρ is the order parameter in the context of fluids where close to the criticality
it behaves as ρl − ρg ∼ |T − Tc|β. From here we see that we have introduced a new
critical exponent, β.

As we approach the phase transition (for instance, by varying the temperature),
certain thermodynamic properties exhibit power-law behavior near the critical tem-
perature. In particular, the specific heat C diverges in the neighborhood of Tc as
C ∼ |T − Tc|−α defining the exponent α.

The study of these critical exponents is a key point, as they characterize a univer-
sality class.

2.1.3 Magnetic Phase Transitions

Now we turn to study the magnetic continuous phase transitions, unlike the first
order this do not involve an absorption/release of latent heat. It was Pierre Curie [8]
that was one of the first to observe a continuous phase transition, he saw how iron
transformed from paramagnetic to ferromagnetic up to the temperature Tc = 1043K.
Element such as iron, cooper or zinc are paramagnetic at T > Tc, this means that
material is not magnetized in the absence of an applied magnetic field. Though if we
apply a weak magnetic field B, the material’s magnetic moments m is proportional to
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the applied field m ≈ µB. In contrast, the ferromagnetic state, for T < Tc, the material
shows a non-zero magnetization even when no external magnetic field B is applied.

The analogue for the divergence in the isothermal compressibility for the water-
steam transition is in the case of iron ferromagnetic-paramagnetic transition at the
susceptibility χT = (∂m/∂B) ∼ (T − Tc)−γ. In either case, the large values of κT

and χT above Tc give rise to large fluctuations in the density or magnetization. This
large fluctuations can be observed experimentally through the phenomenon of critical
opalescence.2 In the case of the ferromagnetic-paramagnetic transition, we use the
magnetization m as order parameter which is defined as:

m(T) =

0 for T > Tc,

|t|β for T < Tc

Another example of critical exponent we want to introduce is δ which in the con-
text of magnetic materials this critical exponent is defined by how the magnetization
M depends on the external magnetic field B at the critical temperature Tc. Formally,
it is written as M ∼ B

1
δ when T = Tc.

Finally, a last few words before we proceed to present some models. The amaz-
ing thing we want to emphasize is that all these exponents defined above (β, ν, δ, · · · )
share the same value for magnetism as for the water-steam transition! Surprisingly,
two system (which have microscopically nothing in common) behave exactly the
same at criticality. This is our first encounter with the concept of universality [9].

The Ising Model

So far we have mentioned the phase transition in an uniaxial magnet but yet did not
propose any model. The Ising model [10] is by far the most popular model to model
quantitatively the paramagnetic-ferromagnetic transition at least as a first approxima-
tion. There are some key features that are essential which must be displayed in the
Hamiltonian describing the theory, such as the interaction between spins tending to
align them in the case of ferromagnetism. We build this model as electrons placed on
a lattice which in general we assume it is a cubic one. This lattice may have dimen-
sion one, two or three which will be denoted with the letter d. Also we will think that
the spin-spin interaction has a short range, therefore we will neglect the interaction
between spins enough separated. The simplest quantum Hamiltonian with tendency

2This is a light scattering phenomena where the wavelength of the gas are long enough to scatter
visible light. The fluid appears ”milky” and the light can not pass through the system.
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to align the spins is the quantum Heisenberg model :

H = −J ∑
<i,j>

σi · σj (2.9)

where J is the coupling constant which is positive for the ferromagnetic case, < i, j >
means sum over the nearest neighbors and σi are the Pauli matrices. Since quantum
fluctuations are suppressed by statistical fluctuations, we can replace the Pauli ma-
trices σ by the classical vector Si of length 1 which defines the classical Heisenberg
model. Despite this simplification (from quantum to classical) the model is still too
hard to solve, the only analytic solution known up to date is on the d = 1 case. The last
simplification was proposed by Lenz in 1920 [11], he replaced the classical vector Si

by scalar Si where Si = +1, −1. Some years later Lenz proposed this model to his stu-
dent, Ernst Ising, as a model for ferromagnetism. Ising treated the case d = 1 which
has a analytic solution. In 1942 Onsager [12] solved the case d = 2 with no external
field applied. Nowadays, we know that the Ising model describe the ferromagnetism
qualitatively good but quantitatively it fails to provide accurate predictions.

The main difference between the classical Heisenberg model and the Ising model
is that the former takes the spins Si as three-dimensional vectors, whereas the latter
takes the spins as scalar. On account of we say that the Heisenberg model has di-
mensionality N = 3 of the order parameter and the Ising correspond to the N = 1.
Consequently, the critical exponent computed in each case will differ. As mentioned,
the Hamiltonian of the Ising model is given by

H = −J ∑
<i,j>

SiSj, Si = ±1 (2.10)

For pedagogical reasons, let us compute the partition function from which several
thermodynamic quantities can be derived. The partition function Z is

Z = ∑
states

e−βH = ∑
[Si]

e
J

kBT ∑<i,j> SiSj β =
1

kBT
(2.11)

where ∑[Si]
runs over all configurations. If we have N sites in the lattice there will be

2N terms in the partition function.
Let consider the most simple case which is the linear lattice (d = 1). There are

many ways to compute the partition function among them the transfer matrix method.
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The partition function is

Z = (cosh(K)N−1)∑
[Sl ]

N−1

∏
i=1

(1 + SiSi+1 tanh K)

One common method in statistical mechanics is the use of the high-temperature ex-
pansion. To apply this one expand the partition function in power of some parameter
κ(T) such that κ(T) → 0 as T → ∞. In this case the tanh (K) = tanh (J/kT) → 0 as
T → ∞. Therefore we will expand

∏
i
(1 + SiSi+1 tanh (K)) = 1 + tanh (K)∑ SS + tanh (K)2 ∑(SSSS) + · · ·

For this various terms the only terms that survives is the first of the expansion since
for a given configuration with Sk fixed to 1 there is another identical but with Sk = −1
and this two cancel each other. When we impose a free boundary condition we arrive
at

Z = 2N(cosh(K)N−1)

with K = J/kBT. Now that we know the partition function we are allowed to com-
pute any thermodynamic function, in particular the Helmholtz free energy −kBT ln Z.
Recall that a phase transition correspond to a singularity of the thermodynamic func-
tion, to see that we have to take the thermodynamic limit N → ∞. The free energy
per spin f is in this limit

f = lim
N→∞

1
N

F = lim
N→∞

(−kBT
N

ln Z) = kBT log(2 cosh(
J

kBT
))

Hence f is an analytic function of T and there is no phase transition in one dimension
since the temperature of transition is Tc = 0. This was also shown by Peierls [13] who
predicted a phase transition for d = 2.

Correlation Function

We move forward with the calculation of the correlation function of two spins Si and
Sj. The correlation functions measures the influence exerted, for instance, on the spin
Si due to the spin Sj. At this point we expect the correlation function to decay expo-
nentially as the spins get further and further away. The definition of the correlation
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function is
Gij =

〈
SiSj

〉
−
〈
Si
〉〈

Sj
〉

(2.12)

this is actually called connected correlation function. If we consider the Ising model with
an external magnetic field B applied the Hamiltonian becomes

H = −J ∑
<i,j>

SiSj − µ ∑
i

BiSi

and the function Gij relates to a second derivative of the partition function Z[Bi]

〈
Si
〉
=

1
Z ∑

Sk

Sie−β(H0−µ ∑k BkSk)

therefore 〈
Si
〉
=

1
βµZ

∂Z
∂Bi

=
1

βµ

∂ ln Z
∂Bi

Then 〈
SiSj

〉
=

1
(βµ)2

1
Z

∂2Z
∂Bi∂Bj

Gij =
1

(βµ)2
∂2 ln Z
∂Bi∂Bj

It is worth noting that the correlation function Gij of two spins is computed from the
derivatives of log Z, from here we can extend this process and compute the correlation
functions of several spins. Due to this fact, the function Z[Bi] is called generating
function of the correlation functions.

Experimentally it can be shown close to the criticality that for small momentum
q ≪ 1

a the correlation function has the form3

G̃(q) =
1

q2−η
f (qξ) (2.13)

where the parameter η is called anomalous dimension. In the context of magnetism,
we define the critical exponent ν which relates to the correlation length ξ. Close to
the criticality is found that

ξ ∼ |T − Tc|−ν ∼ |t|−ν (2.14)

3a is the lattice spacing.
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order parameter M ∼ (Tc − T)β (T < Tc)
specific heat C ∼ |T − Tc|α (T ̸= Tc)
susceptibility χ ∼ |T − Tc|γ (T ̸= Tc)

critical isotherm B ∼ Mδ (T = Tc)

correlation function G̃(q) ∼ qη−2 (T = Tc)
correlation length ξ ∼ |T − Tc|ν (T ̸= Tc)

Table 2.1: Characteristic behaviour of ferromagnetic quantities close to criticality.

Its value in the one dimensional Ising model is

ξ =
a

|ln tanh J/KBT| .

As expected, the correlation length decreases as the temperature increase and tends
to infinity as the temperature goes to zero (the critical point).

Scaling Relations

The last two equation (2.13) and (2.14) defines the critical exponent η and ν. We can
apply a Fourier transformation to G(q) and go back to the coordinate space

G(r) =
g(r/ξ)

rd+η−2 (2.15)

where g(r/ξ) behaves as g(r/ξ) ∼ e−r/ξ for r ≫ a. The correlation function G̃(q)
is finite at q = 0, in order to compensate the divergent factor in the denominator the
function f (qξ) should behave as f (qξ) ∼ (qξ)2−ν. This leads us to

G̃(0) ∼ ξ2−η ∼ t−ν(2−η).

The response fluctuation theorem says that

χ ∼ NG̃(0)

and the magnetic susceptibility diverges as χ ∼ |t|−γ. From here we see that there is
a relation between the critical exponent

γ = −ν(2 − η) (2.16)

this is the first scaling law we find. There are six critical exponent α, β, γ, δ, η and ν
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which are not independent of each other, actually there are only two independent
(say ν and η) from which one can compute the rest of them. The scaling relation reads
as follows

α = 2 − νd (2.17)

β =
ν

2
(d − 2 + η) (2.18)

γ = ν(2 − η) (2.19)

δ =
d + 2 − η

d − 2 + η
(2.20)

The liquid-steam transition as well as the ferromagnetic-paramagnetic transition share
the same values for the critical exponents, thus we say that both models belong to the
same universality class.

2.2 Landau’s theory of phase transitions

2.2.1 Mean Field Theory

The model proposed by Ising is too hard to solve without a method of approximation.
Ising himself solved for d = 1, later Onsager did it for d = 2 and B = 0. Nevertheless,
for higher dimension, say d = 3 the model has not been solved at B = 0 or B ̸= 0. It
is possible to solve the problem in arbitrary dimension within the mean field approx-
imation proposed by Weiss in 1907. This approximation is based on the fact that each
spin interact with an average of the spins that surround it, discarding fluctuations.
Take for example the spin Si and assume its energy is Ei which can be computed by
replacing all other spins by their average value

〈
Sj
〉
. If the system is immersed in a

B−field then Ei is
Ei = −JSi ∑

j

〈
Sj
〉
− µBSi.

Denote M, the average value of Sj, M =< Sj > and q the coordination number (the
number of nearest neighbours). The magnetization is

M =
〈
Si
〉
=

∑Si±1 e−βEi Si

∑Si±1 e−βEi
= tanh

(
qJM + µB

KBT

)
(2.21)

tanh−1 (M) =
qJ

KBT
M +

µB
KBT

. (2.22)
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This equation must be solved numerically but it is possible to give a qualitative idea of
the solutions by looking at the graph. The solution to this equation is the intersection
of the line (qJ/KBT) + µB/KBT with the curve tanh−1 M. When B > 0 there are three
solutions, two of them negative which are metastable or unstable. The physically cor-
rect solution correspond to the M > 0 (i.e., magnetization in the same direction as
B). To have an intersection when B → 0+ the slope qJ/KT must be greater than 1 for
M ̸= 0. In a zero B−field the mean field predicts a non-zero spontaneous magnetiza-
tion if T < Tc = qJ/K and zero spontaneous magnetization if T > Tc. We define the
transition temperature Tc = qJ/K.

We can solve (2.22) by doing some approximations. As we approach to Tc and the
magnetic field B is small the magnetization is weak M ≪ 1, this allow as to perform
a series expansion of tanh−1

tanh−1 (M) = M +
1
3

M3 +O(M5).

With this approximation the magnetization in zero field is

M0 ≃
√
−3t

close to Tc the spontaneous magnetization behaves as (Tc − T)1/2

M0 ∼ (Tc − T)1/2.

Likewise we compute the susceptibility in zero field when T > Tc for B → 0. The
total magnetization M = NµM and the magnetic susceptibility in zero field is

χ =
∂M
∂B

∣∣∣∣
B=0

χ ≈ (T − Tc)
−1.

Needless to say the predictions of the mean field approximation are catastrophic when
compared with the exact results in d = 1, 2 and with the numerical calculations in
d = 3. For d = 1 it predicts a phase transition even when it was proven that there was
none (recall the Peierls’s argument). For d = 2, one arrives to a critical temperature
higher than the one computed by Onsager. On one case one arrives at

kBTc = 4J (q = 4)
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whereas Onsager’s solution is
kBTc = 2.27J.

Later we will see that, within this framework, the critical exponent improves as the
dimension grows and it becomes exact up from a certain value dc known as upper
critical dimension, which in the case of the Ising model is dc > 4.

Critical Exponent MF d = 2
α discont. ln |T − Tc|
β 0.5 0.125
γ 1 1.75
δ 3 15
ν 1/2 1

Table 2.2: Comparison of the critical exponent predicted by the mean field (MF) theory and
the exact result from Onsager.

Comparing the critical exponents derived by Lars Onsager for the two-dimensional
Ising model to those predicted by the mean field theory provides insight into the dif-
ferences in behavior and accuracy between exact solutions and approximations.

2.2.2 The Ginzburg-Landau criterion

The mean field approximation just studied is not accurate for certain dimensions since
it neglects the effects of fluctuations. In what follows we will not only see how these
effects depend on dimension but also we will find a criterion which will be help us
to discern whether the result are reliable or not. The Ginzburg-Landau Hamiltona-
ian has as its main difference with the Ising model that the former is described by
variables φi defined on the site i of a lattice with the property of being a continuous
variable.

In order to formulate a Hamiltonian to describe the second order transition we
have to ask it to fulfill some requirements as we did in the Ising model. First, it must
be invariant under φ → −φ (i.e., H[φ] = H[−φ]) in the absence of external field.
Second, by analogy we need the Hamiltonian to depend on two coefficients and be a
polynomial function.

H[φ] =
1
2!

r0φ2 +
1
4!

u0φ4 (2.23)

with r0, u0 functions of the temperature and u0 > 0 in order for the partition function
to converge.
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The Hamiltonian above do not display any interaction term since it was derived
as the one site case. When we have N sites we must include the interactions between
the nearest neighbor to make the model reliable. Concretely, if µ is the vector linking
the site xi and the nearest neighbor we describe the interaction between φ(xi) and
φ(xi + µ) through the discretized gradient

∂µ φ(xi) =
1
a
(φ(xi + µ)− φ(xi))

∑
i,µ

=
1
a2 (φ(xi + µ)− φ(xi)) = ∑

i
(∇φ(xi))

2.

In the continuous limit the Ginzburg-Landau Hamiltonian becomes

HGL =
∫

ddx
[

1
2
(∇φ)2 +

1
2

r0(T)φ2 +
1
4!

u0φ4
]

. (2.24)

The partition function in an external field B(x) is

Z[B] =
∫

Dφ(x)e−
∫

ddx
[

1
2 (∇φ)2+ 1

2 r0(T)φ2+ 1
4! u0 φ4−Bφ

]
(2.25)

Landau approximation is based on the assumption that Z[B] is dominated by a sin-
gle configuration which is the one with the higher probability, that is, the one that
minimize the exponent. This conditions satisfy

B(x) =
δHGL

δφ(x)

∣∣∣∣
φ=φ0

.

As promised we will give a criterion, called Ginzburg criterion, which will help us
know if neglecting fluctuations is appropriate or not. To do so, we will compare the
average magnetization M over a volume V against mean-square fluctuation (∆M)2

M2 =
6r0(Tc − T)V2

u0

The mean-square fluctuation (∆M)2 is computed through the integration of the cor-
relation function over the volume V

(∆M)2 =
∫

x,y
[
〈

φ(x)φ(y)
〉
−
〈

φ(x)
〉〈

φ(y)
〉
] = V

∫
x

G(x)
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Roughly speaking ∫
x

G(x) ≈ ξ2 ≈ 1
r0(Tc − T)

.

Then the ratio
(∆M)2

M2 ≃
ur

d−4
2

0
6

(Tc − T)
d−4

2 . (2.26)

This tell us that as we approach to criticality T → Tc and d > 4, the ratio (∆M)2

M2 ≪ 1
and it seems reasonable to apply the Landau approximation for describing the critical
behaviour. Since for dimensions above 4 this approximation remains applicable we
call it upper critical dimension (i.e., dimension from which the mean field is valid).
However, when d < 4 the ratio diverges and this approximation is no longer suitable.

2.3 Renormalization Group and Universality

2.3.1 Renormalization Group

In this section, we will discuss one of the most successful tools to study phase transi-
tions. Normally when a system composed by a large number of molecules interacting
weakly one another its study can be performed by applying perturbative methods.
The weakly interaction can be characterized by some ”interaction length” which will
be bigger than the correlation length of the system itself. An example of this last is a
diluted gas described, in a first approximation, by the ideal gas equation when per-
forming the virial expansion, for instance. The hard things come when the number of
degrees of freedom interacting diverges. This is the case of a critical phenomena. In
this case, near the critical point the number of degree of freedom interacting is ∼ ξd,
and since second order transitions are characterized for being long range interaction,
the correlation length diverges ξ → ∞. In this scenario, perturbative methods fails to
give an accurate result, since they are build to solve problems where a few degrees
of freedoms interact. To save the day, first Kadanoff [14] and later and more impor-
tantly Kenneth Wilson [15] developed the ideas of what it is nowadays known as the
renormalization group (RG). The main idea behind this framework is the sensitivity of
the system to a length transformation, or change of scale, is significantly reduced. Ac-
cordingly, not too far from the critical point the transformed system resemble to the
original one after the change of scale, say from the a → a′ = sa where a is the lattice
spacing and s > 1 a constant.

Wilson’s renormalization group method relies on reduce systematically the num-
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ber of degrees of freedom interacting by integrating over short wavelength fluctua-
tion. To put an idea into concrete terms, think about a spin system on a lattice whose
spacing is a. The first step is to integrate over fluctuation of wavelength a < λ < sa,
here the fluctuations of wavelength greater than sa remains untouched and therefore
the transformed system and the original behaves in the same way at long distances.
This kind of transformation is called renormalization group transformation (RGT). In this
new transformed system, the natural unit of length will be sa but the lattice spacing is
not the only parameter of the system that underwent a change; the correlation length
of the new system is ξ/s, hence the number of degree of freedom effectively interact-
ing reduced from ξd → (ξ/s)d. By iterating over the renormalization group trans-
formation we can make the correlation length to be of the order of the ”interacting
length” and hopefully solve the problem with perturbative method.

Blocks of spins

One way of integrating over short-wavelength fluctuation is to form blocks of spins.
Let work with the Ising model in dimension d = 2 on a square lattice whose spacing
is a. The idea is to form block of spins and work with the interaction among them
rather than look at each spin individually. For correctness, let make a block of spin
four individual spin. Originally each spin has value Si = +1,−1 then the value block
S′

α will depend on its constituents spins.

S′
α = f (Si).

Of course this value should represent the configuration of the block, the intuitive
choice is to take the average of the spins. This new configuration has the double size
compared to the first one, we need to revert to the initial lattice in order to compare
both systems on the same lattice.

The probability of observing a given configuration [S′] of blocks is related to the
former Hamiltonian via

e−H′[S′
α] = ∑

[Si]
∏

α

δ(S′
α − f (Si))e−H[Si] (2.27)

this delta function yield to

Z = ∑
[Si]

e−H[Si] = ∑
[S′

α]

eH′[S′
α] = Z′ (2.28)
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Figure 2.3: Formation of blocks of spins and rescaling [9].

The partition function are exactly the same and so the Helmholtz free energy i.e., the
same physics is described. At this point we must note that the new Hamiltonian
H′[S′

α] should have the Ising form but it may come with new terms

−H′ = K1 ∑
<i,j>

SiSj + K2 ∑
≪i,j≫

SiSj + K3 ∑
<ijkl>

SiSjSkSl (2.29)

where the second terms refers to the next-nearest neighbours and the third to ”pla-
quettes”. The coefficient Ki are called coupling constant and together they define a
parameter space µ.

A RGT is a non-linear map on the coupling constant space

µ′ = R(µ). (2.30)

The RG method consist in apply RGT many times, under this consideration the pa-
rameter space have the form

µ(n) = R(n)µ = R ◦ R ◦ R · · · ◦ Rµ. (2.31)

Before we continue, we have to introduce some assumptions

• The coupling constant Ki are analytic function of the temperature and the K′
i are

smooth functions of the Ki.

• The RGT do not introduce any long-range interaction

• After many iteration, eventually, µ(n) = µ(n−1). This mean there exist a fixed
point.
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It is possible to divide the function f (Si) into two categories, the linear transformation
and the non-linear transformation. Now let see an example of linear transformation
defined as:

S′
α =

λ(s)
sd ∑

i∈α

Si

λ(s) is a function of the dilatation factor that will be explained later. Note that in this
case the spin block no longer have the value +1,−1. The RGT now requires to work
with continuous variable φ ∈ R, we can take the Ginzburg-Landau Hamiltonian.

H =
∫

ddx
{

c0

2
(∇φ)2 +

r0

2
φ2 +

u0

4!
φ4 +

v6

6!
φ6 +

v
2

φ2(∇φ)2 + · · ·
}

With this Hamiltonian the parameter space is defined by µ = {c, r0, uo, u6, v, · · · }

〈
S′

αS′
β

〉
= ∑

S′
β

e−H′[S′]S′
αS′

β

Z′

=
1
Z′ ∑ S′

γ ∑
Si

e−H[S] ∏
γ

δ(S′
γ − λ(s)

sd ∑
i∈α

)S′
αS′

β

=
1
Z ∑

Sl

e−H[S] λ
2(s)
(sd)2 ∑

i∈α

Si ∑
j∈β

Sj =
λ2(s)
(sd)2 ∑

i∈α
∑
j∈β

〈
SiSj

〉
≈ λ2(s)

〈
SiSj

〉
in the last step we assume the distance between two block rαβ ≫ sa. In general we
can deduce

< S′
α1
· · · S′

αn >= λn(s) < Si1 · · · Sin > .

For distances r ≫ a we can relate the two correlation functions

G
(

r
s

, µ′
)
≃ λ2(s)G(r, µ) (2.32)

Then under a RGT the correlation functions scales as (2.32). Moreover, this last equa-
tion yields to a form for λ(s). For instance, the transformation of blocks (s1s2)

d has
same result as the product of two RGT, that is, the formation of blocks of sd

1 and sd
2.

This mean that λ(s) satisfies

λ(s1, s2) = λ(s1)λ(s2)
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Figure 2.4: Lines of flow about the three types of fixed points: (a) attractive, (b) repul-
sive and (c) mixed [16].

From here we see that the dilatation factor has the form

λ(s) = sdφ (2.33)

where dφ is the anomalous dimension of the field. The dimension of the field will play
a crucial role when doing a dimensional analysis of the β-functions. The computation
of these functions will be one of the key points of this projects since they describes the
running of the coupling. We will see more of these functions in detail in Chapter 3.

2.3.2 Critical Surface and Fixed Points

We just learnt that the RG requires to integrate over the microscopic fluctuations
which is taken into account by changing the system parameter. That is, we iterate
over and over using the operator R of the RG. This process generates a system of
trajectories called the renormalization flow. This trajectories could be cycles, fixed
points or strange attractor but for us the crucial ingredient is the existence of a fixed
point where close to it we restrict our attention to a finite number of parameters. Like-
wise, fixed points can be classified in three different categories, attractive, repulsive
or mixed. An attractive fixed point is the one that all points in every direction (in the
neighbourhood) converges to it.
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T= Tc

CT

S∞

Figure 2.5: Representation of the critical surface. Black dot represent an attractive
(stable) fixed point while the white represent an unstable fixed point.

In this phase space there is a special manifold of interest called the critical surface
or critical manifold. The critical surface S∞ is the geometric place where the coupling
constant are evaluated at the critical temperature Tc. Recall that at criticality ξ → ∞,
whence by applying a RGT to the parameter space Kc → K’ where ξ ′ also diverges.
This means that the transformed parameter remains in criticality, i.e., K’ ∈ S∞.

Unlike the points in the critical surface, those outside it will go further and further
away the critical surface. This is because the initial point has correlation length finite
and as one goes from Q → Q′ the transformed point will have correlation length
ξ ′ = ξ/s.

Recall the RGT R acts as
R(Kn) = Kn+1 (2.34)

then when it acts on a fixed point K∗

R(K∗) = K∗. (2.35)
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By studying the vicinity of the fixed point we can compute the desired critical expo-
nent by linearizing the RG equations near that point.

Let Kα be a point in the parameter space near the fixed point described by K∗
α.

Linearizing close to the fixed point yield to

Kα = K∗
α + δKα. (2.36)

As usual, the transformed point under an RGT is K′
α = RKα.

There is a relation between δK′
α and Kα which is approximately linear

δK′
α = ∑

β

Tαβ(s)δKβ (2.37)

where

Tαβ(s) =
∂Rα

∂Kβ

∣∣∣∣
K∗

(2.38)

is the stability matrix which depend on the parameter s. This matrix is not diagonal
but we will suppose it is diagonalizable and its eigenvector are denoted as e(i) and its
eigenvalues are λi = syi therefore it will satisfy

∑
β

Tαβ(s)e
(i)
β = syi e(i)α (2.39)

We can express any point of the parameter space using the basis {ei}.

δKβ = ∑
i

tiei
β (2.40)

the ti are called the scaling parameter. In the same way we can write

δK′
β = ∑

i
tisyi e(i)β
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From here it is seen that the RGT multiplies the scaling field by syi . After n−iterations
the t(n)i scaling field will be tisyin .

◦ yi > 0 : the scaling field increase on each iteration of the RGT ⇒ ti is called a
relevant parameter

◦ yi < 0 : the scaling field decrease on each iteration of the RGT ⇒ ti is called a
irrelevant parameter

◦ yi = 0 : the scaling field remains on each iteration of the RGT ⇒ ti is called a
marginal

If we have M relevant direction, then, we will have to fine-tune M parameters to
be on the critical surface. For a second order phase transition the critical surface is
reached by varying one parameter, for example the temperature, whence there is only
one relevant direction4.

We can use the language of magnetic system for the study of the correlation func-
tion and compute the critical exponent, even though the discussion is general.

Consider a fixed point with scaling field t1, t2, t3, · · · , ti, · · · where y1 > 0 > y2 >

y3 > · · · > yi > · · · . When applying the RGT the representative point approaches
to the fixed point, and after a long time will eventually diverge along e1 (the relevant
axis). The aim of all this is to compute the critical exponent which will be related to
the eigenvalues of the stability matrix, also the correlation function is a function of
the scaling fields and for the sake of simplicity we assume the field t1 must vanish
linearly on the critical surface.

t1 ∼ t =
T − Tc

Tc
(2.41)

We already know the transformation law for the correlation function is

G(r/s, µ′) ≃ λ2(s)G(r, µ) ⇒ G(r; t1, t2, · · · ) = s−2dφ G(r/s; t′1, t′2, · · · ) (2.42)

Starting on the critical surface t1 = 0 and choosing s = r. This last choice correspond
to integrate out all fluctuations between a and r

G(r; , t2, · · · ) = r−2dφ G(1; 0, ry2t2, · · · ) (2.43)

4There is one more parameter which is relevant, this is the magnetic field but in what follow we will
work in the case B = 0
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If ry2t2 ≪ 1, the equation shows that at the critical point the correlation functions
behaves as power law and the critical exponent η is linked to dφ by matching with
equation (2.15).

dφ =
D − 2 + η

2
(2.44)

Now, let analyze the case where we do not departure from the critical surface
(t1 ̸=0). Iterating enough times the scaling field will be

sy1t1 ∼ ±1

Denote ξ the quantity |t1|−1/y1 ∼ |t|−1/y1

G(r) = s−2dφ G(r/s;±(
s
ξ
)y1 , sy2t2, · · · ) (2.45)

Because of its definition s ∼ ξ , and writing s = ξ correspond to integrate over fluctu-
ations between a and ξ .

G(r) = ξ−2dφ G(
r
ξ

,±1, ξy2t2) (2.46)

with ξy2t2 ≪ 1 we arrive to
G(r) = r−2dφ f±(r/ξ) (2.47)

in the view of the equation (2.14), we identify the critical exponent ν with the inverse
of the largest eigenvalue of the RG flow equation.

Exploring how the correlation function change under the RG transformation allow
us to compute critical exponent and derive scaling laws presented in (2.17). For in-
stance, the next step could be to study the correlation function with external magnetic
field and reach a formula for the critical exponent δ and β. Last but not least, there is
another critical exponent that we want to compute and it is independent of the ones
defined above: this is ω and it is the second largest eigenvalue of the stability matrix.

2.3.3 Universality

There is no doubt, that one of the greatest achievement of the RG, is to give an accurate
proof of universality [17, 18]. The concept of universality refers to the observation of
system which differ completely microscopical, share the same macroscopic behavior
whence approach to the criticality. As it was shown, the scaling behavior described
by power laws of the form ∝ tα provides a set of exponents which together defines an
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universality class. This means that physical systems belonging to an universality class
approaching to the critical point share the same set of critical exponents while as they
are far from this regime they behave radically different. The typical example of two
system belonging to a same universality class are fluid (the water-steam transition)
and magnets (the ferromagnetic-paramagnetic transition). These two systems are part
of the Ising universality5 class which is the particular class of the O(N)-model when
N = 1.

Now let us see an explanation for the existence of universality through the RG.
As we mentioned the basic ingredients of the RG is a coarse-graining followed by a
rescale (just as we did with the block spins). This procedures yield to a new renor-
malized Hamiltonian. As we continue with the iterations, this procedure leads to a
flow on the space of Hamiltonians where we look for fixed points. Since the fixed
points is a property of the transformation itself all details of the system have been
eliminated. Therefore, those systems that flow to the same fixed point belong to the
same universality class and they will show the same macroscopic scaling behavior.

2.4 Universality Classes with O(N) Symmetry

When we refer to the O(N) symmetry we first need to understand what kind of the-
ory are we facing. The O refers to the orthogonal group, that is, the group of real
orthogonal matrices such that

OTO = 1

from here we see that det O = ±1 since

det OTO = det OT det O = (det O)2 = 1

The group SO(N) is the subgroup of the O(N) consisting of the matrices O with
det O = 1. The special orthogonal group is also known as the rotation group and
together with the orthogonal group are Lie group separately. The set of orthogonal
matrices with determinant −1 do not form a group since the product of two its ele-
ments has determinant 1.

det O1 = det O2 = −1

det(O1O2) = 1

5Here we need to set the dimension d = 3
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The symmetry that arise from the set of matrices with det O = −1 is reflection. In
dimension two it is possible to write every rotation as the product of two reflections.
The N refers to the order parameter or to the number of component field, that is why
the O(N)-model is also known as the N−vector model.

In the following we give a brief description of each class of universality of interest,
that is the XY universality N = 2, the Heisenberg universality class N = 3 and two
special cases regarding random walks, that is the self-avoiding random walk N = 0
and the loop-erased random walk N = −2.

2.4.1 N = 2 XY

Despite the N = 1 Ising model where the spin only take two possible directions, up
or down, the N = 2 case is much more interesting since it display a different phase
transition where spins have greater flexibility of orientation. In this model, each spin
is capable of pointing in any direction within some given plane, meaning that the
spin s is a two component vector. The unit-length vector sj = (cos θj, sin θj) and the
Hamiltonian which is invariant under rotations in this plane (it has O(2) symmetry)
is given by

H = −J ∑
<i,j>

Si · Sj = −J ∑
<i,j>

cos(θi − θj). (2.48)

When d = 1 and a free boundary condition is impose (in external zero field), the
model is solvable and its exact solution of the partition function is

Z = (2π)m(I0(βJ))m−1 (2.49)

where m is the number of total spins and I0 is the modified Bessel function of the
first kind. From here one is able to compute any thermodynamic quantity. As in the
Ising model, there is no divergence in the specific heat in this dimension and no other
physical quantity diverges, therefore there is no phase transition when d = 1.

The curious case is the d = 2 since it delimit the frontier between having or not a
phase transition. Bellow d = 2 there is no phase transition and at d = 2 we define the
the Kosterlitz-Thouless (KT) universality class [19]. This case is very special due to the
existence of vortex and antivortex has a great influence in how the system undergoes
the phase transition.

Another interesting case of study is the three-dimensional XY universality class
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which describe the superfluid transition in 4He6, unlike the liquid-vapor where the
transition occur in a point (the critical point), in this case the transition takes place
along the λ-line of its phase diagram [20].

2.4.2 N = 3 Heisenberg

The three-dimension Heisenberg universality class is characterized by a three compo-
nent order parameter. This is useful to describe the behavior of isotropic magnets such
as Ni and EuO. It is important to bear in mind that the isotropic Heisenberg Hamilto-
nian is a simplified model for magnets since it may neglect other kind of interaction
present in a real material [21, 22], for instance, interaction with cubic anisotropy.

Theoretically, estimates of the critical exponent are obtained by different approaches
such as Monte Carlo simulation and High Temperature expansion7.

2.4.3 N = 0 SAW

The N → 0 limit is an interesting case of application of the O(N) model to real life
phenomena in nature. The long polymer chain can be described as critical phenom-
ena. This was discovered by de Gennes who in 1972 [23], inspired by the recent
breakthrough of Kenneth Wilson on his renormalization group method, was able to
make a link between the O(N) model and the polymer physics. This accomplishment
allowed to gain knowledge about the universal properties of long polymer chains
through the connection with the O(N) model. Once this was known, other authors
explained the SAW problem without appeal to the n-vector model, for example, by
treating the generating function for SAW as a grand partition function[24]. This kind
of approach lead to a single scaling field which has as a result that all critical exponent
are related to a single one. This result was also shown by Flory (1969) where there is
an extra equation for the scaling law which relates ν and η.

On his paper, De Gennes defines the partition function needed to determine the
average end to end separation R of a self-avoiding polymer. It is the mean square
length the quantity that behaves as a scaling law in the criticality.〈

R2
N

〉
≈ N2ν

6Do not confuse with 3He which has a superfluid transition but different treatment since they are
fermions.

7We show the results of these methods in the following section.
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where N is the number of steps the SAW performed. It is possible to compute this
relation by making a random walk in a lattice where the self-intersection are not al-
lowed, this is the excluded volume problem.

2.4.4 N = −2 LERW

The LERW (loop-erased random walk) [25, 26] are those obtained from a random walk
erasing the self-intersect. The SAW as well as the LERW have various application in
mathematics and statistical physics. In contrast to the SAW described by the limit
N → 0 of the O(N) symmetry, the LEWR has no solid field theoretical description.
One candidate is the O(N)-model at N = −2, whose links to this model was in d = 2
because of conformal field theory. Similar to the SAW the end to end distance R scales
with the intrinsic length ℓ as R ∼ ℓ1/d f where d f is the fractal dimension. On both
cases, their fractal dimension differs despite both being random walks.

2.4.5 Large-N

The large-N limit represents a powerful analytical approach in the study of quantum
field theories and statistical physics, particularly due to its exact resolution. This al-
lows us to test whether our scheme for solving this model aligns with the exact result.
The large N-limit actually relates to the spherical model [27] which was introduces by
Berlin and Kac in 1952. Their model has a variant respect to the Ising model, the spins
are subject to the condition

N

∑
j=1

σ2
j = N.

It was found by Stanley the equivalence between the spherical model and a spin
model with O(N) symmetry in the limit N → ∞. Concretely, Stanley proved that
the model with Hamiltonian

H = −J ∑
<ij>

σ⃗i · σ⃗j

where each spin is an N-dimensional vector which satisfy |σ⃗i|2 = N is equivalent to
the spherical model.



CHAPTER 2. PHASE TRANSITIONS AND CRITICAL PHENOMENA 33

2.4.6 State of the Art data for Critical Exponents

In this section, we collect the most updated values for critical exponent computed
through different numerical method. The most accurate result have been obtained
from the high temperature expansion (HT) [28], Monte Carlo simulation (MC) [29],
and perturbative field theory such as the ϵ-expansion or the loop expansion at certain
order. In recent years, the implementation of the Conformal Bootstrap (CB) [30, 31,
32, 33, 34, 35, 36], has been known to give the most precise values and in this project
we will compare and see if our results are in agreement with the one predicted by this
method.

Method ν ω η

LPA, improved 0.5925 0.66 0
O(∂2),raw 0.5878 1.0489 0.0388

O(∂2),improved 0.5879(13) 1.00(19) 0.0326(47)
O(∂4),raw 0.5875 0.901 0.0292

O(∂4),improved 0.5876(2) 0.901(24) 0.0312(9)
MC [37, 29] 0.58759700(40) 0.899(14) 0.0310434(30)
six-loop PT 0.5882(11) 0.812(16) 0.0284(25)

ε6,ε-exp 0.5874(3) 0.841(13) 0.0310(7)
CB [38] 0.5876(12) 0.0282(4)

Table 2.3: Critical exponent for the O(0) symmetric scalar model in d = 3. DE at LPA,
O(∂2) and O(∂4) [39], Monte-Carlo simulation, six-loop perturbation theory at fixed
d = 3 [40] , d = 4 − ϵ at ϵ6 [41], the conformal bootstrap and the large-N expansion
[42, 43, 44]
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Method ν ω η

LPA, improved 0.64956 0.654 0
O(∂2),raw 0.62752(245) 0.8707(410) 0.04551(921)

O(∂2), improved 0.6308(27) 0.870(55) 0.0387(55)
O(∂4), raw 0.63057(60) 0.8321(24) 0.03357(272)

O(∂4), improved 0.62989(25) 0.832(14) 0.0362(12)
MC 0.62998(5) 0.832(6) 0.036284(40)

six-loop PT 0.6304(13) 0.799(11) 0.0335(25)
ε6,ε-exp 0.6292(5) 0.820(7) 0.0362(6)

CB 0.629971(4) 0.82951(61) 0.0362978(20)

Table 2.4: Critical exponent for the O(1) symmetric scalar model in d = 3. DE at LPA,
O(∂2), O(∂4) improved and raw with exponential cut-off from [45], Monte-Carlo sim-
ulation [46, 47], six-loop perturbation theory at fixed d = 3 [40], d = 4 − ϵ expansion
at ϵ6 [41], the conformal bootstrap [33, 48].

Method ν ω η

LPA, improved 0.7090 0.672 0
O(∂2),raw 0.6663 0.7972 0.0480

O(∂2),improved 0.6725(52) 0.789(34) 0.0410(59)
O(∂4),raw 0.6732 0.793 0.0350

O(∂4),improved 0.6716(6) 0.791(8) 0.0380(13)
MC [49] 0.67169(7) 0.789(4) 0.03810(8)

six-loop PT 0.6703(15) 0.789(11) 0.0354(25)
ε6,ε-exp 0.6690(10) 0.804(3) 0.0380(6)
CB [50] 0.671754(99) 0.794(8) 0.03818(4)

Table 2.5: Critical exponent for the O(2) symmetric scalar model in d = 3. DE at
LPA, O(∂2) and O(∂4) (raw computed with exponential regulator) [39], Monte-Carlo
simulation, six-loop perturbation theory at fixed d = 3[40], d = 4 − ϵ at ϵ6[41], the
conformal bootstrap.
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Method ν ω η

LPA, improved 0.7620 0.702 0
O(∂2),raw 0.7039 0.7516 0.0476

O(∂2),improved 0.7125(71) 0.754(34) 0.0408
O(∂4),raw 0.7136 0.773 0.0347

O(∂4),improved 0.7114(9) 0.769(11) 0.0376(13)
MC [51, 52] 0.7116(10) 0.773 0.0378(3)

MC (2020)[53] 0.71164(10) 0.759(2) 0.03784(5)
six-loop PT 0.7073(35) 0.782(13) 0.0355(25)

ε6,ε-exp 0.7059(20) 0.795(7) 0.0378(5)
CB (2016) [33, 34] 0.7120(23) 0.791(22) 0.0385(13 )

CB (2021) [54] 0.71168(41) 0.7668(100)

Table 2.6: Critical exponent for the O(3) symmetric scalar model in d = 3. DE at
LPA, O(∂2) and O(∂4) (raw computed with exponential regulator) [39], Monte-Carlo
simulation, six-loop perturbation theory at fixed d = 3 [40], d = 4 − ϵ at ϵ6 [41], the
conformal bootstrap.

Method ν ω η

LPA, improved 0.805 0.737 0
O(∂2),raw 0.7396 0.7274 0.0455

O(∂2),improved 0.749(8) 0.731(34) 0.0389(56)
O(∂4),raw 0.7500 0.765 0.0332

O(∂4),improved 0.7478(9) 0.761(12) 0.0360(12)
MC [52, 55] 0.7477(8) 0.765 0.0360(4)
six-loop PT 0.741(6) 0.774(20) 0.0350(45)

ε6,ε-exp 0.7397(35) 0.794(9) 0.0366(4)
CB [34, 32] 0.7472(87) 0.817(30) 0.0378(32)

Table 2.7: Critical exponent for the O(4) symmetric scalar model in d = 3. DE at
LPA, O(∂2) and O(∂4) (raw computed with exponential regulator) [39], Monte-Carlo
simulation, six-loop perturbation theory at fixed d = 3 [40], d = 4 − ϵ at ϵ6 [41], the
conformal bootstrap and the large-N expansion [42, 43, 44].
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Method ν ω η

LPA, improved 0.839 0.770 0
O(∂2),raw 0.7722 0.7199 0.0425
O(∂2) 0.782(8) 0.724(34) 0.0364(52)
O(∂4) 0.7797(9) 0.760(18) 0.0338(11)

six-loop PT 0.766 0.034
large-N 0.71(7) 0.51(6) 0.031(15)

Table 2.8: Critical exponent ν, ω and η of the O(5) symmetric scalar model in d =
3. DE results are final estimate from [45], six-loop [56] and the large-N expansion
[42, 43, 44].

Method ν ω η

LPA, improved 0.919 0.874 0
∂2,raw 0.8772 0.7853 0.0279
O(∂2) 0.877(11) 0.788(26) 0.0240(34)
O(∂4) 0.8776(10) 0.807(7) 0.0231(6)

six-loop PT 0.859 0.024
large-N 0.87(2) 0.77(1) 0.023(2)

Table 2.9: Critical exponent ν, ω and η of the O(10) symmetric scalar model in d = 3.
DE results are final estimate from [45] (raw computed with exponential regulator),
six-loop [56] and the large-N expansion [42, 43, 44].

Method ν ω η

LPA, improved 0.9610 0.938 0
∂2,raw 0.9414 0.8867 0.0151
O(∂2) 0.9414(49) 0.887(14) 0.0130(19)
O(∂4) 0.9409(6) 0.887(2) 0.0129(3)

six-loop PT 0.930 0.014
large-N 0.941(5) 0.888(3) 0.0128(2)

CB 0.9416(87) 0.0128(16)

Table 2.10: Critical exponent ν, ω and η of the O(20) symmetric scalar model in d = 3.
DE results are final estimate from [45], conformal bootstrap [32], six-loop [56] and the
large-N expansion [42, 43, 44].
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Method ν ω η

LPA, improved 0.9925 0.9882 0
O(∂2),raw 0.98908 0.9781 0.00310
O(∂2) 0.9892(11) 0.9782(26) 0.00257(37)
O(∂4) 0.9888(2) 0.9770(8) 0.00268(4)

large-N 0.9890(2) 0.9782(2) 0.002681(1)

Table 2.11: Critical exponent ν, ω and η of the O(100) symmetric scalar model in
d = 3. DE results are final estimate from [45] and the large-N expansion [42, 43, 44].

Method ν ω η

LPA, improved 1/2 0.700 0
O(∂2) 0.5000(12) 0.84(19) 0.0000(47)
O(∂4) 0.5001(1) 0.838(24) 0.0004(9)

six-loop PT 0.83(1)
exact 1/2 0

Table 2.12: Critical exponent ν, ω and η of the O(−2) symmetric scalar model in
d = 3. DE results are final estimate from [45] and perturbative results can be found in
[25, 26].



Chapter 3

Functional Renormalization Groups

This chapter aims to introduce three main topics. First, to complete the introduction
of the theoretical concepts necessary to fully address the theory; in this regard, we
introduce and explain what the effective action is – i.e. the functional that describe
the overall statistical and quantum physics of the system. Second, we provide an
introduction to the frameworks of perturbative and non-perturbative renormalization
group, which will serve as a comparison to our results. Finally, we present our novel
scheme Functional Dimensional Regularization, its derivation and physical foundations.
We conclude with a pedagogical introduction, for all approaches we will give the beta
functionals for the potential V and wave function Z; deriving and comparing them in
the simplest case: the Ising model, showing how to find the fixed point and how to
compute the critical exponents.

3.1 Effective Action

Recall from section 2.2.2 the Ginzburg-Landau formulation of statistical mechanics
where the partition function is written in terms of a functional integral in the con-
tinuum limit (2.25). We saw that Landau’s theory taught us that the theory of phase
transition is an Euclidean statistical field theory, now to adapt the notation to the field
theory context we will make a slight change of notation. We can extend and generalize
this formalism by taking the Ginzburg-Landau partition function (2.25), change the
external field for a general source B → J and instead of using the Ginzburg-Landau
Hamiltionian HGL write a general action S:

Z[J] =
∫

Dϕ e−S[ϕ]+
∫

ddx ϕJ (3.1)

38
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The functional Z[J] is the generating functional of the correlation function and W
(Helmholtz free energy) relates to the partition function as:

W[J] = log Z[J] (3.2)

W is also known as the generating functional of the connected correlation functions
[9, 16]. The expectation value of the field is computed as

φ(x) =
〈
ϕ(x)

〉
=

∫
Dϕ ϕ(x)e−S[ϕ]∫
Dϕ e−S[ϕ]

=
δW

δJ(x)

∣∣∣∣
J=0

(3.3)

and the connected two-point function or propagator is derived as

Gc(x, y) =
〈
ϕ(x)ϕ(y)

〉
−
〈
ϕ(x)

〉〈
ϕ(y)

〉
=

δ2W
δJ(x)δJ(y)

∣∣∣∣
J=0

(3.4)

Note that both W and Z are functional of J(x) and that the n-functional deriva-
tives of W with respect to the sources give as a result the connected n-point function
Gc(x1, · · · , xn)

Gc(x1, · · · , xn) =
δnW

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

(3.5)

When the source is non zero the expectation value of φ has a dependence on J

φJ(x) =
〈
ϕ(x)

〉
J =

δW
δJ(x)

(3.6)

We want to work with an action of φ and not of J since the field φ has a physical
meaning, it is the mean field of ϕ and is the right variable to use. To eliminate the
dependence on J we use a mathematical trick, the Legendre transform. The Legendre
transform of W is the effective action (EA) Γ

Γ[φ] = −W[J] +
∫

ddxϕ(x)J(x) (3.7)

Note that the variation of the effective action with respect to the field is the source

δΓ
δφ(x)

= −
∫

δW
δJ

δJ
δφ

+
δJ
δφ

φ + J(x) = J(x) (3.8)
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Using the background field method we can write the effective action by expanding
the classical field around a background field1 χ = ϕ − φ together with equation (3.7)
and (3.8)

e−Γ[φ] =
∫

Dχe−S[φ+χ]+
∫

ddx δΓ
δφ χ (3.9)

This is an exact integro differential formula for the effective action which will be our
starting point for further analysis; in particular the ability to compute Γ opens the
way to understanding the entire problem of phase transitions and universality.

In this chapter we will consider an Euclidean action for a first part a single com-
ponent scalar field in d dimension and work with a general potential. Thus the action
is of the form

S =
∫

ddx
{

1
2
(∂ϕ)2 + V(ϕ)

}
(3.10)

From equation (3.9) we can proceed in two ways; either we take the path of pertur-
bation theory or we apply technics of the non-perturbative renormalization group. In
the following sections we explore both directions to give an overview of these two
traditional approaches.

3.2 Functional Perturbative RG (FPRG)

In this section, we first introduce the loop expansion, whose goal is to illustrate how
corrections to the effective action arise. We then briefly explain the processes of reg-
ularization and perturbative renormalization, as well as the method for transitioning
from a series of functions to a functional. Finally, we conclude with an example taken
from the literature, which helps compare the results of this method with those ob-
tained in the present project.

3.2.1 Loop Expansion

We aim to find a perturbative formula for the effective action in a loop expansion by
the saddle point method [3, 57]. We take as starting point the formula (3.9) and we
introduce a parameter h̄ and perform a shift χ →

√
h̄χ. We will expand the action in

1Note that the fluctuation field has vanishing expectation value
〈
χ
〉
= 0.
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power of the fluctuation2

1
h̄

S[φ +
√

h̄χ] =
1
h̄

S[φ] +
1
h̄

S(1)[φ]χ +
1
2

S(2)[φ]χχ +
√

h̄
3!

S(3)[φ]χχχ +
h̄
4!

S(4)[φ]χχχχ + · · · (3.11)

We also expand the effective action as

Γ[φ] = S[φ] + h̄Γ1[φ] + h̄2Γ2[φ] + · · · (3.12)

Plugging (3.11) and (3.12) into (3.9) we find

e−h̄Γ1[φ]−h̄2Γ2[φ]+··· =
∫

Dχe−
1
2 S(2)[φ]χχ−

√
h̄( 1

3! S(3)[φ]χχχ−Γ(1)
1 [φ]χ)− h̄

4! S(4)[φ]χχχχ+···

=
∫

Dχe−
1
2 S(2)[φ]χχ

[
1 −

√
h̄
(

1
3!

S(3)
123[φ]χ1χ2χ3 − Γ(1)

1,1 [φ]χ1

)
+

h̄
2

(
1
3!

S(3)
123[φ]χ1χ2χ3 − Γ(1)

1,1 [φ]χ1

)2

− h̄
4!

S(4)
1234[φ]χ1χ2χ3χ4 +O(h̄3/2)

]
We have written our integral in a Gaussian shape keeping in mind that

〈
χ
〉
= 0, thus

the only integral surviving are those even in χ. Therefore, the term proportional to
√

h̄
will be zero since it is the multiplication of a Gaussian function times an odd function.
The one loop effective action will be

e−Γ1[φ] =
∫

Dχe−
1
2 S(2)[φ]χχ =

(
detS(2)[φ]

)1/2 (3.13)

therefore
Γ1[φ] =

1
2

Tr log S(2)[φ] (3.14)

Similarly we compute the two-loop contribution as

Γ2[φ] = −1
2
( 1

3!
)2S(3)

123[φ]S
(3)
456[φ]

〈
χ1χ2χ3χ4χ5χ6

〉
+

1
3!

S(3)
123[φ]Γ

(1)
1,4 [φ]

〈
χ1χ2χ3χ4

〉
− 1

2
Γ(1)

1,1 [φ]Γ
(1)
1,2 [φ]

〈
χ1χ2

〉
+

1
4!

S(4)
1234[φ]

〈
χ1χ2χ3χ4

〉
2We use a condensed notation avoiding to write the integrals explicitly.
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To compute all this factors we need to introduce the propagator Gij defined as the

inverse of the second derivative of the action Gij = (S(2)
ij )−1. Together with Wick’s

theorem [9, 57] which allows us to easily compute the n-point correlation functions
we find

S(3)
123[φ]S

(3)
456[φ]

〈
χ1χ2χ3χ4χ5χ6

〉
= 6 +9

S(3)
123[φ]Γ

(1)
1,4 [φ]

〈
χ1χ2χ3χ4

〉
= 3

2

Γ(1)
1,1 [φ]Γ

(1)
1,2 [φ]G12[φ] =

1
4

S(4)
1234[φ]

〈
χ1χ2χ3χ4

〉
= 3

To construct the diagrams above think as, for instance, the S(3) is a vertex from which
three line goes out. Then with the aid of Wick’s theorem we connect this lines in
all possible ways as for the first strucutre there are two possible diagrams with the
corresponding symmetry factor.

For the case of the Γ(1) we use equation (3.14) from where we get

Γ(1)
1,1 [φ] =

1
2

S(3)
123[φ]G23[φ]

A key different between the first and the second diagram in the first line is that the
former is non-reducible and the latter is reducible, to see this just ”cut” the internal
line in the second diagram joining the two bubbles from where you get two diagrams
that can not be further reduces. That it is what we mean when a diagram is not
reducible, they are the so-called ”1-PI” diagrams [9, 57, 58]. The two loops effective
action is the sum of two 1PI diagrams

Γ2[φ] = − 1
12 +1

8

The loop expansion for the effective action up to two loops is the sum of each contri-
bution

Γ[φ] = S +
1
2

Tr log S(2) +
1
8

S(4)
xyzwGxyGzw − 1

12
S(3)

xyzS(3)
abcGxaGybGzc + · · · (3.15)
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The first term of (3.15) is called the tree-level which is the contribution one gets dis-
carding fluctuations – i.e its contains the mean field physics; in the context of particle
physics of ϕ4– theory, the tree level process refer to those processes where no self in-
teraction are taken into account. The second term is the dominant contribution of
statistical and quantum fluctuations: the one-loop correction to the effective action;
finally the last two terms correspond to the next-leading-order two-loop contribu-
tions. Clearly, the computation presented in this section can be further continued to
arbitrary loop order.

3.2.2 Perturbative Regularization and Renormalization

As it is well known the effective action (3.15) comes with divergent contributions
which we must first regularize and then renormalize with the addition of counter
terms [9, 57]. Within the renormalization group we find several ways to regularize a
theory or divergent integrals. One option is to introduce a cut-off in the momentum
integral in order to avoid ultraviolet divergences, another method is the Pauli-Villar
regularization or more importantly for this project the dimensional regularization
(DR). The DR is one of the most convenient ways to regularize integral since it pre-
serve gauge invariance. The DR scheme is performed as follows: Instead of working
in dc = 4 as it is generally done in QFT we write integral in momentum in an arbi-
trary d and perform the integral which has as result different factors times a Gamma
function which depends on the dimension dc and presents poles in various dimen-
sion, especially dc = 4. After that we expand the resulting integral with a Laurent
series around ε = 0 for this we put dc = 4 − ε and the divergent part comes in form
of 1

ε while other terms remains finite. The divergent part which come from the 1
ε pole

are canceled by adding counterterms to the Lagrangian, this counterterms are intro-
duced in order to absorb the divergences and have a finite physical result. Apart from
a regularization scheme, we need a subtraction scheme or subtraction rule. Since we
add counterterms to our Lagrangian to absorb the divergences, the subtraction rule
is essential because it specifies how those divergences should be subtracted. In this
work we use the modified minimal subtraction MS rule, which unlike the minimal
subtraction scheme it absorbs all divergences plus any universal quantity that may
arise.

A key feature of DR is that the 1
ε -poles are directly related to the RG beta functions

[59, 60]. Concretely, the beta functionals βV and βZ – describing the RG flow of the
potential V and of the wave function renormalization functional Z – at a given loop
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order L – is given by:

Γ(L)
div = −1/L

ε

∫
ddc x

{
β
(L)
V (ϕ) + β

(L)
Z (ϕ)

1
2
(∂ϕ)2 + · · ·

}
+ O

(
1
ε2

)
(3.16)

where Γ(L)
div is the simple pole contribution (including possible counterterms). The beta

functionals in FPRG are computed as the sum of each beta function at a certain loop
order, namely3

βFPRG
V = ∑

L
β
(L)
V βFPRG

Z = ∑
L

β
(L)
Z (3.17)

Perturbativly – and for a single field theory – each universality class is related one to
one with a particular upper critical dimension dc; for example, the Ising universality
class is the one with dc = 4 while the Lee Yang is the one with dc = 6. To calculate
the beta functionals βFPRG

V and βFPRG
Z for a given universality class related to dc one

uses (3.16) and (3.17) around the respective dc. An interesting feature that emerges
from the use of the functional perturbative renormalization group is that the leading
order (LO) and next-to-leading order (NLO) coefficients are universal quantities of the
given universality class. It is also worth mentioning that some universality classes are
”hidden” in the loop expansions; that is, their first non-zero contribution occurs at a
loop order beyond one. For instance, the tricritical universality class has a critical
dimension dc = 3 and an LLO of 2 while the tricritical Lee-Yang first appears at dc =

10/3 and an LLO of 3.
In the following section, we will examine the functionals for the potential V and

wave function renormalization for some universality classes of great interest.

3.2.3 Local Potential Approximation (LPA’) in FRPG

We will present the beta functions for the potential and the wave function renormal-
ization, based on the results available in the literature. It is important to note that,
in this subsection, the LPA’ approximation indicates that the βV and βZ flows are
generated only by the potential.

In the case d = 4− ϵ, that is, the Ising universality class one finds at two loop order

3We now use the superscript FPRG to clearly denote the framework used but later we will change
to the superscript DR since it is the chosen scheme.
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the following results computed in [61]:

βFPRG
V =

1
(4π)2

1
2
(V(2))2 − 1

(4π)4
1
2

V(2)(V(3))2 + · · · (3.18)

βFPRG
Z = − 1

(4π)4
1
6
(V(4))2 + · · · (3.19)

The Lee-Yang universality class has upper critical dimension dc = 6 and is also a
single component scalar theory. In the case d = 6 − ϵ one finds at two loop order the
following results [61]:

βFPRG
V = − 1

(4π)3
1
6
(V(2))3 − 1

(4π)6
23
144

(V(2))3(V(3))2 + · · ·

βFPRG
Z = − 1

(4π)3
1
6
(V(3))2 − 1

(4π)6
13
216

(V(3))4 + · · ·

The last example we want to bring from literature is the Sine-Gordon universality class
which has upper critical dimension dc = 2. Then in d = 2 − ϵ we find [61]:

βFPRG
V = − 1

(4π)
(V(2))

Unlike any other universality class, there are no higher loop contributions for the βV

in d = 2.

3.3 Functional Non-Perturbative RG (NPRG)

In this section we aim to introduce the basic notions of the non-perturbative renor-
malization group where the main goal is to derive the flow equation i.e., an equation
that describes the scale dependence of the effective average action Γk. The effective
average action (EAA) is closely related to the effective action defined in (3.9). When
defining the EAA we do an average of field taken within a volume of size k−d. The
idea resemble the Wilsonian idea of block-spin approach on a lattice but in this case
we work in continuous Euclidean space which preserve all space-time symmetries.
When Wilson and Kadanoff [15] introduced the concept of a block spin, that is, an av-
erage of the field over a block of lattice site, they defined an effective action for block
spins with blocks of size k−d. As we will see below, the effective action Γk involves
an integration over all modes but the contribution of modes low momenta are sup-
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pressed by a mass term4. There are different ways to implement the non perturbative
renormalization group nevertheless all of them has as root Kadanoff-Wilson’s ideas
of block spins, the coarse-graning and effective long distance theories. Nonetheless,
this various ways to implement the NPRG differ completely in one case or another.
Among the different framework two of them stand out, the Wilson-Polchinski ap-
proach [62] and the effective average action [63, 64, 65, 66]. In what follow we will
focus on the effective average action method.

3.3.1 EAA and the Wetterich-Morris Equation

Concretely, we want to construct a one parameter family of modes indexed by a scale
k. We require that (1) when k = Λ, Γk=Λ[φ] = S[φ] and (2) when k = 0, Γk=0[φ] =

Γ[φ]. The former is the case where no fluctuation where integrated out (the Gibbs free
energy is the microscopic Hamiltonian) and the latter is the case where all fluctuation
are integrated out and Γk=0 is just the Gibbs free energy of the original model. This
method, therefore, provides an interpolation between microscopic and macroscopic
physics. The integral equation (3.9) now becomes

e−Γk[φ] =
∫

Dχe−S[φ+χ]−∆Sk[χ]+
∫ δΓk

δφ χ (3.20)

In order to construct a one parameter family of Γk we want to decouple the slow
modes of the model in the partition function. Therefore, this method is based on
consider an extra term proportional to the momentum dependent mass term

∆Sk[φ] =
1
2

∫
x,y

φ(x)Rk(x − y)φ(y) =
1
2

∫
p

φ(p)Rk(p)φ(−p) (3.21)

The function Rk(p) is called cut-off or regulator. This function must satisfy certain
conditions;

• For k = 0, Rk=0(p) = 0 for all p. This ensures that Zk=0[J] = Z[J] or in other
words the EEA at k = 0 is as we just described the Gibbs free energy or effective
action Γ.

• For k = Λ, Rk=Λ(p) = ∞ for all p. For this condition all modes should be frozen,
typically rather than choose the function Rk = Λ equal to infinite we choose as
the order of k2.

4By mass term we mean a term quadratic in the field.
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• For 0 < k < Λ the regulator goes to zero sufficiently fast. This will ensure the
fast momentum modes are integrated out unsuppressed.
Rk(|p| > k) ≃ 0

There are many ways to choose the function Rk that meet the conditions above. In the
literature the most common are the following

Rk(q2) = k2e−
q2

k2 (3.22)

Rk(q2) = k2 q2/k2

eq2/k2 − 1
(3.23)

Rk(q2) = (k2 − q2)Θ(k2 − q2) (3.24)

In terms of dimensionless variable we can express the cut-off as

Rk(q2) = k2r(y), y =
q2

k2

where r is a dimensionless function of y which is also dimensionless. Thus the cut-offs
presented above adapt the form

Rk(q2) = k2e−y (3.25)

Rk(q2) = k2 y
ey − 1

(3.26)

Rk(q2) = k2(1 − y)Θ(1 − y) (3.27)

The cut-offs (3.25), (3.26) ,(3.27) are commonly known as the exponential cut-off, Wet-
terich cut-off and Litim or optimized cut-off respectively.

We know that up to a factor of −KBT the Helmholtz free energy W is

Wk[J] = log [Zk] (3.28)

which depends on the scale k and the regulator. We want to work with Legendre
transformation of Wk but in a general way

Γk[φ] +
1
2

∫
x,y

φ(x)Rk(|x − y|)φ(y) = −Wk +
∫

x
J(x)φ(x) (3.29)

where
φ(x) =

δWk
δJ(x)

=
〈
ϕ(x)

〉
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∂tΓk =
1
2

Figure 3.1: Diagrammatic representation of the RG equation. The line represent the propa-
gator and the cross is ∂tRk, the closed loop means integration over q.

Taking (3.29) as starting point we can derive a flow equation for the effective action,

∂tΓk[φ] =
1
2

∫
x,y

∂tRk(|x − y|) δ2Wk
δJ(x)δJ(y)

(3.30)

where we used the variable t ≡ log (k/Λ) known as the RG time and the full propa-
gator Gk(x, y) is

Gk(x, y) ≡ δ2Wk
δJ(x)δJ(y)

=

(
δ2Γk

δϕ(x)δϕ(y)
+ Rk(|x − y|)

)−1

Therefore we find Wetterich-Morris equation [63, 66, 67]

∂tΓk[φ] =
1
2

∫
x,y

∂tRk(|x − y|)
(

Γ(2)
k + Rk

)−1

x,y
(3.31)

A detailed derivation of equation (3.31) can be found in appendix A. Before study the
approximation procedures let see some properties.

1. This equation is exact since no approximation where made, although is too hard
to solve that is why we require an approximation procedure.

2. As it is seen the equation for the evolution of Γk involves Γ(2)
k then it does not

have a closed form. In general the flow equation for Γ(n) involves Γ(n+1) and
Γ(n+2).

3. If we substitute Γ(2)
k → S(2) we see that. ∂tΓk = 1

2 ∂̃tTr
[

log(S(2) + Rk)

]
which

resemble the 1-loop contribution5 of equation (3.15).
5Here ∂̃t acts only on the regulator Rk
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∂tΓ
(1)
k = 1

2

Figure 3.2: Diagrammatic representation of ∂tΓ
(1)
k .

∂tΓ
(2)
k = −1

2
+

Figure 3.3: Diagrammatic representation of ∂tΓ
(2)
k .

3.3.2 Approximation Schemes

The first approximation scheme we present here is the Green function approach or the
vertex expansion. Imagine we want to close the equation by looking for Γ(2). Then

δ

δϕ(x1)
∂tΓk = ∂t

δΓk
δϕ(x1)

= ∂tΓ
(1)
k =

1
2

∫
x,y

∂tRk(|x − y|) δ3Wk
δJ(x)δJ(y)δϕ(x1)

= −1
2

∫
x,y,z,u

∂tRk(|x − y|)Gk(y, z)Γ(3)
k (z, x1, u)Gk(u, x)

In momentum space we have

∂tΓ
(1)
k (p) =

∫
q′s

Ṙk(q1)Gk(q1,−q2)Γ
(3)
k (q2, p,−q3)Gk(q3,−q1)

and by the same reasoning

∂tΓ
(2)
k (p, p′) = −1

2

∫
Ṙk(q1)Gk(q1,−q2)Γ

(4)
k (q2, p, p′,−q3)Gk(q3,−q1)

+
∫

Ṙk(q1)Gk(q1,−q2)Γ
(3)
k (q2, p,−q3)Gk(q3,−q4)Γ

(3)
k (q4, p′,−q5)Gk(q5,−q1).

(3.32)

Here we clearly see what was mentioned before, the Γ(2)
k depends on Γ(3)

k and Γ(4)
k ,

hence, in order to solve this infinite tower of equation we must apply a truncation.
Usually we work in a uniform field configuration where the momentum is conserved
at each vertex and propagator. One possible truncation consist in keeping only Γ(4)

k
and neglect higher order or to give ansatz of Γ(6)

k in terms or Γ(2)
k and Γ(4)

k . In any case,
the system is now closed and could be solved.
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On the other hand, a widely used method is the derivative expansion (DE). This
technique involves expanding the effective action in powers of derivatives of the
fields, typically starting with local potential terms and then including terms with an
increasing number of derivatives. This method is particularly useful for dealing with
strongly interacting systems, as we are in the regime of low momenta (q → 0), where
it seems plausible to expand the action in powers of derivatives of the fields. The
lowest order of the DE is the Local Potential Approximation (LPA) which is based on
writing the effective action in terms of the effective potential Vk plus a kinetic term

ΓLPA
k [φ] =

∫
r

(1
2
(∂φ)2 + Vk(φ)

)
(3.33)

Despite the simplicity of the LPA it is poor in determine the critical exponent η since it
predicts a value η = 0, to solve that it is possible to make a tiny variation and perform
the LPA’ where a field renormalization factor Zk is included

ΓLPA′
k [φ] =

∫
r

(1
2

Zk(∂φ)2 + Vk(φ)
)

(3.34)

More reliable estimate for the critical exponent are computed when considering the
second order of the DE

ΓDE2
k [φ] =

∫
r

(1
2

Zk(φ)(∂φ)2 + Vk(φ)
)

(3.35)

where unlike the LPA’ the wave-function renormalization function has now a depen-
dence on the field [68].

3.3.3 Local Potential Approximation (LPA’) in NPRG

Let us take a look, just for completeness, of how the beta function are in the NPRG.
The explicit expressions for the potential V and the function Z are

(4π)
d
2 βNPRG

V =
1
2

Q d
2
[Gk] (3.36)

and

(4π)
d
2 βNPRG

Z =
(
V′′′

k
)2
{

Q d
2
[G2

k G′
k] + Q d

2+1[G
2
k G′′

k ]
}

(3.37)
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All functions have argument z = q2. We used the Mellin transform Q–functional
notation

Qn[ f ] =
1

Γ(n)

∫ ∞

0
dz zn−1 f (z) ∂tRk(z) (3.38)

The Q–functional contains the integration over the modulus of the momentum. Fi-
nally, we recall that the regularized inverse propagator is

Gk(z, ϕ) =
1

Zk(ϕ)z + V′′
k (ϕ) + Rk(z)

. (3.39)

These relations are valid for an arbitrary cutoff function and in any dimension.
To show an example let us see how the beta function (3.36) is computed from the

Q-functional notation with the choice of the Litim cutoff (3.27). The way to proceed
is straightforward, we just need to compute the integral defined in (3.38) identifying
before the each term of the integrand. The result of the time derivative of the regulator
is6

∂tRk = 2k3Zk(k2 − z)δ(k2 − z) + 2k2ZkΘ(k2 − z)

By plugging the propagator (3.39) in (3.38) we arrive at the following form

(4π)d/2βNPRG
V =

1
2Γ(d/2)

∫ ∞

0
dz zd/2−1 2k2Zk

V′′
k + Zkk2 Θ(k2 − z)

=
2k2Zk

2Γ(d/2)(V′′
k + Zkk2)

∫ ∞

0
dz zd/2−1Θ(k2 − z)

=
2

Γ(d/2)d
kd

1 + V′′
Zkk2

(3.40)

which is the beta function found in the literature [69] for the potential V with the LPA’
approximation. Similarly we can compute the βNPRG

Z

(4π)d/2βNPRG
Z = (V ′′′

k )2

{∫ ∞

0

dz zd/2−1

Γ( d
2 )

G2
k G′

k(2k2ZkΘ(k2 − z)) +
∫ ∞

0

dz z
d
2

Γ( d
2 + 1)

G2
k G′′

k (2k2ZkΘ(k2 − z))

}

We identify that

G′ = −G2(Zk + R′
k) G′′ = −2G3(Zk + R′

k)− G2R′′

6Here we insert a factor Zk in front of the regulator.
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then

G2G′ =
−Zk(1 + Θ(kz − z))

(V′′
k + k2Zk)4

G2G′′ =
−2Zk(1 − Θ(k2 − z))

(V′′
k + k2Zk)5 − Zkδ(k2 − z)

(V′′
k + k2Zk)4

we plug it in the integral and perform the integration in z, therefore we arrive at

(4π)d/2βNPRG
Z =

(V′′′
k )2Z2

k

d Γ
(

d
2

) {− 4kd+2(
k2Zk + V′′

k

)
4

}
(3.41)

This last equation, which can be found in [69], can be used to determine the anoma-
lous dimension η within the LPA’ approximation. In a future paper [70] we study
the connection between the beta functions derived with the NPRG and those derived
from the FDR.

3.4 Functional Dimensional Regularization (FDR)

We now introduce our novel approach Functional Dimensional Regularization. The key
insight is that traditional dimensional regularization (DR) in MS or MS scheme can be
generalized and transformed into a functional RG by the simple act of subtracting all
1/ϵ poles that arise in perturbation theory – and not only the specific one of interest at
a given dc – as is usually done in perturbation theory and ε-expansion. This will result
in a sum of all possible critical dimensions which will result in a fully fledged functional
RG with good convergence properties and all the analytical advantages of DR.

3.4.1 Beta Functionals

As we explained in section 3.2, the bare action, which contains the bare parameters,
is plagued by the problem of divergences when computing physical observables. To
solve this problem, the renormalization strategy is to write the bare parameters in
terms of the regularized parameters. From here one can note that the bare action
relates with the renormalized action as follow

S = SR + ∆S1 + · · · (3.42)
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Figure 3.4: Top: Poles of the Gamma function Γ(− d
2 ) in the complex plane. Middle:

Poles of the Gamma function with d = 4 pole regularized. Bottom: Gamma function
in the complex plane with all poles regularized.
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where S is the bare action which do not depend on the renormalization scale µ, SR is
the renormalized action and ∆S1 is the counterterm at one loop. We will now express
the action as a sum of terms where each term is a coupling constant multiplied by a
corresponding operator or functional of the fields

S = ∑
i

giOi SR = ∑
i

gR
i Oi

where we use the notation Oi to stand for integrated operators (for example
∫ 1

i! ϕ
i).

A key difference between the coupling g and gR is that the former does not depend
on the renormalization scale µ. At the same time the counterterm is fixed as ∆S1 =

−Γ|div, where the divergent part of the effective action has the form (3.16) but now we
are considering all simple poles (at all dc’s)

Γ|div = ∑
i

∑
dc

µd−dc

d − dc
βDR

i (dc)Oi (3.43)

where the residues are the beta functions in DR. Then (3.42) becomes

S = SR − ∑
i

∑
dc

µd−dc

d − dc
βDR

i (dc)Oi + · · · (3.44)

By taking the µ-derivative on both sides of this equation and using ∂µS = 0 we find
the following relation

µ∂µS = µ∂µSR − µ∂µ

(
∑
dc

µd−dc

d − dc
∑

i
βDR

i (dc)Oi

)

0 = ∑
i

(
βFDR

i (d)− ∑
dc

µd−dc βDR
i (dc)

)
Oi (3.45)

where we defined βFDR
i (d) ≡ µ∂µgR

i . Note that beyond LO one will have to act also on
the term βDR(dc) on the rhs, but since its results gives a higher order contribution we
will discard it here. Our final result is that the FDR beta functions for the gi couplings
are obtained as a sum over all critical dimensions (those that appear at one loop) of
the respective beta functions of traditional DR. This is our master formula and the
main result of our approach

βFDR
i (d) ≡ ∑

dc

µd−dc βDR
i (dc) (3.46)
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In the following we will show that such RG scheme has very interesting properties.
The master formula can obviously be extended to beta functionals for the potential V
and the wave function renormalization Z:

βFDR
V (d) ≡ ∑

dc

µd−dc βDR
V (dc) (3.47)

βFDR
Z (d) ≡ ∑

dc

µd−dc βDR
Z (dc) (3.48)

Similar expressions clearly apply to all higher-order functionals that enter the deriva-
tive expansion of the effective action and can also be extended beyond leading order.

3.4.2 Dimensional Analysis

Dimensional analysis is a simple yet very powerful tool. By inspecting the possibles
one-loop diagrams, we can extract the fundamental building blocks for the one-loop
βDR

V and βDR
Z functions. In order to construct these building blocks we need first to

determine the vertex set, that is, the structure of all possibles diagrams written as
products of the derivatives of the potential at a given loop order. Therefore, the con-
tribution to functional βDR

V and βDR
Z will be a polynomial built out of the possible

vertices in the vertex multiplied by the appropriate powers of V(2) , i.e the mass in-
sertion, determined with the aid of dimensional analysis. In the following section, we
will show how to calculate the one-loop beta function and subsequently determine
the coefficients for this theory.

βDR
V at L = 1

In order to compute the βDR
V function we need to study the 1–loop function. Recall

that the divergent part of the effective action has the following form.

Γ|div = −1
ϵ

∫
ddx

{
βDR

V + βDR
Z

1
2
(∂ϕ)2 + · · ·

}
+ O

(
1
ϵ2

)
. (3.49)

Since the effective action must be dimensionless we see that the βDR
V must have di-

mension d. By counting the dimension we find that [V(n)] = d − n( d
2 − 1) and the

mass insertion is proportional to (V′′)k where k is the number of insertions in the
loop. The most complete form of the βDR

V at 1-loop is trivial given that the building
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Figure 3.5: Feynman diagram for the βDR
Z at 1 loop

block is just (V′′)k. Thus, by dimensional analysis(
d − 2

(
d
2
− 1
))

k = d ⇒ 2k = d ⇒ k =
d
2

(3.50)

This gives the following structures:

dc βDR
V

2 a2V′′

4 a4(V′′)2

6 a6(V′′)3

:

2n a2n(V′′)n

This Table defines the coefficients an to be determined in a later section.

βDR
Z at L = 1

When its come to the βDR
Z at 1 loop, there are two possible diagrams as shown in the

Figure 3.5.
The building block of the diagram on the left has the form V(4)(V′′)k. It can be

shown that this diagram does not contribute to the βDR
Z but in order to be complete

we will add it and then justify why it does not appear. On the other hand, the diagram
on the right has the form (V(3))2(V

′′
)k. The diagram which is proportional to (V(3))2

is known as the polarization diagram and the one proportional to V(4) is known as
the tadpole. When performing the dimensional analysis this time we have to keep in
mind that the βDR

Z must be dimensionless, so equations provided from dimensional
analysis will be set equal zero. For the first diagram we have

d − 4
(d

2
− 1
)
+ 2k = 0 ⇒ k =

d
2
− 2
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Applying the same analysis to the second diagram we find

2
(

d − 3
(d

2
− 1
))

+ 2k = 0 ⇒ k =
d
2
− 3

Note that for d = 2 and d = 4 the value of k is negative. This kind of solution, as
well as fractional, will be discarded since it is the power of the potential and has no
physical interpretation. The results is:

dc βDR
Z

2 0

4 c′4V(4)

6 c6(V(3))2 + c′6V(4)V′′

8 c8(V(3))2V′′ + c′8V(4)(V′′)2

: :

n cn(V(3))2(V′′)
n
2−3 + c′nV(4)(V′′)

n
2−2

and defines the coefficients cn and c′n where the c′n are zero in DR. We still need to
compute the coefficients an and cn, we will do it in the next section. After that we will
compare the results which comes from the non-perturbative renormalization group
to compare its results with those that arise from our calculation.

3.4.3 Calculation of the an and cn coefficients

In this subsection it is shown how to compute the coefficients an and cn which belong
to the βV and βZ functions respectively. This is the first concrete example where we
show how the FDR is carried out. Regarding the an coefficient we will present a
simple computation that uses the Heat Kernel starting from the one-loop effective
action (3.14)

Γ1[ϕ] =
1
2

Tr log S(2)[ϕ] (3.51)

Since we are working at the LPA level the action reads

S[ϕ] =
∫

ddx
{

1
2

∂µϕ∂µϕ + V(ϕ)

}
(3.52)
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From here we can compute the Hessian S(2) as

S(2)[ϕ] =

{
−□+ V′′(ϕ)

}
δxy

which we can insert into (3.51) and then perform some basic Heat Kernel manipula-
tions (we are assuming ϕ constant and we are inserting an IR mass regulator µ in the
final step)

Γ1 =
1
2

Tr log(−□+ V′′)

= −1
2

∫ ∞

0

ds
s

Tr e−s(−□+V′′)

= −1
2

∫ ∞

0

ds
s

1

(4πs)
d
2

e−sV′′

= −1
2

1

(4π)
d
2

∫ ∞

0
ds s−( d

2+1)e−sV′′
e−sµ2

.

Now we expand the exponential in the potential and use the fact that dc = 2n and
d = dc − ε = 2n − ε

Γ1 = −1
2

1
(4π)d/2

∫ ∞

0
ds

∞

∑
n=0

sn−(1+d/2) (−V′′)n

n!
e−sµ2

= −1
2

1
(4π)d/2

∞

∑
n=0

Γ
(

n − d
2

)
µd/2−n (−V′′)n

n!
.

Our definition of βV requires to look only the divergent part of Γ1, then

Γ1|div = −1
2

1
(4π)dc/2 Γ

( ε

2

) (−V′′)dc/2

(dc/2)!

= −1
ϵ

1
(4π)dc/2

(−V′′)dc/2

(dc/2)!
.

where in the last step we used that Γ( ε
2) = 2

ε + · · · . Finally the coefficients adc with
dc = 2n turn out to be

a2n =
(−1)n

(4π)nn!
(3.53)
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For the cn coefficients we have to consider the polarization diagram for the one loop
two point function shown in the Figure 3.5 and expand in powers of ω ≡ V′′

polarization = − (V(3))2

2

∫
q

1
(q2 + ω)((q + p)2 + ω)

= − (V(3))2

2

∫
q

(
∞

∑
n1=0

(−ω)n1

q2(n1+1)

)(
∞

∑
n2=0

(−ω)n2

(q + p)2(n2+1)

)

= − (V(3))2

2

∞

∑
n1=0

∞

∑
n2=0

(−ω)n1+n2

∫
q

1
q2(n1+1)(q + p)2(n2+1)

We have reduced the diagram to the one loop master integral

∫
q

1
q2α(q + p)2β

=
1

(4π)
d
2

Γ( d
2 − α)Γ( d

2 − β)Γ(α + β − d
2 )

Γ(α)Γ(β)Γ(d − α − β)

(
p2
) d

2−α−β
(3.54)

with α = n1 + 1 and β = n2 + 1. We are looking for the p2 terms so d
2 − 2− n1 − n2 = 1

which implies n ≡ n1 + n2 = d
2 − 3. Under this condition the polarization diagram

becomes

polarization|p2 = − (V(3))2

2(4π)
d
2

p2 ∑
n1+n2=n

(−ω)n Γ( d
2 − 1 − n1)Γ( d

2 − 1 − n2)

Γ(n1 + 1)Γ(n2 + 1)
Γ(n + 2 − d

2 )

Γ(d − 2 − n)
.

This formula gives us divergences for dc = 6, 8, 10, ... We find the pattern

dc 6 8 10 12 14 16

(4π)
dc
2 βDR

Z
(V(3))2 −1

6
ω
6 −ω2

12
ω3

36 − ω4

144
ω5

720

Thus the coefficients cdc turn out to be

c2n+4 =
(−1)n

6(4π)n+2(n − 1)!
(3.55)

with dc = 2n+ 4. In the following section we use the coefficients found to finally com-
pute our first beta functions by summing over all possible upper critical dimension at
one loop.
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3.4.4 Local Potential Approximation (LPA’) in FDR

We can now compute the first non-trivial beta functional in the FDR using the results
for the coefficients adc given in (3.53) and the coefficients cdc given in (3.55). The βDR

V

together with the coefficient an has the form

βDR
V (dc = 2n) =

(−1)n

(4π)nn!
(V′′)n (3.56)

Inserting into (3.47) gives an easy summation

βFDR
V (d) =

∞

∑
n=0

µd−2n (−1)n

(4π)nn!
(V′′)n = µd

∞

∑
n=0

1
n!

(
−V′′

4πµ2

)n

= µd e
− V′′

4πµ2

The FDR-LPA beta functional is thus very simple

βFDR
V (d) = µd e

− V′′
4πµ2 (3.57)

Now is the turn to compute the βFDR
Z (d) at L = 1. Proceeding in an analogous way

we insert the coefficient (3.55) into the equation (3.48)

βFDR
Z (d) = ∑

dc

µd−dc βDR
Z (dc) = ∑

dc

µd−dc cdc(V
′′′)2(V′′′)

dc
2 −3

dc=2n+4
=

∞

∑
n=1

µd−(2n+4) (−1)n

(4π)n+2(n − 1)!
(V′′′)2(V′′)n−1

=
µd−6(V′′′)2

6(4π)3

∞

∑
n=1

µ−2(n−1) (−1)n(V′′)n−1

(4π)n−1(n − 1)!

= −µd−6(V′′′)2

6(4π)3

∞

∑
n=1

1
(n − 1)!

(−V′′

4πµ2

)n−1

The beta function of the wave function renormalization turns out to be

βFDR
Z (d) = −µd−6 1

6
(V(3))2

(4π)3 e
− V′′

4πµ2 (3.58)

As for the potential, this beta functions also turns to be remarkably simple. In the
following section we will see how to compute the dimensionless flow equations and
test for the first time the beta functions just found.
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3.5 Fixed Point Analysis (FPRG vs NPRG vs FDR)

3.5.1 Dimensionless Flow Equation for βV & βZ

Up to this point, we have introduced a new method for computing the β-function
using a novel RG scheme and applied it to the N = 1 case of the O(N) model. This
case presents fewer difficulties compared to the general N case. Moreover, we focused
on the lowest order of the derivative expansion, not only because it is simpler but also
because it is more pedagogical. Now, it is time to test these functions and determine
the critical exponents using this approach. Before deriving the beta functions from the
beta functionals, we need to rewrite them in terms of dimensionless variables defined
as:

φ̃ = φµdφ = φµ
1
2 (d−2+η), Ṽ(φ̃) = µ−dV, Z̃ = µηZ (3.59)

where µ is the renormalization scale, φ̃ the dimensionless field and η is the anomalous
dimension. We express the dimensionless potential and wave function renormaliza-
tion function as

v(φ) ≡ Ṽ(φ̃) z(φ) ≡ µηZ(φµ
1
2 (d−2+η)) (3.60)

The dimensionless beta functionals βv ≡ µ∂µv and βz ≡ µ∂µz are easily obtained by
deriving (3.60):

∂t(µ
dv) = ∂tV = βV

µddv + µd∂tv − µddφv′ = βV

µdβv = −dµdv + µddφ φv′ + βV

Performing a similar computation we find the expression for βz, then the two dimen-
sionless flow equation are

βv = −d v +
1
2
(d − 2 + η)φ v′ + µ−dβV (3.61)

βz = η z +
1
2
(d − 2 + η)φ z′ + µη βZ (3.62)
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The anomalous dimension η is determined self consistently, imposing the normaliza-
tion condition z(0) = 1 on equation (3.62) when βz = 0

η = −µη βZ

∣∣∣
φ→0

(3.63)

If we expand the dimensionless potential in Taylor series (Z2 even and odd opera-
tors), then the coefficients are the dimensionless running coupling constants λn

v(φ) =
∞

∑
n=1

λn

n!
φn (3.64)

and their dimensionless beta functions βn ≡ µ ∂µλn can be straightforwardly ex-
tracted inserting (3.61) in

βn =
∂n

∂φn βv(φ)
∣∣∣

φ→0
(3.65)

The final step to determine the existence of a universality class in a given dc is to solve
for the fixed points

βi = 0 (3.66)

Let’s see how it is applied for the Ising universality class in d = 3.

3.5.2 Fixed Points and Critical Exponents in d = 4 − ε

Before analysing the fixed points and subsequently calculating the critical exponents
in d = 3 using FDR, let us first examine the structure of the beta functions as derived
through the ε-expansion. This involves expanding around the upper critical dimen-
sion, which means setting d = dc − ε [4]. We want to show which is the functional
form of the beta functions within this theoretical framework. To proceed, we substi-
tute equation (3.18) into equation (3.61), noting that at this stage, we set d = 4 − ε.
Then using (3.65) we find the following system of beta functions (we re-scaled factors
of 4π for clarity)

βFPRG
1 = −(3 − ϵ

2
)λ1 + λ2λ3 −

1
2

λ2
3 − λ2λ3λ4 +

1
12

λ1λ2
4

βFPRG
2 = −2λ2 + λ4λ2 + λ3

3 −
5
2

λ2
3λ4 −

5
6

λ2λ2
4

βFPRG
3 = −(1 +

ϵ

2
)λ3 + 3λ4λ3 −

23
4

λ3λ2
4

βFPRG
4 = −ϵ + 3λ2

4 −
17
3

λ3
4
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For this set of equations, the fixed points are determined to subsequently calculate the
critical exponents. We will present the results derived from this method at the end of
the chapter. The fixed point for this set of equation is found by setting βi = 0 which
for this case we find

λ∗
1 = 0 λ∗

2 = 0 λ∗
3 = 0 λ∗

4 =
ϵ

3
− 17

81
ϵ2 +O(ϵ3)

In the ϵ-expansion for the O(N) theory the critical exponent have the following form
at two-loop order [71]:

ν =
1
2
+

N + 2
4(N + 8)

ϵ +
N3 + 25N2 + 106N + 120

8(N + 8)3 ϵ2 +O(ϵ3)

ω = ϵ − 3(3N + 14)
(N + 8)2 ϵ2 +O(ϵ3) (3.67)

η =
N + 2

2(N + 8)2 ϵ2 +O(ϵ3)

In our case of interest we set N = 1 and ϵ = 1 since we want to see the result for
d = 3, this yields

ν = 0.626543

ω = 0.37037

η = 0.0185185

We will assess the quality of these estimates in the following.

3.5.3 Fixed Points and Critical Exponents in d = 3 at FDR-LPA

Now that we have presented all the necessary elements to calculate the critical expo-
nents, we will proceed to develop an example in the most pedagogical way possible.
Specifically, we aim to compare the three theoretical frameworks previously discussed
and demonstrate the procedure required for a concrete example. To this end, we will
solve the flow equation at the lowest order of the derivative expansion in the case of
three dimensions.

The first step is to find the beta functions in their dimensionless form, as explained
throughout this chapter, which in the case of the FDR takes the form

βFDR
v (φ) = −3 v(φ) +

1
2

φ v′(φ) + e−
v′′(φ)

4π (3.68)
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Figure 3.6: Flow in the (λ2, λ4) plane in d = 3. The Gaussian (red) and Wilson-Fisher
(green) fixed point.

Instead of solving the partial differential equation (3.68) we employ a polynomial
truncation on the potential where we expect Z2 symmetry at the fixed point, thus
we keep only even couplings in (3.64), note that this expansion is valid for the three
framework (FPRG, NPRG and FDR). With these considerations, the local potential
takes the following form

v(φ) =
Ntr

∑
n=1

λ2n

(2n)!
φ2n =

λ2

2
φ2 +

λ4

4!
φ4 +

λ6

6!
φ6 + · · · (3.69)

where Ntr is the truncation order. By plugging (3.69) in (3.68) we find that for Ntr = 2
the βv takes the form7

βv(φ) = −λ2φ2 − 1
24

λ4φ4 + e−
λ4 φ2+2λ2

8π (3.70)

then the beta functions as defined in (3.65) are

β2 = −2λ2 −
λ4

4π
e−

λ2
4π β4 = −λ4 +

3λ2
4

(4π)2 e−
λ2
4π (3.71)

The fixed point equations are transcendental but can still be solved exactly in the
lowest cases. The Ising-Wilson-Fisher fixed point is

7To alleviate the notation, from this point onward we will no longer use the FDR superscript, and
all the beta functions presented will correspond to this scheme.
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β2 = β4 = 0 ⇒ λ∗
2 = −2π

3
λ∗

4 =
16π2

3 6
√

e
(3.72)

The stability matrix, used to determine the critical exponent, is defined as Mij =
∂β2i
∂λ2j

.
Evaluated at the Wilson-Fisher (WF) fixed point, the stability matrix is:

M =

(
−5

3 − 4π
3 6√e

−
6√e
4π 1

)
(3.73)

and has eigenvalues

{Λ1, Λ2} =

{
− 6
√

e −
√

19 6
√

e
3 6
√

e
,

√
19 6
√

e − 6
√

e
3 6
√

e

}
= {−1.7863..., 1.11963...}

The exponents are thus ν(Ntr = 2) = −1/Λ1 = 0.559816... and ω(Ntr = 2) = Λ2 =

1.11963.... When the Ntr = 3 the dimensionless beta functionals is

βv(φ) = −λ2φ2 − 1
24

λ4φ4 + e−
λ6 φ4+12λ4 φ2+24λ2

96π (3.74)

from this using (3.65) the beta functions are

β2 = −2λ2 −
3e−

λ2
4π λ4

4π

β4 = −λ4 +
9e−

λ2
4π λ2

4
(4π)2 − 5e−

λ2
4π λ6

4π
(3.75)

β6 =
45e−

λ2
4π λ4λ6

(4π)2
−

27e−
λ2
4π λ3

4
(4π)3

Now the stability matrix takes the form

M =


−3

2 − 2π
3 4√e

0

−3 4√e
4π 2 − 6π

4√e

0 −5 4√e
4π

15
2

 (3.76)

whose eigenvalues are

{Λ1, Λ2 , Λ3} = { −1.67498, 1.03671, 8.63827}
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Figure 3.7: Comparison of the convergence of the critical exponent ν in d = 3 among
the FDR-LPA, NPRG-LPA + Litim cutoff and FPRG.

then ν(Ntr = 3) = −1/Λ1 = 0.597051... and ω(Ntr = 3) = Λ2 = 1.03671... The re-
sult of the full analysis is shown in Figures 3.7 and 3.8: convergence to the Bootstrap
values (in red) is quite remarkable considering the simplicity of the approximation
involved! It is also evident the better convergence with respect to traditional NPRG-
LPA with optimized Litim cut-off. For the green line in Figure 3.7 we use the value
which come from (3.67). As shown the two loop ϵ-expansion is comparable with our
value for the FDR which only has information coming from a one-loop computation
whereas the case of ω in the perturbative scenario is quite far from our and the con-
formal bootstrap result.
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Figure 3.8: Convergence of the critical exponent ω in the FDR-LPA approximation in
d = 3. Comparison is shown against the state-of-the-art Bootstrap value, the NPRG-
LPA + Litim cutoff and FPRG.

The follwing table summarize the final results for the critical exponent withing
the varoius methods. It must been said that the fact that the two-loop ϵ-expansion
approaches to the CB results is just a coincidence. This can be seen by inspecting the
ω critical exponent where this ”accuracy” is lost.

Method ν

FDR 0.6259
NPRG 0.6495

ε-exp O(ε) 0.5833
ε-exp O(ε2) 0.6265

CB 0.6299

Method ω

FDR 0.7622
NPRG 0.6554

ε-exp O(ε) 1
ε-exp O(ε2) 0.37037

CB 0.82951

Table 3.1: Comparison of the ν and ω critical exponents against the differents methods



Chapter 4

Functional Dimensional
Regularization for the O(N) Model

In this section, we will study the scalar field O(N) model in three dimensions using
our new technique, Functional Dimensional Regularization. We begin by deriving
the lowest order in the derivative expansion, specifically the Local Potential Approx-
imation (LPA) for arbitrary N. The critical exponents ν, ω, and η obtained will be
compared against those from NPRG-LPA and the derivative expansion (DE) at orders
O(∂2) and O(∂4), when appropriate.

As will be shown, we compute the flow equation via two methods: expanding
the potential around zero and around a non-vanishing minimum (the spontaneously
broken regime). In a subsequent section, we will compute the β-functions using the
derivative expansion at order O(∂2), providing a pedagogical explanation of how
these equations are derived. Finally, we compare all these results with the state of the
art.

4.1 O(N) Local Potential Approximation

4.1.1 FDR-LPA

In this subsection, we focus exclusively on deriving the βU equation, which describes
the RG flow of the potential U for general N. Note that from now on, we will use
U for the potential instead of V as we did previously for the N = 1 case since the
potential U now depends on the variable ρ = 1

2 φi φi, unlike the potential V, which
depended on φ.

68
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To calculate the βU function at one loop, recall that the term contributing to the
1
ϵ -pole comes from Γ1 = 1

2Tr log S(2), as we saw in the previous chapter. This time, we
need to calculate the Hessian S(2) for N components starting from the action

S =
∫

ddx
{

1
2

∂µ φa∂µ φa + U(ρ)

}
. (4.1)

Additionally, it will be very useful to define the projectors onto the longitudinal and
transverse subspaces; the longitudinal projector is defined by

Pij ≡
φi φj

φ2

while the transverse projector is defined as δij − Pij.
Let us motivate the generalization of the equation (3.57) for βDR

V to N components.
It will be useful to write down a table of the beta functions (in DR) of the potential in
the multi-component case in order to reach a general expression:

N = 1 General N
dc βDR

V βDR
V

2 a2V′′ a2Vii

4 a4(V′′)2 a4VijVji

6 a6(V′′)3 a6VijVjkVki

: :

2n a2n(V′′)n a2nVi1i2Vi2i3 ..Vini1

Where the coefficients a2n are defined in (3.53)

a2nVi1i2Vi2i3 ..Vini1 = a2nTrVn

From which we obtain the FDR βV by usual resummation

βV =
∞

∑
n=0

µd−2na2nTrVn

=
∞

∑
n=0

µd−2n (−1)n

n!
1

(4π)n TrVn

= µd
∞

∑
n=0

1
n!

Tr
(

−V
4πµ2

)n
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Finally the FDR–LPA beta functional for general N is

βV(d) = µd tr e
− V

4πµ2 (4.2)

where (V)ij ≡ Vij is the multi-field Hessian.
The Hessian Uij of the effective potential is

Ui ≡
∂U
∂φi

= U′∂iρ = U′φi Uij ≡
∂2U

∂φi∂φj
= U′δij + U′′φi φj

and can be conveniently decomposed using the projectors as

Uij = U′(1 − P)ij + (U′ + 2ρU′′)Pij

Thus the multi-component Hessian is

V = U′(1−P) + (U′ + 2ρU′′)P (4.3)

Inserting it into the multi-component beta functional, which has the form of (4.2) gives

Tr{e
− V

4πµ2 } = Tr{1e
− V

4πµ2 } = Tr{[(1−P) +P]e−
V

4πµ2 }

= Tr{(1−P)e−
U′

4πµ2 (1−P)−
U′+2ρU′′

4πµ2 P}+ Tr{Pe
− U′

4πµ2 (1−P)−
U′+2ρU′′

4πµ2 P}
(4.4)

If now we expand the exponential in series and use the orthogonality properties we
find for the first term of (4.4)

(1−P)
∞

∑
n=0

1
n!

( −1
4πµ2

)n [
U′(1−P) + (U′ + 2ρU′′)P

]n

= (1−P)
∞

∑
n=0

1
n!

( −1
4πµ2

)n
(U′)n

= (1−P) e
− U′

4πµ2 (4.5)

where we used

[
U′(1−P) + (U′ + 2ρU′′)P

]n
= (U′)n(1−P) + (U′ + 2ρU′′)nP
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Taking the trace of (4.5) and noting that tr(1−P) = N − 1 we find

Tr{(1−P)e−
U′

4πµ2 } = (N − 1)e
− U′

4πµ2 (4.6)

By doing the same analysis to the second term of (4.4) using that trP = 1 we arrive at

Tr{Pe
−U′′+2ρU′′

4πµ2 } = e
−U′′+2ρU′′

4πµ2 (4.7)

Finally we add (4.6) and (4.7) in order to find the O(N) beta functional for the poten-
tial U(ρ) (which has a longitudinal and a tangential part):

βU(d) = µd (N − 1) e
− U′

4πµ2 + µd e
−U′+2ρU′′

4πµ2 (4.8)

It is clear that in the N → 1 limit only the longitudinal part survives, thus recovering
the Ising beta functional of the previous chapter.

The final step is to write the dimensionless form of the beta functional:

βu = −du + (d − 2)ρu′ + (N − 1)e−
u′
4π + e−

u′+2ρu′′
4π (4.9)

There are at least two things to remark about this equation. First, despite it is valid
for any dimension d, we will fix d = 3. Because of the rapid convergence provided
by the exponential it is possible to study the solutions of βu = 0 using a polynomial
expansion. Second, this is the same βu found using the Proper time RG [72, 73, 74,
75, 76] which yields to very good results on the exponent ν [77] . The noteworthy
aspect is that many questioned the validity of this approach since it was not originally
derived from first principles. However, it has now been established on a more solid
foundation.

4.1.2 NPRG-LPA

In a previous chapter, we discussed how the Wetterich equation (3.31) describes the
flow of the average effective action. We observed that, to solve this equation, it is
necessary not only to provide an Ansatz but also to specify the regulator. To study
the flow equation for the O(N) model in d dimension we pick the following action
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(which is the action corresponding to (4.1))

Γk =
∫

ddx
(

1
2

∂µϕa∂µϕa + Uk(ρ)

)
(4.10)

which is the leading order in the derivative expansion, the local potential approxi-
mation (LPA). By plugging this Ansatz in the Wetterich equation and using the Litim
cut-off (3.27) we arrive at the flow equation in its dimensionful form [78]

βU = µd+2(N − 1)
cd

µ2 + U′ + µd+2 cd
µ2 + U′ + 2ρU′′ (4.11)

where cd = 2
d(4π)d/2Γ(d/2) . Passing to dimensionless variables we find the flow equa-

tion has the following form

βu = −du + (d − 2)ρu′ + (N − 1)
cd

1 + u′ +
cd

1 + u′ + 2ρu′′ (4.12)

This equation (4.12) display two scaling solution for 3 ≤ d < 4, which refer to the
Gaussian and Wilson-Fisher fixed point. The former has the trivial solution u∗ = cte
and the latter has a non trivial fixed point which is the case of interest. The study of
this equation with this and other choice for the cutoff can be found in [69, 78, 79, 80,
81, 82].

4.1.3 Fixed Points and Critical Exponents

Almost all ingredients have been presented to compute the flow equation and, with
it, the universal critical exponents. The last but not least important decision to make is
regarding the potential. Here, we employ a polynomial truncation, of the scaling po-
tential, which means expanding the potential to order ϕ2Ntr up to a truncation number
Ntr.

There are two ways to perform this polynomial expansion. The first is around
zero, where u(ρ = 0) = 0, and the second is around the minimum of the potential,
ρ = ρ0, where u′(ρ = ρ0) = 0. Thus, with the first expansion, the potential is

u(ρ) =
Ntr

∑
n=1

λn

n!
ρn (4.13)

where λn are the running couplings. The second expansion, which approximate
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around the minimum has the form

u(ρ) =
Ntr

∑
n=2

1
n!

λn(ρ − λ1)
n (4.14)

Here λ1 is the position of the minimum. Moreover, note that the potential is nor-
malised as u(λ1) = 0. Now, we have Ntr coupled ordinary differential equations
∂tλi ≡ βi(λn) for the entire set of couplings. In this section we compare the NPRG-
LPA-Litim [78, 83] with the novel FDR-LPA. We perform both an expansion around
zero and around the minima.

Expansion around zero For the expansion around zero we computed the different
critical exponents for N = 0, 1, 2, 3, 4, 5, 10, 20, 100 at Ntr = 20. Results are reported in
Table 4.1 for the critical exponents ν, ω, ω3 and ω4 (following the conventions of [78])
while the convergences of the truncation is shown in Figures 4.1 and 4.2.

N ν (2-digits) ν ω ω3 ω4
0 0.58 0.5827 0.7818 3.8989 7.48507
1 0.63 0.6259 0.7622 3.6853 7.03162
2 0.67 0.6689 0.7457 3.4930 6.62476
3 0.71 0.7103 0.7345 3.3258 6.27486
4 0.75 0.7485 0.7296 3.1850 5.98801
5 0.78 0.7825 0.7313 3.07 5.75845

10 0.89 0.8867 0.7916 2.8267 4.92327
20 0.95 0.9483 0.8823 2.8310 5.02247

100 0.99 0.9907 0.976 2.9592 4.94072

Table 4.1: FDR-LPA with expansion around zero (4 significant digits). The first col-
umn shows in bold face those two significant digits for the exponent ν which match
state-of-the-art estimates.
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Figure 4.1: Convergence of the critical exponent ν in the FDR-LPA applied to O(N)
models. Comparison is made with state-of-the-art estimates (CB).

Figure 4.2: Convergence of the critical exponent ω in the FDR-LPA applied to O(N)
models. Comparison is made with state-of-the-art estimates DE at O(∂4) [39].

Expansion around minima For the expansion around the minima, we find almost
the exact same values as in the expansion around zero. The advantage of this ap-
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N ν ω ω3 ω4
0 0.5827 0.7818 3.8986 7.49054
1 0.6259 0.7622 3.6845 7.03796
2 0.6689 0.7457 3.4914 6.62782
3 0.7103 0.7345 3.3235 6.26572
4 0.7485 0.7298 3.1829 5.94951
5 0.7825 0.7316 3.0708 5.70194

10 0.8868 0.7906 2.8306 5.02365
20 0.9483 0.8831 2.8342 4.81965

100 0.9907 0.9768 2.9592 4.9384

Table 4.2: FDR-LPA with expansion around the minima (4 significant digits).

proach is the fast convergence. The computation of the beta functions for the minima
λ1 and for the couplings λn are a little bit different from the expansion around zero.
We follow the approach from [82] where we learnt that the running of the minimum
is obtained by taking a total t-derivative of the condition u′(λ1) = 0

d
dt

u′(λ1) = u′′ ∂λ1

∂t
+

∂u′

∂t
= 0

This means that
dλ1

dt
= βλ1 = −[u′′(λ1)]

−1 ∂u′

∂t

∣∣∣
ρ=λ1

(4.15)

In this regime the evolution equation for the couplings λn are computed as

dλn

dt
= βλn =

∂u(n)

∂t

∣∣∣
ρ=λ1

+ λn+1
dλ1

dt
(4.16)

Results are reported in Table 4.2 for the critical exponents ν, ω, ω3 and ω4 (following
the conventions of [78]) while the results of the convergences is reported in Figures
4.3 and 4.4.
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Figure 4.3: Convergence of the critical exponent ν in the FDR-LPA around the minima ap-
plied to O(N) models. Comparison is made with state-of-the-art estimates (CB) dashed lines.

Figure 4.4: Convergence of the critical exponent ω in the FDR-LPA around the minima ap-
plied to O(N) models. Comparison is made with state-of-the-art estimates DE at O(∂4) [39].

4.1.4 Comparison with NPRG-Litim

We conclude this section by showing the comparison for the third and fourth sub-
leading critical exponents. Although their computation is not common, we include it
for completeness. The critical exponent computed by the author in [78] are shown in
Table 4.3 and 4.4 to be compared with our results.
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Figure 4.5 shows that the convergence of the critical exponents ω3 and ω4 in the case
of NPRG is not as good as that obtained with the FDR. The latter exhibits rapid con-
vergence using only Ntr = 20 as the number of truncation, whereas in the NPRG
formalism, convergence is only achieved at N = 0. Additionally, it is evident that as
the number N increases, the tendency to converge is lost.

N νNPRG νFDR ωNPRG ωFDR

0 0.592083 0.582784 0.65788 0.781865
1 0.649562 0.625979 0.655746 0.762214
2 0.708211 0.668978 0.671221 0.745742
3 0.761123 0.710327 0.699837 0.734503
4 0.804348 0.748549 0.733753 0.729699
5 0.837741 0.782514 0.766735 0.731383

10 0.918605 0.886757 0.871311 0.791678

Table 4.3: Comparision between the critical exponent ν and ω for the NPRG
and FDR at LPA level.

N ωNPRG
3 ωFDR

3 ωNPRG
3 ωFDR

4
0 3.308 3.89896 6.16 7.48507
1 3.180 3.68532 5.912 7.03162
2 3.0714 3.49307 5.679 6.62476
3 2.9914 3.3258 5.482 6.27486
4 2.9399 3.1850 5.330 5.98801
5 2.9180 3.07 5.2195 5.75845

10 2.89846 2.82675 5.00420 4.92327

Table 4.4: Comparision of the sub-leading critical exponent within the NPRG
and FDR
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(a) ω3 critical exponent for the NPRG-LPA
Litim case around zero

(b) ω4 critical exponent for the NPRG-LPA
Litim case around zero.

(c) ω3 critical exponent for the FDR-LPA
around zero.

(d) ω4 critical exponent for the FDR-LPA
around zero.

Figure 4.5: Comparison of the critical exponent ω3 and ω4 computed from the Litim
equations and the FDR at the LPA around zero.

In contrast, Figure 4.6 demonstrates that the convergence of ω3 and ω4 for NPRG
around the minima is much better than that computed around zero. As mentioned
in [84, 85], the study performed using field truncation indicates that the expansion
around the minima has better convergence compared to the expansion around zero.
Our results for the FDR are consistent with this observation. Moreover, unlike NPRG
with the expansion around zero, the convergence for the critical exponents is present
for all N in the FDR. As the reader might noted some of the curves for the NPRG
approach are not continous, this is because the results for that critical exponent at this
truncantion number has a small imaginary part as stated in [78] and therefore not
plotted.
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(a) ω3 critical exponent for the NPRG-LPA case
around the minima.

(b) ω4 critical exponent for the NPRG-LPA
case around the minima.

(c) ω3 critical exponent for the FDR-LPA
around the minima.

(d) ω4 critical exponent for the FDR-LPA
around the minima.

Figure 4.6: Comparison of the critical exponent ω3 and ω4 computed from the Litim
equations and the FDR at the LPA around the minima.
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Figure 4.7: Estimate of the critical exponent ν as a function of N at d = 3 at order LPA
(black), order O(∂2)(red), order O(∂4)(green), FDR(blue).
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Figure 4.8: Estimate of the critical exponent ω as a function of N at d = 3 at order LPA
(black), order O(∂2)(red), order O(∂4)(green), FDR at LPA (blue).

We conclude this section by showing the critical exponents ν and ω as functions of
N in three dimensions. The Figures 4.7 and 4.8 presents the final estimates for these
critical exponents within the framework of NPRG for orders O(∂0), O(∂2), and O(∂4)

compared with results of the FDR. For the critical exponent ω, it is noteworthy that,
unlike LPA-NPRG, the LPA-FDR yields the same shape as for O(∂2), and O(∂4).

4.2 O(N) Derivative Expansion

In this section we present the result for the O(N) with the Functional Dimensional
Regularization using the derivative expansion [86]. We will show how to derive the
beta function for the potential, the wave function renormalization and the Y function.
At the end we will compare the outcoming results with the NPRG and the state-of-
the-art predictions.

4.2.1 Action

For the study of the O(N) model by means of the derivative expansion at second
order O(∂2) the action is constructed by the addition of two functions Z(ρ) and Y(ρ)
[65]

S =
∫

ddx
{

1
2
(∂µ φi∂

µ φi) + U(ρ) +
1
2

Z(ρ)(∂µ φi∂
µ φi) +

1
4

Y(ρ)∂µρ∂µρ

}
(4.17)
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Note that unlike traditionally done, we separate the functional Z from the kinetic
term, which makes it convenient to work with the equivalent parametrization

S =
∫

ddx
{

1
2
(∂µ φi∂

µ φi)+U(ρ)+
[

ZT(ρ)(δij − Pij)+ ZL(ρ)Pij

]1
2
(∂µ φi∂µ φj)

}
(4.18)

where we use the defined longitudinal Pij =
ϕiϕj
ϕ2 and transverse δij − Pij projectors. To

transition from one parametrization to another, simply map Z = ZT and Y = ZL−ZT
ρ .

The benefit of using (4.18) becomes apparent in the limit as N → 1, where Pij → 1 and
(δij − Pij) → 0. Consequently, in this limit, ZN=1(φ) = ZL(ρ).

4.2.2 βU in presence of Z and Y

Since in the second order of the derivative expansion (O(∂2)) we have the presence of
the functions Z and Y, the functional form of the βU changes from the LPA. To proceed
with the calculation of βU, we follow the method similar to the one used previously.
First, we need to calculate the Hessian of the action (4.17) at a constant field, insert it
in one loop contribution and extract the 1

ϵ -poles. The Hessian S(2) of the action (4.18)
at constant field reads

(S(2)(q))ij = (U′ + q2(1 + Z))δij + ρ(2U′′ + q2Y)Pij

= (U′ + q2(1 + Z))(1−P) + (2U′′ρ + U′ + q2(1 + Z + ρY))P.

Recall the one loop effective action where we plug the Hessian

Γ1 = −1
2

∫ ∞

0

ds
s

∫
q

tr e−s[S(2)(q)]ij

= −1
2

∫ ∞

0

ds
s

∫
q

tr
{
(1−P)e−s(q2(1+Z)+U′) +Pe−s(q2(1+Z+ρY)+U′+2ρU′′)

}
= −1

2

∫ ∞

0

ds
s

∫
q

{
(N − 1)e−s(q2(1+Z)+U′) + e−s(q2(1+Z+ρY)+U′+2ρU′′)

}
If we plan to work on the (U, T, L) basis it is possible to identify

ZT → Z ZL → Z + ρY

ωT → U′ ωL → U′ + 2ρU′′
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Then Γ1 is

Γ1 = −1
2

∫ ∞

0

ds
s

∫
q

{
(N − 1)e−s(q2(1+ZT)+ωT) + e−s(q2(1+ZL)+ωL)

}
As usual the integral in the momentum q splits in two, one part which contains the
angular factor Sd = 2πd/2

Γ(d/2) and another which is the integral in the momentum; after
we perform both we find

Γ1 = − 1
2(4π)d/2

∫ ∞

0
ds s−( d

2+1)
{
(N − 1)

e−sωT

(1 + ZT)
d
2
+

e−sωL

(1 + ZL)
d
2

}
(4.19)

Now we do the proper-time integral which gives Gamma functions

Γ1 = −
Γ
(
− d

2

)
2(4π)d/2

{
(N − 1)

(
ωT

1 + ZT

) d
2

+

(
ωL

1 + ZL

) d
2
}

(4.20)

This Gamma function present divergences when d = 2n ≡ dc with integer n. As our
definition of beta functions requires to look for the 1

ϵ -poles in the complex d-plane we
just need to use the relation Γ

(
− d

2

)
= 1

ϵ (−1)dc/2 2
(dc/2)! + ... The beta functionals at dc

are minus the respective residue

βDR
U (dc) =

(−1)
dc
2

(4π)
dc
2
( dc

2

)
!

{
(N − 1)

(
ωT

1 + ZT

) dc
2

+

(
ωL

1 + ZL

) dc
2
}

(4.21)

Finally we apply the master formula (3.47) and sum over all critical
dimensions dc = 0, 2, 4, 6, 8, ...

βU(d) =
∞

∑
dc=0

µd−dc
1( dc
2

)
!

{
(N − 1)

(
−ωT

4π(1 + ZT)

) dc
2

+

(
−ωL

4π(1 + ZL)

) dc
2
}

(4.22)

which is the series for exponential functions and returns the FDR–DE2 beta functional
for the potential

βU = µd (N − 1) e
− U′

4πµ2(1+ZT) + µd e
− U′+2ρU′′

4πµ2(1+ZL) . (4.23)



CHAPTER 4. FUNCTIONAL DIMENSIONAL REGULARIZATION FOR THE O(N) MODEL 83

From here it is clear that in the case N = 1 we get the Ising flow at order FDR-DE2

βV(φ) = µde
− V′′

4πµ2(1+Z) . (4.24)

This is exactly what we get when we consider the case of N = 1 and the action only
contains a potential V and Z(ϕ)1

2(∂ϕ)2. By direct computation we see that V′′(ϕ) =

U′(ρ) + 2ρU′′(ρ) where V is the potential for the one field component case which we
write as a function of the field ϕ.

4.2.3 Feynman Rules

When working at second order in the derivative expansion, there are two diagrams
that contribute: the tadpole diagram and the polarization diagram. We will discuss
these diagrams in more detail in the next subsection. The key aspect of these diagrams
is that they involve functional derivatives of the effective action. Specifically, the tad-
pole diagram involves a fourth derivative, while the polarization diagram involves a
third derivative. Therefore, in this subsection, we explicitly derive the Feynman rules
of the theory.

Let us call S1 to the term in action (4.17) regarding the kinetic term, S2 to the ef-
fective potential, S3 and S4 to the Z and Y term respectively. To illustrate how the
calculations are performed, we focus on the contribution from S3. The contributions
from S2 and S4 are analogous, and their derivation can be found in Appendix B. On
the other hand, S1 contributes only to the propagator, as its result is null starting from
the third derivative. As mentioned

S3 =
∫

x

1
2

Z(ρ)(∂µ φi∂
µ φi).

The third variation has several terms, most of them proportional to ∂φ which are zero
once we take the field constant and the term that survives has the form:

δ3S3 = 3
∫

Z′(φ · δφ)(∂δφ)2 = 3Z′
∫

δij φkδφk∂δφi∂δφj (4.25)

Continuing with the calculation we can rewrite the variations of the field, being care-
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ful with the indices, in the following way δφi → δxx2δib

δ3S
δφ1aδφ2bδφ3c

= Z′
∫

x

{
φkδxx1δak∂xδxx2δib · ∂xδxx3δic + combinations

}
= Z′

∫
x

φaδxx1∂xδxx2∂xδxx3δbc → φa(ip2) · (ip3)δbc

where in the last step we move to momentum variables by setting ∂µ → ipµ. Finally

S(3)
abc(p1, p2, p3) = −Z′

{
φaδbc(p2 · p3) + φbδac(p1 · p3) + φcδab(p1 · p2)

}
(4.26)

In an analogous way we compute up to the fourth variation, which at constant field
is

δ4S3 = 6
∫
[Z′′(φ · δφ)2 + Z′(δφ)2](∂δφ∂δφ)

= 6
∫

Z′′φiδφi φjδφj∂δφkδφk + Z′δφiδφi∂δφk∂δφk

Once again, we rewrite the variation of the field, which transforms S4 into

δ4S3

δφ1aδφ2bδφ3cδφ4d
= Z′′

∫
x
[φaδxx1 φbδxx2∂xδxx3δkc∂xδxx4δkd + · · · ]

+ Z′[δiaδxx1δibδxx2∂xδxx3δkc∂xδxx4δkd]

→ Z′′[φa φb(ip3) · (ip4)δcd] + Z′[δab(ip3) · (ip4)δcd]

Putting all the pieces together, we arrive at

S(4)
abcd(p1, p2, p3, p4) = − Z′′

{
φa φbδcd(p3 · p4) + φa φcδbd(p2 · p4)

+ φa φdδbc(p2 · p3) + φb φcδad(p1 · p4) + φb φdδac(p1 · p3)

+ φc φdδab(p1 · p2)

}
− Z′

{
δabδcd(p3 · p4) + δacδbd(p2 · p4) + δadδbc(p2 · p3)

+ δbcδad(p1 · p4) + δbdδac(p1 · p3) + δcdδab(p1 · p2)

}
We now summaries the Feynman rules by expressing the second, third and fourth

variation of the action 4.17. The second variation will be used to compute the propa-
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gators:

S(2)
ab (p1, p2) = U(1)δab + U(2)φa φb − (1 + Z) δab(p1 · p2)−

1
2

Yφa φb(p1 · p2) (4.27)

S(3)
abc(p1, p2, p3) = U(2)[φaδbc + φbδac + φcδab

]
+ U(3)φa φb φc

−Z(1)[φcδab(p1 · p2) + φbδac(p1 · p3) + φaδbc(p2 · p3)
]

− 1
2

Y
[
(φaδbc + φbδac)(p1 · p2) + (φaδcb + φcδab)(p1 · p3) + (φbδca + φcδba)(p2 · p3)

]
− 1

2
Y(1)[(p1 · p2) + (p1 · p3) + (p2 · p3)

]
φa φb φc (4.28)
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S(4)
abcd(p1, p2, p3, p4) = U(2)[δadδbc + δacδbd + δabδcd

]
+ U(3)[φa φbδcd + φb φcδad + φb φdδac + φa φcδbd + φa φdδbc + φc φdδab

]
+ U(4)φa φb φc φd

− Z(1)[(p1 · p2)δabδcd + (p1 · p3)δacδbd + (p1 · p4)δadδbc

+ (p2 · p3)δadδbc + (p2 · p4)δacδbd + (p3 · p4)δabδcd
]

− Z(2)[(p1 · p2)φc φdδab + (p1 · p3)φb φdδac + (p1 · p4)φb φcδad

+(p2 · p3)φa φdδbc + (p2 · p4)φa φcδbd + (p3 · p4)φa φbδcd
]

− 1
2

Y
[
(p1 · p2)δadδbc + (p1 · p2)δacδbd + (p1 · p3)δadδbc + (p1 · p3)δabδcd

+(p1 · p4)δacδbd + (p1 · p4)δabδcd + (p2 · p3)δacδbd + (p2 · p3)δabδcd

+(p2 · p4)δadδbc + (p2 · p4)δabδcd + (p3 · p4)δadδbc + (p3 · p4)δacδbd
]

− 1
2

Y(1)[(p1 · p2)φa φbδcd + (p1 · p2)φb φcδad + (p1 · p2)φb φdδac

+(p1 · p2)φa φcδbd + (p1 · p2)φa φdδbc + (p1 · p3)φa φbδcd

+(p1 · p3)φb φcδad + (p1 · p3)φa φcδbd + (p1 · p3)φa φdδbc

+(p1 · p3)φc φdδab + (p1 · p4)φa φbδcd + (p1 · p4)φb φdδac

+(p1 · p4)φa φcδbd + (p1 · p4)φa φdδbc + (p1 · p4)φc φdδab

+(p2 · p3)φa φbδcd + (p2 · p3)φb φcδad + (p2 · p3)φb φdδac

+(p2 · p3)φa φcδbd + (p2 · p3)φc φdδab + (p2 · p4)φa φbδcd

+(p2 · p4)φb φcδad + (p2 · p4)φb φdδac + (p2 · p4)φa φdδbc

+(p2 · p4)φc φdδab + (p3 · p4)φb φcδad + (p3 · p4)φb φdδac

+(p3 · p4)φa φcδbd + (p3 · p4)φa φdδbc + (p3 · p4)φc φdδab
]

− 1
2

Y(2)[(p1 · p2)φa φb φc φd + (p1 · p3)φa φb φc φd + (p1 · p4)φa φb φc φd

+(p2 · p3)φa φb φc φd + (p2 · p4)φa φb φc φd + (p3 · p4)φa φb φc φd
]

(4.29)
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a b
+1

2Γab = −1
2

a b

Figure 4.9: Feynman diagrams contributions to the one loop two point function.

4.2.4 Diagrams and Propagator

The propagator is the inverse of S(2) (see (4.27)), this computed with the aid of the
projector Pab = ϕaϕb/ϕ2

Gab(q) = GT(q)(δab − Pab) + GL(q)Pab (4.30)

The transverse and longitudinal components are

GT(q) ≡
1

q2 + q2ZT + U′ GL(q) ≡
1

q2 + q2ZL + U′ + 2ρU′′ (4.31)

where as before ZT = Z and ZL = Z + ρY. Diagrammatically the second derivative
of the one loop effective action has two contribution as it is shown in Figure 4.9. This
contribution are known as the polarization diagram and the tadpole for which we
will need G(q), S(3) and S(4). The diagrams reads as

polarization =
∫

q
Gij(q)S

(3)
jak (q, p,−q − p)Gkl(q + p)S(3)

kbi (q + p,−p,−q)

tadpole =
∫

q
Gij(q)S

(4)
iabj(q, p,−p,−q)

When we write the propagator as the sum of the longitudinal and transverse part,
the contribution coming from the diagrams at order O(∂2) split in two. Let start with
the longitudinal part. Since we are at order 2, we are interested in terms that are
proportional to the momentum square (p2). The left hand side of the equation is the
second derivative of the effective action contracted with either the longitudinal part
or the transverse part, here we take the coefficient proportional to (p2) as we just said.
As we are working on the O(N) model we work with a tensorial notation. The second
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derivative of the effective action has the form

(Γ(2))mn = U′gmn + U′′ϕmϕn + p2Zgmn +
1
2

p2Yϕmϕn (4.32)

We remind the reader that the projectors are

(PL)ab =
ϕaϕb

Φ2 (PT)ab = gab − ϕaϕb

Φ2 (4.33)

The longitudinal left hand side is

(PL)mn(Γ(2))mn =
ϕmϕn

Φ2

{
U′gmn + U′′ϕmϕn + p2Zgmn +

1
2

p2Yϕmϕn
}

= U′ + p2Z + U′′ϕ2 +
1
2

p2Y2ϕ2

= U′ + U′′ϕ2 + p2
(

Z +
Yϕ2

2

)
from here we see the term we keep is

Z + Yρ (4.34)

where in the last step we made the wrote Φ2 → 2ρ. The transverse left hand side is

(PT)mn(Γ(2))mn =

(
gmn − ϕmϕn

Φ2

){
U′gmn + U′′ϕmϕn + p2Zgmn +

1
2

p2Yϕmϕn
}

= NU′ + p2ZN + U′ϕ2 +
1
2

p2Y2ϕ2

−U′ − p2Z − U′ϕ2 − 1
2

p2Y2ϕ2

= (N − 1)(U′ + p2Z)

Thus, the term we keep here is
(N − 1)Z (4.35)

To compute the contribution of each diagram to our beta functional – βDR
Z and βDR

Y

– we will contract indices with the propagator to obtain two independent equations,
one related to the transverse contribution and the other to the longitudinal:

PabΓ(2)
ab (p2) ≡ Sd

(2π)d

∫ ∞

0
dq qd−1 γL(p, q) (4.36)
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(δab − Pab)Γ
(2)
ab (p2) ≡ Sd

(2π)d

∫ ∞

0
dq qd−1 γT(p, q) (4.37)

where γL is the sum of γ
pol
L and γtad

L which refers to the longitudinal contribution
coming from the polarization and tadpole diagram respectively and γT it is analogous
but with the transverse contribution. Each of the last two equation (4.36) and (4.37)
are split in two where we will perform the angular integration and expand in powers
of the momentum p2:

γT|tad = (PT)ab ×
1
2

G(q2)ij(S(4))ijab =
1
4
(N − 1)

{(
2U′′ + 4ρU′′′ + q2(2Z′ + 2ρY′)

+ 2p2(Z′ + 2ρZ′′)

)
GL

+ 2
(
(N + 1)U′′ + (p2 + q2)(Y + (N − 1)Z′)

)
GT)

}
Now we perform the angular integration of this last term and expand in terms of p2

1
4
(N − 1)

{(
2U′′ + 4ρU′′′ + q2(2Z′ + 2ρY′) + 2p2(Z′ + 2ρZ′′)

)
GL

+

(
2((N + 1)U′′ + (p2 + q2)(Y + (N − 1)Z′))

)
GT

}
Extracting the p2 coefficient gives

γT|tad
p2 = (N − 1)

{(
1
2

Z′ + ρZ′′
)

GL +
1
2

(
Y + (N − 1)Z′

)
GT

}
For the same diagram we now perform the contribution coming from the longitudinal
projector

γL|tad = (PL)ab ×
1
2

G(q2)ij(S(4))ijab =
1
4

{(
6U′′ + 8ρ2U′′′′ + 24ρU′′′

+ (p2 + q2){ 2Y + 2Z′ + 4ρZ′′ + 10ρY′ + 4ρ2Y′′}
)

GL

+ (N − 1)
(

2U′′ + 2Z′(p2 + q2)

+ 4ρU′′′ + 2p2ρY′ + 4ρq2Z′′
)

GT)

}
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After performing the angular integration and extracting the p2 coefficient, we find

γL|tad
p2 =

{
1
2

(
Y + Z′ + 5ρY′ + 2ρZ′′ + 2ρ2Y′′

)
GL +

(N − 1)
2

(
Z′ + ρY′

)
GT

}
Now we want to compute the contribution to the dimensionful beta function from the
polarization diagram. The procedure is the same as before:

γT|pol = (PT)ab ×
−1
2

G(q2)jkΓ(3)
jak G(p2 + q2 + 2p · q)klΓ

(3)
lbi

γL|pol = (PL)ab ×
−1
2

G(q2)jkΓ(3)
jak G(p2 + q2 + 2p · q)klΓ

(3)
lbi

The final results are

γT|pol
p2 = − 1

4d
(N − 1)ρ

{
(2U′′ + q2Y)GT(q2)

(
(2dU′′ + q2((8 + d)Y − 8Z′))G′

L(q
2)

+ 2q2(2U′′ + q2Y)G′′
L

)
+ GL

(
2{ 2dU′′(Y + 2Z′) + q2((2 + d)Y2 + 2(−2 + d)YZ′

+ 4Z′2)} GT + (2U′′ + q2Y){ (2dU′′ + q2(dY + 8Z′))G′
T + 2q2(2U′′ + q2Y)G′′

T}
)}

and

γL|
pol
p2 = −ρ

d

{
(Y + Z′ + Y′ρ)

(
d(6U′′ + 4ρU′′′) + (1 + 2d)q2(Y + Z′ + ρY′)

)
G2

L

+

(
3U′′ + 2ρU′′′ + q2(Y + Z′ + ρY′)

)
GL

(
{(.3U′′ + 2ρU′′′)

+ (4 + d)q2(Y + Z′ + ρY′)} G′
L + 2q2(3U′′ + 2ρU′′′ + q2(Y + Z′ + ρY′))G′′

L

)

+ (N − 1)GT

(
(dU′′Y + q2Z1(dY + Z′))GT + (U′′ + q2Z′){ (dU′′ + (4 + d)q2Z′)G′

T

+ 2q2(U′′ + q2Z′)G′′
T}
)}

Note that γL|
pol
p2 , γT|

pol
p2 , γL|tad

p2 and γT|tad
p2 present a dependence on the longitudinal

and transverse propagator as well as their derivative which are all functions of q2. As
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computed before in (4.34) and (4.35) the left hand side of (4.36) and (4.37) are

PabΓ(2)
ab |p2 = Z + ρY (4.38)

and
(δab − Pab)Γ

(2)
ab |p2 = (N − 1)Z (4.39)

respectively. With this into account we are close to conclude with the computation of
our beta functionals, since (4.38) and (4.39) in DR the beta functionals at each dc come
as

βDR
Z + ρβDR

Y ≡ −ϵ

[
Sd

(2π)d

∫ ∞

0
dq qd−1 γL(q2)

]
∞

(4.40)

(N − 1)βDR
Z ≡ −ϵ

[
Sd

(2π)d

∫ ∞

0
dq qd−1 γT(q2)

]
∞

(4.41)

After performing the integral in q we are left with functions that depend only on
the dimension d, and now the final step is the re-summation, that is, to sum over all
critical dimensions at one-loop order as our definition of beta functionals require

βFDR
Z (d) = ∑

dc

µd−dc βDR
Z (dc) (4.42)

and
βFDR

Y (d) = ∑
dc

µd−dc βDR
Y (dc) (4.43)

The final result of the dimension-full beta functional βU, βZT , βZL are shown in the
next subsection.
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4.2.5 Beta Functionals

The dimensionful beta functionals have the following form:

βU = µd

{
(N − 1)e

− U′
4πµ2(ZT+1) + e

− 2ρU′′+U′
4πµ2(ZL+1)

}

βZT = µd−2

{
−e

− U′
4πµ2(ZT+1)

4πρ (ZT + 1) (U′ (ZL − ZT)− 2ρU′′ (ZT + 1))

[
+8πµ2(ZT + 1)(ρZ′

T + ZT + 1)2

+(1 + ZT)(U′(ZL − ZT)− 2ρU′′(1 + ZT)) + (N − 1)(ρU′(ZL − ZT)Z′
T − 2ρ2(ZT + 1)U′′Z′

T)

]

+
e
− 2ρU′′+U′

4πµ2(ZL+1)

4πρ(ZL + 1)(U′(ZL − ZT)− 2ρ(ZT + 1)U′′)

[
8πµ2(ZL + 1)(ρZ′

T + ZT + 1)2

+2ρ (ZT + 1)U′′ (2ρ2Z′′
T + 5ρZ′

T + ZT + 1
)
− U′ (ZL − ZT)

(
2ρ2Z′′

T + 5ρZ′
T + ZT + 1

)]}

βZL =
µd−6

192π3

{
(N − 1)e

− U′
4πµ2(ZT+1)

ρ (ZT + 1) 4

[
−48π2µ4(ZT + 1)2

{
Z2

T − ZL
(
2ρZ′

T + ZT + 1
)

+ZT
(
ρZ′

L + 2ρZ′
T + 1

)
+ ρ

(
Z′

L + ρ
(
Z′

T
) 2)}− ρ2 (ZTU′′ − U′Z′

T + U′′) 2

−24πµ2ρ (ZT + 1)
(
−ZL + ρZ′

T + ZT
) (

ZTU′′ − U′Z′
T + U′′)]

+
e
− 2ρU′′+U′

4πµ2(ZL+1)

(ZL + 1) 4

[
−48π2µ4 (ZL + 1) 2 (−3ρ

(
Z′

L
) 2 + 2ρ (ZL + 1) Z′′

L + (ZL + 1) Z′
L
)

+24πµ2ρ (ZL + 1) Z′
L

(
2ρU(3) (ZL + 1) + U′′ (−2ρZ′

L + 3ZL + 3
)
− U′Z′

L

)
−ρ
(

2ρU(3) (ZL + 1) + U′′ (−2ρZ′
L + 3ZL + 3

)
− U′Z′

L

)
2

]}

These equations presented here for the first time are the main result of this thesis and
will be published soon [87].

Definitions and equations of Strict, Light, Strict-Light

In this subsection, we present the structure of the dimensionful beta functionals in
their strict, light, and strict-light forms. These approximations are derived from the
original beta functionals.

Let us first consider the case we will refer to as strict, as formulated in [39]. This
truncation consists of discarding terms of order p4 and higher in momenta when
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working with the derivative expansion at order 2. The discarded terms can be ob-
served, for instance, in the polarization diagram. It is important to note that these
terms involve the third derivative of the Γ function, which in turn produces contribu-
tions of the form p · q and terms of order ∝ p2. Since in the derivative expansion at
order two we consider terms proportional to p2, it does not seem incorrect to retain
terms of this order on the right-hand side of the equation, in contrast to the full case,
where all contributions are included regardless of their order in momenta. In the case
of Γ(3), the terms proportional to p2 are {Z′, Y, Y′}. Thus, the strict case is computed
by setting terms proportional to {Z′2, YZ′, Y′Z′, Y2, YY′, Y′2} to zero. This last step
must be done before expanding the propagator and only applies for the products of
vertices.

The light case consists of setting ZL and ZT to zero in the propagator (4.31) to
alleviate the complexity of the beta function, and the strict-light case is simply a com-
bination of the two. The only reason we perform these approximations is to simplify
the computations. The explicit form of these equations are shown in Appendix C.

4.2.6 Fixed Points and Critical Exponents

At this point we are free to use any basis we like, whether the (U, Z, Y) or the (U, T, L)
basis. Now we will present the analysis of the fixed point for the (U, T, L) basis. This
means that we will work with the βU, βZT , βZL functions and their respective flow
equations. The relation between the dimensionful and dimension-less beta function-
als is

βu = −du + (d − 2 + η)ρu′ + βU

βzL = η(1 + ZL) + (d − 2 + η)ρZ′
L + βZL

βzT = η(1 + ZT) + (d − 2 + η)ρZ′
T + βZT (4.44)

Among the several ways to solve the flow equation (4.44) we choose to write U, ZT, ZL

as an expansion of the field ρ as

u(ρ) =
n

∑
k=1

λ2k
k!

ρk, zL(ρ) =
n−2

∑
k=1

ζ2k
k!

ρk, zT(ρ) =
n−2

∑
k=1

ψ2k
k!

ρk (4.45)

This manner requires to implement a truncation number n for which we will have
NU + NZT + NZL = n + 2(n − 2) = 3n − 4 coupled differential equations to solve. We
proceed to solve this equation step by step, starting for n = 2 were the coupling are
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λ2 and λ4 since for this truncation zL and zT start at n = 3.
With this choice, we can easily compute the anomalous dimension η from the

equation for βzT by setting ρ → 0 and imposing the normalization condition zT(0) =
0. Then

η → −βZT

We found a simple expression for η which holds for any truncation with n > 3

η =
e−

λ2
4π

4π

[
(N − 1)ψ2 + ζ2

]
(4.46)

This same expression for η can also be computed from βzL .
At the fixed point the dimensionless beta functions are zero, then in order to solve

the equations for n = 2 we have two equations for λ2 and λ4 which can be solved
exactly and has two solution, λ∗

2 = 0, λ∗
4 = 0 which is the Gaussian fixed point and

λ∗
2 =

2π(d − 4)(N + 2)
N + 8

λ∗
4 = −16π2(d − 4)e

(d−4)(N+2)
2(N+8)

N + 8

which is the Wilson-Fished fixed point. The next step is to set n = 3 which is the
first time a coupling coming from ZL and ZT appears. To solve this we implement
the FindRoot of Mathematica which requires to give an anzats for which we took the
previous solution of the fixed point plus a random guess for the new coupling. We
then repeat the procedure until we verify the convergence of the critical exponent ν

and ω which are computed from the stability matrix whereas the critical exponent η

is computed from (4.46). To verify the accuracy of the fixed point we also checked
their convergence.

4.2.7 Results

Below, we present the results obtained for the critical exponents ν, ω, and η, first for
the universality classes in dimension 3 with N = 0, 1, 2, 3, 4, and then for large values
of N, specifically for N = 10, 20, 100. These results are compared with raw data and
final estimate [45] and the state of the art for the expansion around zero. Subsequently,
we present the results for the same critical exponents and the anomalous dimension,
but expanding the fields at the minimum of the potential.
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Figure 4.10: Convergence of the critical exponent ν in the DE FDR-O(∂2) around zero
applied to O(N) models. Comparison is made with state-of-the-art estimates (CB)
dashed lines.

Expansion around zero

For the expansion around zero we perform the truncation up to Ntr = 10 and did not
proceed further since it was computationally challenging. As shown in Figure 4.10
the convergence of the critical exponent ν is well defined for all N. These values are
comparable to those found in the literature, especially with NPRG-DE2, but they are
not as accurate as in the case of our LPA.

For the ω there is also a slower but still clear convergence (see Figure 4.11) except
for the N = 4 from which we expect to converge faster with the expansion around the
minima and extract from here the definitive value.

Finally, the result for the anomalous dimension showing in Figure 4.12 is remark-
able for a first approximation (recall that the LPA predict a η = 0 for all cases) and
the final value of convergence goes in the same direction as the conformal bootstrap.
Moreover, when compared with the raw data [45] in Figure 4.17 the first values of N
are closer to the curve NPRG-DE4 than to the NPRG-DE2. All the results presented
graphically above are summarized in the following Tables 4.7 and 4.6.
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Figure 4.11: Convergence of the critical exponent ω in the DE FDR-O(∂2) around zero
applied to O(N) models. Comparison is made with final estimate DE2 (dashed) and
DE4 (continuous).

Figure 4.12: Convergence of the critical exponent η in the DE FDR-O(∂2) around zero
applied to O(N) models. Comparison is made with state-of-the-art estimates.
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N ν8 ν9 ν10 ω8 ω9 ω10 η8 η9 η10
0 0.585112 0.585105 0.585093 0.928509 0.924993 0.924168 0.0289248 0.0289149 0.0289095
1 0.624511 0.624452 0.624409 0.856422 0.854084 0.854148 0.0342960 0.0342711 0.0342602
2 0.662770 0.662585 0.662484 0.805907 0.805351 0.806696 0.0368416 0.0367998 0.0367854
3 0.699356 0.698951 0.698777 0.769127 0.771378 0.774381 0.0374752 0.0374236 0.0374127
4 0.733434 0.732743 0.732527 0.744027 0.750043 0.754732 0.0368234 0.0367793 0.0367819
5 0.764184 0.763238 0.763078 0.729813 0.740074 0.745875 0.0353670 0.0353528 0.0353767

Table 4.5: Convergence of critical exponents for expansion around zero.

N ν ω η
10 0.866059 0.779504 0.0258998
20 0.93793 0.845266 0.0147138
100 0.9884 0.971913 0.00312589

Table 4.6: Final values of critical exponents for expansion around zero for large N.

Expansion around minima

For the expansion around the minima at the DE2 we follow the same approach as in
4.1.3, where the beta function of the minima and the coupling are computed as it was
explained before in equation (4.16) and (4.15). The flow equation (4.44) still stands and
we aim to solve it but this time we make a slightly different choice on the potential U
and on the wave-function-renormalization.

u(ρ) =
n

∑
k=2

λk
k!
(ρ − λ1)

k, zL(ρ) =
n−2

∑
k=1

ζk
k!
(ρ − λ1)

k, zT(ρ) =
n−2

∑
k=0

ψk
k!
(ρ − λ1)

k (4.47)

The importance of performing this approximation lies in clarifying some final results
for the critical exponents, such as the case of ω for N = 4, where the convergence
does not appear to be complete when we make the approximation around zero.
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Figure 4.13: Convergence of the critical exponent ν in the DE FDR-O(∂2) around the
minima applied to O(N) models. Comparison is made with state-of-the-art estimates
(CB).

Figure 4.14: Convergence of the critical exponent ω in the DE FDR-O(∂2) around the
minima applied to O(N) models. Comparison is made with DE2 (dashed) and DE4
(continuous).

Unlike for the case around zero, we see that in Figure 4.14 the convergence of the
ω at N = 4 is much more remarkable which gives us a more accurate value.



CHAPTER 4. FUNCTIONAL DIMENSIONAL REGULARIZATION FOR THE O(N) MODEL 99

N ν9 ν10 ν11 ω9 ω10 ω11 η9 η10 η11
0 0.585165 0.585062 0.585062 0.926907 0.923685 0.923714 0.0290550 0.0288722 0.0288725
1 0.624416 0.624379 0.624375 0.85491 0.855627 0.855519 0.0342329 0.0342569 0.0342576
2 0.662438 0.662476 0.662429 0.809206 0.808869 0.80865 0.0367847 0.0367760 0.0367896
3 0.698685 0.698812 0.698762 0.776165 0.777389 0.776385 0.0374435 0.0374098 0.0374238
4 0.73254 0.732627 0.732638 0.75474 0.756824 0.756326 0.036824 0.0367987 0.0367997
5 0.763333 0.763335 0.763372 0.744275 0.745229 0.745725 0.0354129 0.0354071 0.0354008

10 0.866366 0.866366 0.866365 0.7698 0.76974 0.769722 0.0258475 0.0258479 0.0258480
20 0.93654 0.93654 0.93654 0.858735 0.858736 0.858736 0.0147698 0.0147698 0.0147698

100 0.988442 0.988442 0.988442 0.970606 0.970606 0.970606 0.00311808 0.00311808 0.00311808

Table 4.7: Convergence of critical exponents for expansion around the minima.

4.2.8 Comparison with State-of-the-Art of the critical exponents

To conclude this chapter we want to show the curves for the critical exponents η, ν

and ω as a function of N overlapped with the state-of-the-art data, that is, CB and the
NPRG up to the fourth derivative in the DE. Additionally we add the large-N.
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Figure 4.15: Estimate of the critical exponent η as a function of N in d = 3 at order
NPRG-DE2 (red-square final and red-dot raw), order NPRG-DE4 (green-square final
and green-dot) and at order NPDR-DE2 blue n = 11, large-N magenta and conformal
bootstrap black stars.
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Figure 4.16: Estimate of the critical exponent ν as a function of N in d = 3 at order
NPRG-DE2 (red square final and red-dotted raw), order NPRG-DE4 (green-square
final and green-dotted raw) and at order NPDR-DE2 blue n = 11, large-N magenta
and conformal bootstrap black stars.
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Figure 4.17: Estimate of the critical exponent ω as a function of N in d = 3 at order
NPRG-DE2 (red-square final and red-dotted raw), order NPRG-DE4 (green-square
final and green-dotted raw) and at order NPDR-DE2 blue n = 11, large-N magenta
and conformal bootstrap black stars.
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ν ω η

NPRG
LPA 0.65103 0.6533 0
O(∂2) 0.62752 0.8707 0.04551
O(∂4) 0.63057 0.8321 0.03357

FDR
LPA 0.6259 0.7622 0
O(∂2) 0.6244 0.8555 0.0342

CB 0.6299 0.8295 0.03629

Final results for the N = 1 universality
class for different methods

ν ω η

NPRG
LPA 0.7106 0.6716 0
O(∂2) 0.6663 0.7972 0.0480
O(∂4) 0.6732 0.7934 0.0350

FDR
LPA 0.6689 0.7457 0
O(∂2) 0.6624 0.8086 0.0367

CB 0.6717 0.794(8) 0.0381

Final results for the N = 2 universality
class for different methods

Table 4.8: Comparison of the critical exponent with the state-of-the-art. The NPRG
results (raw) are taken from [45], and CB values from Tables 2.4 and 2.5

ν ω η

NPRG
LPA 0.7639 0.7026 0
O(∂2) 0.7039 0.7516 0.0476
O(∂4) 0.7136 0.7729 0.0347

FDR
LPA 0.7103 0.7345 0
O(∂2) 0.6987 0.7763 0.0374

CB 0.71168 0.7668 0.0385

Final results for the N = 3 universality
class for different methods

ν ω η

NPRG
LPA 0.8071 0.7383 0
O(∂2) 0.7396 0.7274 0.0455
O(∂4) 0.7500 0.7649 0.0332

FDR
LPA 0.7485 0.7296 0
O(∂2) 0.7326 0.7563 0.03679

CB 0.7472 0.817 0.0378

Final results for the N = 4 universality
class for different methods

Table 4.9: Comparison of the critical exponent with the state-of-the-art. The NPRG
results (raw) are taken from [45], and CB values from Tables 2.6 and 2.7
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ν ω η

NPRG
LPA 0.8402 0.7721 0
O(∂2) 0.7722 0.7199 0.0425
O(∂4) 0.7815 0.7648 0.0313

FDR
LPA 0.7825 0.7313 0
O(∂2) 0.7633 0.7457 0.0354

6-loop 0.766 0.034

Table 4.10: Final results for the N = 5
universality class for different methods

ν ω η

NPRG
LPA 0.5926 0.6635 0
O(∂2) 0.5878 1.0489 0.0388
O(∂4) 0.5875 0.9005 0.0292

FDR
LPA 0.5827 0.7818 0
O(∂2) 0.5850 0.9237 0.0288

CB 0.5876 0.0282

Table 4.11: Final results for the N = 0
universality class for different methods

Table 4.12: Comparison of the critical exponent with the state-of-the-art. The NPRG
results (raw) are taken from [45], six-loop and CB values from Tables 2.3 and 2.8

In summary, the calculation of critical exponents using our method aligns closely
with the predictions found in the literature. Our approach is notable for its rapid
convergence of critical exponents, providing a better estimation of the values of ω

compared to the LPA level, and offering greater accuracy in the anomalous dimension
compared to the calculation obtained through NPRG at the second derivative order.



Chapter 5

Conclusions and Perspectives

In this thesis, we develop a new regularization scheme called Functional Dimensional
Regularization (FDR). Our main motivation stems from the traditional use of dimen-
sional regularization, in the MS scheme, which we show can be extended beyond the
ε-expansion. To this end, we define a well-behaved functional RG flow by subtracting
all 1/ε-poles that appear in perturbation theory. The final result, applicable to arbi-
trary dimension, is obtained by computing in each critical dimension the perturbative
RG functions which are then summed together to obtain the FDR result. Among the
virtues of this new scheme stand out its simplicity and rapid convergence when com-
puting critical exponents as well as the unnecessary use of a mass cut-off.

Initially, in Chapter 3, we calculate the beta functions at the lowest order of the
derivative expansion (LPA) and compare them with the standard method within the
framework of NPRG and the FPRG in the ε-expansion up to order ε2. For the Ising
universality class we compared our results against the NPRG noticing that using
our scheme the critical exponents shows a better approximation compared to the
usual method. In particular, we observe that the critical exponent ν closely approxi-
mates the currently most accepted value (the conformal bootstrap), which is surpris-
ing given that this is the lowest order in the derivative expansion approximation.
Another surprising result when computing this critical exponent becomes apparent
upon comparing it with the outcome from FPRG at two-loop order, given that our
calculation only involves a one-loop approach. Additionally, the critical exponent ω

also improves compared to the standard method, although this time the result is not
as close to the most accepted value by the community. We calculated the critical ex-
ponents at this order for different universality classes derived from the O(N) model,
and in all cases, the convergence exhibits the same characteristics: a very accurate ν

103
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and an ω better than those known in the literature at this order.
The main original contribution exposed in this thesis is the analysis of the second

order of the derivative expansion developed in Chapter 4. We derive the equations
following the general prescription of FDR and applying them to O(N) universality
classes using a field expansion as anzats. As expected, we observe an improvement
in the results for the critical exponent ω, and for the first time we calculate the val-
ues for the critical exponent η. Notably, in the case of the self-avoiding walk (SAW)
universality class, our FDR-based approach yields a value for η that is closer to the
most accepted value (CB) than the equivalent calculation from the NPRG at fourth
order in the derivative expansion. For other universality classes – Ising, XY, Heisen-
berg, and N = 4 – our prediction for η displays accuracy comparable to or surpassing
the results obtained with NPRG at second order, and in some cases even matches the
raw values at fourth order. Conversely, the results for the critical exponent ν exhibit a
slight deterioration compared to the zeroth-order (LPA) calculation. Nonetheless, the
precision with which ω is obtained, as it closely approaches, for some N, higher-order
NPRG estimates, which themselves are extremely close to the best-established values
in the literature. In other words, our second-order calculation comes notably close
to matching the fourth-order results from the traditional non-perturbative approach.
The latter has important implications, given that the equations for the beta functions
at order two fit on a half A4 sheet, while the equations for the NPRG order fourth
derivative can extend to dozens of pages. This gives us an idea of the magnitude of
the simplification in numerical calculations and execution time which enables us to
generate a nearly continuous curve of critical exponents as a function of the parameter
N, providing definitive proof that this method is effective.

The results above motivates us to test further the properties of the FDR from where
we see two different paths that can be taken. On the one hand, the natural approach
would be to go one order further in the derivative expansion (by adding higher di-
mensional operators) and analyze whether the results improve compared to the previ-
ous order and contrast them with those of the NPRG. Otherwise, another path would
be to expand the calculation by one loop order and calculate the flow at two loop.
As a possible direction for future work, this new regularization scheme – currently
applied to the O(N) model in d = 3 – could be extended to d = 2; moreover, it can
be applied to many other multi-field theories with more general symmetries, such as
the clock, Potts and O(N)× O(2) models. Finally FDR can be extended to and many
other areas of physics, like gauges theory, high energy physics and gravity.
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Appendices

A Derivation of the Wetterich’s equation

We want to derive an equation that describe the evolution of Γk, to do so it is standard
to work with the variable t ≡ log(k/Λ), thus k∂k(·) = ∂t. We need to use the following
relation which is nothing but the chain rule

∂t(·)|ϕ = ∂t(·)|J −
∫

x
∂t(ϕ)J

(
δ(·)

δϕ(x)

)
J

With this the evolution for Γk is

∂tΓk[ϕ]|ϕ = ∂t(Γk[ϕ])|J −
∫

x
∂t(ϕ)J

(
δΓk

δϕ(x)

)
J

Applying the time derivative to the Legendre Transform (3.29) we see that

∂tΓk[ϕ]|J = − ∂tWk[J]|J +
∫

x
J(x)∂tϕ(x)|J

−
∫

x,y
∂tϕ(x)|J Rk(|x − y|)ϕ(y)− 1

2

∫
x,y

ϕ(x)Rk(|x − y|)ϕ(y)

To solve we need ∂tWk.

eWk[J]∂tWk[J]|J = ∂t(eWk[J])|J

=
∫

DφeS[φ]+
∫

x J(x)φ(x)− 1
2
∫

x,y φ(x)Rk(|x−y|)φ(y) ×[
−1

2

∫
x,y

φ(x)∂tRk(|x − y|)φ(y)

]
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Recall that Zk[J] = eWk[J], and dividing the last expression by Zk[J]

∂tWk[J]|J = −1
2

∫
x,y

∂tRk(|x − y|)
〈

φ(x)φ(y)
〉

J,k

= −1
2

∫
x,y

∂tRk(|x − y|)
[δ
〈

φ(x)
〉

J,k

δJ(y)
+
〈

φ(x)
〉

J,k

〈
φ(y)

〉
J,k

]
= −1

2

∫
x,y

∂tRk(|x − y|)
[

δ2Wk[J]
δJ(x)δJ(y)

+ ϕ(x)ϕ(y)
]

Putting all this together and using the equation of state δΓk
δϕ = J −

∫
y Rk(x − y)ϕk(y)

we arrive at

∂tΓk[ϕ]|ϕ =
1
2

∫
x,y

∂tRk(|x − y|) δ2Wk[J]
δJ(x)δJ(y)

(A.1)

We want to work only with Γk, can we express δ2Wk[J]
δJ(x)δJ(y) in terms of Γk? Recall that

J(y) = δΓk
δϕ(y) +

∫
v Rk(|y − v|ϕ(v)) and note that

δϕ(x)
δϕ(z)

= δ(x − z) =
δ2Wk[J]

δϕ(z)δJ(x)
=
∫

y

δ2Wk[J]
δJ(x)δJ(y)

δJ(y)
δϕ(z)

=
∫

y

δ2Wk[J]
δJ(x)δJ(y)

·
(

δ2Γk
δϕ(y)δϕ(z)

+ Rk(|y − z|)
)

Then the full propagator G(x, y) is

G(x, y) ≡ δ2Wk[J]
δJ(x)δJ(y)

=

(
δ2Γk

δϕ(y)δϕ(z)
+ Rk(|y − z|)

)−1

Finally the evolution of Γk reads

∂tΓk[ϕ]|ϕ =
1
2

∫
x,y

∂tRk(|x − y|)G(x, y) (A.2)

B The Feynman rules for the derivative expansion at order two

In the subsection 4.2.3 we derived the Feynman Rules for the term involving the
wave-function renormalization. Apart from the term involving Z(ρ) there is another
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one which has the form 1
4Y(ρ)∂µρ∂µρ which we named as S4.

S4 =
∫ 1

4
Y(ρ)∂µρ∂µρ (B.1)

Since the polarization and the tadpole diagrams are computed with the third and
fourth variation respectively, we need to calculate δ3S4 and δ4S4. The first two varia-
tions are

δS4 =
∫ 1

4
Y′(ρ)(φ · δφ)(∂ρ)2 +

1
2

Y(ρ)∂δρ · ∂ρ

δ2S4 =
∫ 1

4
Y′′(ρ)(δρ)2(∂ρ)2 +

1
4

Y′(ρ)(δφ)2(∂ρ)2

+Y′(ρ)δρ(∂ρ · ∂δρ) +
1
2

Y(ρ)(∂δρ)2 +
1
2
(∂ρ · δδ2ρ)

We can easily change from variable ρ to φ by plugging

δρ = φ · δφ

δ2ρ = (δφ)2

δ3ρ = 0

δ2S4

δφ1aδφ2b
=

1
2

Y
∫

x
φi(∂xδxx1δia φj((∂xδxx2δjb))

→ 1
2

Yφa φb(ip1) · (ip2) = −1
2

Yφa φb(p1 · p2)

The third and fourth variation of this term has the following form

δ3S4 =
∫ {3

2
Y′′(ρ)(δρ)2(∂ · ∂δρ) +

3
2

Y′(ρ)(δ2ρ)(∂ · ∂δρ) (B.2)

3
2

Y′(ρ)δρ(∂δρ)2 +
3
2

Y′(ρ)(∂δρ · ∂δ2ρ) +
3
2

Y′(ρ)δρ(∂ρ · ∂δ2ρ)

}
(B.3)

Which at constant field is

δ3S4 =
∫ {3

2
Y′(ρ)δρ(∂δρ)2 +

3
2

Y′(ρ)(∂δρ · ∂δ2ρ)

}
(B.4)
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δ3S4

δφ1aδφ2bδφ3c
=

∫ {3
2

Y′φaδxx1 φb∂xδxx2 φc∂xδxx3 +
1
2

Yφa∂xδxx1δjbδxx2δjc∂xδxx3

+combinations
}

→ −1
2

Y′φa φb φc(p2 · p3 + p1 · p2 + p3 · p1)

−Y
2
[φaδbc(p1 · p2 + p1 · p3) + φbδca(p2 · p3 + p2 · p1)

+φcδab(p3 · p1 + p3 · p2)]

δ4S4 =
∫

3Y′′(ρ)(δρ)2(∂δρ)2 + 3Y′(ρ)(δ2ρ)(∂δρ)2 + 6Y′(ρ)δρ(∂δρ · ∂δ2ρ) +
3
2

Y(ρ)(∂δ2ρ)2

This last equation is at constant field.
Let’s split this last equation and see individually term by term. Starting with the term
3Y′′(δρ)2(∂δρ)2.

3Y′′(δρ)2(∂δρ)2 = 3Y′′(φ · δφ)2(∂(φ · δφ))2 = 3Y′′(φ · δφ)2(φ · ∂δφ)2

= 3Y′′(φi · δφi)
2(φj · ∂δφj)

2 = (φi · δφi)(φj · δφj)(φk · ∂δφk)(φl · ∂δφl)

δ4S4

δφ1aδφ2bδφ3cδφ4d
= Y′′

∫
φaδxx1 φbδxx2 φc∂x φd∂xδxx1 + · · ·

= −Y′′φa φb φc φd(p3 · p4 + p1 · p2 + p1 · p3 + p1 · p4 + p2 · p3 + p2 · p4)

The next term is∫ 6
2

Y′(δ2ρ)(∂δρ)2 =
∫ 6

2
Y′(δφ · δφ)(φ · ∂δφ)2 =

∫ 6
2

Y′(δφi · δφi)(φj · ∂δφj)(φk · ∂δφk)

→ Y′

2
(δxx1δxx2δab)(φc∂xδxx3 φd∂xδxx4) + · · ·

= −Y′

2
(δab φc φd(p3 · p4) + δac φb φd(p2 · p4) + δad φc φb(p3 · p2) +

δcb φa φd(p1 · p4) + δbd φa φc(p1 · p3) + δcd φa φb(p1 · p2))
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The next term is∫
6Y′δρ(∂δρ · ∂δ2ρ) =

∫
6Y′(φ · δφ)(φ∂δφ2δφ∂δφ) =

∫
12Y′(φi · δφi)(φj · ∂δφj)(δφk · ∂δφk)

→ Y′

2
φaδxx1 φb∂xδxx2δxx3∂xδxx4δcd + · · ·

= −Y′

2
(φa φbδcd p2 · p4 + φa φcδbd p3 · p4 + φa φcδbd p2 · p3

+φa φbδdc p2 · p3 + φa φdδbc p3 · p4 + φa φdδcb p2 · p4

+φb φaδcd p1 · p4 + φb φaδdc p1 · p3 + φb φcδad p3 · p4

+φb φcδda p1 · p3 + φb φdδac p3 · p4 ++φb φdδca p1 · p4

+φc φaδbd p1 · p4 + φc φaδdb p1 · p2 + φc φbδad p2 · p4

+φc φbδda p1 · p2 + φc φdδab p2 · p4 + φc φdδba p1 · p4

+φd φaδbc p1 · p3 + φd φaδcb p1 · p2 + φd φbδac p2 · p3

+φd φbδca p1 · p2 + φd φcδab p2 · p3 + φd φcδba p1 · p3

Next is ∫ 3
2

Y(∂δ2ρ)2 =
∫ 12

2
Y(δφ · ∂δφ)2 =

∫ 12
2

Y(δφi · ∂δφi)(δφj · ∂δφj)

→ 12
2

Y(δxx1∂xδxx2δab)(δxx3∂xδxx4δcd)

→ −Y
2
(

δabδcd(p2 · p4 + p1 · p3 + p1 · p4 + p2 · p3)

+δacδbd(p1 · p2 + p1 · p4 + p3 · p2 + p3 · p4)

+δadδbc(p1 · p2 + p1 · p3 + p4 · p2 + p4 · p3)
)

We now summarize the contribution coming from S4 by collecting all terms computed
individually

S(3)
3,abc(p1, p2, p3) = −1

2
Y
[
(φaδbc + φbδac)(p1 · p2) + (φaδcb + φcδab)(p1 · p3) + (φbδca + φcδba)(p2 · p3)

]
− 1

2
Y(1)[(p1 · p2) + (p1 · p3) + (p2 · p3)

]
φa φb φc (B.5)

(B.6)
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S(4)
4,abcd(p1, p2, p3, p4) = −1

2
Y
[
(p1 · p2)δadδbc + (p1 · p2)δacδbd + (p1 · p3)δadδbc + (p1 · p3)δabδcd

+(p1 · p4)δacδbd + (p1 · p4)δabδcd + (p2 · p3)δacδbd + (p2 · p3)δabδcd

+(p2 · p4)δadδbc + (p2 · p4)δabδcd + (p3 · p4)δadδbc + (p3 · p4)δacδbd
]

− 1
2

Y(1)[(p1 · p2)φa φbδcd + (p1 · p2)φb φcδad + (p1 · p2)φb φdδac

+(p1 · p2)φa φcδbd + (p1 · p2)φa φdδbc + (p1 · p3)φa φbδcd

+(p1 · p3)φb φcδad + (p1 · p3)φa φcδbd + (p1 · p3)φa φdδbc

+(p1 · p3)φc φdδab + (p1 · p4)φa φbδcd + (p1 · p4)φb φdδac

+(p1 · p4)φa φcδbd + (p1 · p4)φa φdδbc + (p1 · p4)φc φdδab

+(p2 · p3)φa φbδcd + (p2 · p3)φb φcδad + (p2 · p3)φb φdδac

+(p2 · p3)φa φcδbd + (p2 · p3)φc φdδab + (p2 · p4)φa φbδcd

+(p2 · p4)φb φcδad + (p2 · p4)φb φdδac + (p2 · p4)φa φdδbc

+(p2 · p4)φc φdδab + (p3 · p4)φb φcδad + (p3 · p4)φb φdδac

+(p3 · p4)φa φcδbd + (p3 · p4)φa φdδbc + (p3 · p4)φc φdδab
]

− 1
2

Y(2)[(p1 · p2)φa φb φc φd + (p1 · p3)φa φb φc φd + (p1 · p4)φa φb φc φd

+(p2 · p3)φa φb φc φd + (p2 · p4)φa φb φc φd + (p3 · p4)φa φb φc φd
]

(B.7)
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C Strict, Light and Strict-light beta functions

In this appendix we show the explicit form of the beta functions in each case, strict,
light and strict-light as explained on 4.2.5

βU = µd(N − 1)e
− U′

4πµ2(ZT+1) + µde
− 2ρU′′+U′

4πµ2(ZL+1)

βstrict
ZT

=
µd−2

16πρ4(U′′)3

{
e
− U′

4πµ2

[
4πµ2

(
U′(ZL − ZT)− 2ρU′′(−ZL + ρZ′

T + ZT + 1)
)2

−ρU′′
(

4ρ2(U′′)2{ρZ′
T(N − 1) + (ZT − ZL) + 1

}
+ (U′)2(ZL − ZT)

2

+4ρU′U′′((ZL − ZT)
2 − (ZL − ZT))

)]

−e
− 2ρU′′+U′

4πµ2

[
4πµ2(U′(ZL − ZT)− 2ρU′′(−ZL + ρZ′

T + ZT + 1))2

+ρU′′
{
(U′)2(ZL − ZT)

2 + 4ρU′U′′(ZL − ZT)(ZL − 2ρZ′
T − ZT − 1)

+4ρ2(U′′)2(−2ZL(2ρZ′
T + ZT + 1) + Z2

L + 2ρ2Z′′
T + 5ρZ′

T + ZT(4ρZ′
T + 2) + Z2

T + 1)
}]}

βstrict
ZL

= − µd−6

192π3ρ

{
(N − 1)e

− U′
4πµ2

[
24πµ2(ZT − ZL)(2πµ2 + ρZ′

T(4πµ2 − U′) + ρU′′)

+ρ
{

48π2µ4Z′
L + ρ((Z′

T)
2(48π2µ4 − 24πµ2U′ + (U′)2) + 2U′′Z′

T(12πµ2 − U′) + (U′′)2)
}]

+ρe
− 2ρU′′+U′

4πµ2

[
−48π2µ4(3ρ(Z′

L)
2 − 2ρZ′′

L − Z′
L) + 24πµ2ρZ′

L

{
U′′(2ρZ′

L − 3)

+U′Z′
L − 2ρu(3)

}
+ ρ(U′′(2ρZ′

L − 3) + U′Z′
L − 2ρU(3))2

]}
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βU = µd

{
(N − 1)e

− U′
4πµ2 + e

− 2ρU′′+U′
4πµ2

}

β
light
ZT

=
µd−2

4πρ(U′(ZL − ZT)− 2ρ(ZT + 1)U′′)3

{
− e

− U′
4πµ2

ZT + 1

[
(U′)3(ZL − ZT)

3 ×

×(ZL − ZT + (N − 1)ρZ′
T)− 2ρ(ZL − ZT)

2(ZT + 1)(U′)2
{

U′′(3ZL

+3ρZ′
T(N − 1)− ZT + 2)

}
+ 8ρ2(ZT + 1)3(U′′)2

{
−4πµ2(ZL + 1)×

(ZL − 2ρZ′
T − 2ZT − 1)− ρU′′((N − 1)ρZ′

T + ZT + 1)
}
− 4ρ(ZL − ZT)×

(ZT + 1)2U′U′′
{

8πµ2(ZL + 1)(ρZ′
T + ZT + 1)− ρU′′(2ZL + 3ρZ′

T(N − 1) + ZT + 3)
}]

+
ρe

− 2ρU′′+U′
4πµ2

1 + ZL

[
−(ZL − ZT)

3(U′)3(2ρZ′′
T + Z′

T)

+2(U′)2U′′(ZL − ZT)
2
{

ρ(4ZL + 3ZT + 7)Z′
T + 2(ZL + 1)(ZT + 1) + 6ρ2(ZT + 1)Z′′

T

}
+8ρ(ZT + 1)2(U′′)2

{
−4πµ2(ZL + 1)2(ZL − 2ρZ′

T − 2ZT − 1)

+ρU′′(−((1 + ZL)(ZL − 2ZT − 1)) + ρ(5 + 4ZL + ZT)Z′
T + 2ρ2(1 + ZT)Z′′

T)
}

+4(ZT + 1)U′U′′(ZL − ZT)

(
−8πµ2(ZL + 1)2(ρZ′

T + ZT + 1)

+ρU′′
{
(1 + ZL)(ZL − 4ZT − 3)− ρ(3ZT + 8ZL + 11)Z′

T − 6ρ2(1 + ZT)Z′′
T

})]}

β
light
ZL

= − µd−6

192π3ρ

{
− (N − 1)e

− U′
4πµ2

(1 + ZT)3

[
−48π2µ4(ZT + 1)2(ρZ′

L − ZL + ZT)

−24πµ2ρ(ZT + 1)U′′(−ZL + ρZ′
T + ZT)− ρ2U′′((ZT + 1)U′′ − 2U′Z′

T)

]

+ρ
e
− 2ρU′′+U′

4πµ2

(1 + ZL)3

[
48π2µ4(ZL + 1)2(2ρZ′′

L + Z′
L)− 24πµ2ρ(ZL + 1)Z′

L(2ρU(3) + 3U′′)

+ρ(2ρU(3) + 3U′′)(2ρu(3)(ZL + 1) + U′′(−4ρZ′
L + 3ZL + 3)− 2U′Z′

L)

]}
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βU = µd

{
(N − 1)e

− U′
4πµ2 + e

− 2ρU′′+U′
4πµ2

}

β
Strict−light
ZT

= − µd−2

4πρ3(U′′)2

{
e
− U′

4πµ2

[
(ZL − ZT)(ρU′′(8πµ2 − ρU′′) + U′(4πµ2 − ρU′′))

+ρU′′(−4πµ2 + ρZ′
T((N − 1)ρU′′ − 8πµ2) + ρU′′)

]

+e
− 2ρU′′+U′

4πµ2

[
(ZT − ZL)(4πµ2 + ρU′′)(2ρU′′ + U′)

+ρU′′(4πµ2 + ρZ′
T(8πµ2 + 5ρU′′) + U′′(ρ + 2ρ3Z′′

T))

]}

β
Strict−light
ZL

= − µd−6

192π3ρ

{
(N − 1)e

− U′
4πµ2

[
24πµ2(2πµ2 + ρU′′)(ZT − ZL)

+ρ(48π2µ4Z′
L + ρU′′(Z′

T(24πµ2 − 2U′) + U′′))

]

−ρe
− 2ρU′′+U′

4πµ2

[
−ρ
{

96π2µ4Z′′
L + 9(U′′)2 + 4ρ2(u(3))2 + 12ρU(3)U′′

}
+Z′

L

{
12ρ2(U′′)2 − 48π2µ4 + 4ρ2u(3)(12πµ2 + U′)

+U′′(72πµ2ρ + 8ρ3U(3) + 6ρU′)
}]}
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