Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/52230
Cómo citar
| Título: | Differential 3D facial recognition : Adding 3D to your state-of-the-art 2D method |
| Autor: | Di Martino, Matías Suzacq, Fernando Delbracio, Mauricio Qiu, Qiang Sapiro, Guillermo |
| Tipo: | Preprint |
| Palabras clave: | Differential 3D, Active stereo, Face recognition, Spoofing detection, 3D facial analysis, Three-dimensional displays, Two dimensional displays, Feature extraction, Facial features, Image resolution, Data mining |
| Fecha de publicación: | 2020 |
| Resumen: | Active illumination is a prominent complement to enhance 2D face recognition and make it more robust, e.g., to spoofing attacks and low-light conditions. In the present work we show that it is possible to adopt active illumination to enhance state-of-the-art 2D face recognition approaches with 3D features, while bypassing the complicated task of 3D reconstruction. The key idea is to project over the test face a high spatial frequency pattern, which allows us to simultaneously recover real 3D information plus a standard 2D facial image. Therefore, state-of-the-art 2D face recognition solution can be transparently applied, while from the high frequency component of the input image, complementary 3D facial features are extracted. Experimental results on ND-2006 dataset show that the proposed ideas can significantly boost face recognition performance and dramatically improve the robustness to spoofing attacks. |
| Citación: | Di Martino, M., Suzacq, F., Delbracio, M. y otros. Differential 3D facial recognition : Adding 3D to your state-of-the-art 2D method [Preprint]. Publicado en : IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no 7, jul. 2020, pp. 1582-1593. DOI: 10.1109/TPAMI.2020.2986951. |
| Licencia: | Licencia Creative Commons Atribución (CC - By 4.0) |
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| DSDQS20.pdf | Preprint | 2,22 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons