english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52230 Cómo citar
Título: Differential 3D facial recognition : Adding 3D to your state-of-the-art 2D method
Autor: Di Martino, Matías
Suzacq, Fernando
Delbracio, Mauricio
Qiu, Qiang
Sapiro, Guillermo
Tipo: Preprint
Palabras clave: Differential 3D, Active stereo, Face recognition, Spoofing detection, 3D facial analysis, Three-dimensional displays, Two dimensional displays, Feature extraction, Facial features, Image resolution, Data mining
Fecha de publicación: 2020
Resumen: Active illumination is a prominent complement to enhance 2D face recognition and make it more robust, e.g., to spoofing attacks and low-light conditions. In the present work we show that it is possible to adopt active illumination to enhance state-of-the-art 2D face recognition approaches with 3D features, while bypassing the complicated task of 3D reconstruction. The key idea is to project over the test face a high spatial frequency pattern, which allows us to simultaneously recover real 3D information plus a standard 2D facial image. Therefore, state-of-the-art 2D face recognition solution can be transparently applied, while from the high frequency component of the input image, complementary 3D facial features are extracted. Experimental results on ND-2006 dataset show that the proposed ideas can significantly boost face recognition performance and dramatically improve the robustness to spoofing attacks.
Citación: Di Martino, M., Suzacq, F., Delbracio, M. y otros. Differential 3D facial recognition : Adding 3D to your state-of-the-art 2D method [Preprint]. Publicado en : IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no 7, jul. 2020, pp. 1582-1593. DOI: 10.1109/TPAMI.2020.2986951.
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
DSDQS20.pdfPreprint2,22 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons