english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52356 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGorgoglione, Angela-
dc.date.accessioned2025-11-06T15:58:44Z-
dc.date.available2025-11-06T15:58:44Z-
dc.date.issued2024-
dc.identifier.citationGorgoglione, A. From data to decision : Understanding and mitigating uncertainty in watershed water quality models [en línea]. EN: 3rd International Conference on Sustainable Chemical and Environmental Engineering (SUSTENG 2024), Rethymno, Greece, 04-08 sep. 2024, pp. 1-2.es
dc.identifier.urihttps://www.susteng2024.tuc.gr/en/home-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/52356-
dc.description.abstractWater quality models are essential tools for understanding, managing, and predicting the impacts of various factors on the quality of water within a watershed (Russo et al., 2023). These models play a crucial role in environmental management, informing policies and decisions related to water resources, pollution control, and ecosystem conservation. However, the accuracy and reliability of these models are often challenged by various sources of uncertainty, which can significantly affect their predictive capabilities and confidence in their outputs (Gorgoglione et al., 2019). The objective of this paper is to identify and analyze the sources of uncertainty in water quality models at the watershed scale. By doing so, we aim to provide a comprehensive understanding of the factors that contribute to uncertainty and offer insights into how these uncertainties can be managed or mitigated. Understanding these uncertainties is critical for improving model performance, enhancing decision-making, and ultimately achieving better outcomes for water resource management.es
dc.format.extent2 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherSUSTENGes
dc.relation.ispartof3rd International Conference on Sustainable Chemical and Environmental Engineering (SUSTENG 2024), Rethymno, Greece, 04-08 sep. 2024, pp. 1-2.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectUncertaintyes
dc.subjectWater qualityes
dc.subjectModelinges
dc.subjectWatershedes
dc.titleFrom data to decision : Understanding and mitigating uncertainty in watershed water quality modelses
dc.typePonenciaes
dc.contributor.filiacionGorgoglione Angela, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Mecánica de los Fluidos e Ingeniería Ambiental

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
Gor24.pdfVersión publicada823,6 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons