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Abstract

Active illumination is a prominent complement to enhance 2D face recognition and make it more
robust, e.g., to spoofing attacks and low-light conditions. In the present work we show that it is
possible to adopt active illumination to enhance state-of-the-art 2D face recognition approaches
with 3D features, while bypassing the complicated task of 3D reconstruction. The key idea is to
project over the test face a high spatial frequency pattern, which allows us to simultaneously
recover real 3D information plus a standard 2D facial image. Therefore, state-of-the-art 2D face
recognition solution can be transparently applied, while from the high frequency component of the
input image, complementary 3D facial features are extracted. Experimental results on ND-2006
dataset show that the proposed ideas can significantly boost face recognition performance and
dramatically improve the robustness to spoofing attacks.

Keywords
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1 InTrRODUCTION

TWO-DIMENSIONAL face recognition has become extremely popular as it can be
ubiquitously deployed and large datasets are available. In the past several years, tremendous
progress has been achieved in making 2D approaches more robust and useful in real-world
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applications. Though 2D face recognition has surpassed human performance in certain
conditions, challenges remain to make it robust to facial poses, uncontrolled ambient
illumination, aging, low-light conditions, and spoofing attacks [1], [2], [3], [4]. In the
present work we address some of these issues by enhancing the captured RGB facial image
with 3D information as illustrated in Fig. 1.

High resolution cameras became ubiquitous, although for 2D face recognition, we only need
a facial image of moderate or low resolution. For example latest phones frontal camera have
a very high resolution (e.g., 3088 x 2320 pixels) while the resolution of the input to most
face recognition systems is limited to 224 x 224 pixels [4], [5], [6], [7], [8]. This means that,
in the context of face recognition, we are drastically underutilizing most of the resolution of
captured images. We propose an alternative to use the discarded portion of the spectra and
extract real 3D information by projecting a high frequency light pattern. Hence, a low
resolution version of the RGB image remains approximately invariant allowing the use of
standard 2D approaches, while 3D information is extracted efficiently from the local
deformation of the projected patterns.

The proposed solution to extract 3D facial features has key differences with the two common
approaches presented in existing literature: 3D hallucination [9], [10], [11], [12] and 3D
reconstruction [13], [14]. We will discuss these differences in detail in the following section.
We illustrate the main limitation of 3D hallucination in the context of face recognition in
Fig. 2, which emphasizes the lack of real 3D information on a standard RGB input image.
We demonstrate that it is possible to extract actual 3D facial features bypassing the ill-posed
problem of explicit depth estimation. Our contributions are summarized as follows:

. Analyzing the spectral content of thousands of facial images, we design a high
frequency light pattern that simultaneously allow us to retrieve a standard 2D low
resolution facial image plus a 3D gradient facial representation.

. We propose an effective and modular solution that achieves 2D and 3D
information decomposition and facial feature extraction in a data-driven fashion
(bypassing a 3D facial reconstruction).

. We show that by defining an adequate distance function in the space of the
feature embedding, we can leverage the advantages of both 2D and 3D features.
We can transparently exploit existing state-of-the-art 2D methods and improve
their robustness, e.g., to spoofing attacks.

2 Recatep Work

To recognize or validate the identity of a subject from a 2D color photograph is a
longstanding problem of computer vision and has been largely studied for over forty years
[15], [16]. Recent advances in machine learning, and in particular, the success of deep neural
networks, reshaped the field and yielded more efficient, accurate, and reliable 2D methods
such as: ArcFace [5], VGG-Face [6], DeepFace [4], and FaceNet [7].

In spite of this, spoofing attacks and variations in pose, expression and illumination are still
active challenges and significant efforts are being made to address them [14], [17], [18],
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[19], [20], [21], [22], [23], [24], [25]. For example, Deng et al. [26] attempt to handle large
pose discrepancy between samples. To that end, they propose an adversarial facial UV map
completion GAN. Complementing previous approaches that seek for robust feature
representations, several works propose more robust loss and metric functions [27], [28].

3D hallucination From Single RGB.

To enhance 2D approaches a common trend is to hallucinate a 3D representation from an
input RGB image which is used to extract 3D features [9], [10], [11], [12], [29], [30]. For
example, Cui et a/. [31] introduce a cascade of networks that simultaneously recover depth
from an RGB input while seeking for separability of individual subjects. The estimated
depth information is then used as a complementary modality to RGB.3D Face
Recognition.The approaches described previously share an important practical advantage
that at the same time is their weakness, they extract all the information from a standard
(RGB) 2D photograph of the face. As depicted in Fig. 2a single image does not contain
actual 3D information. To overcome this intrinsic limitation different ideas have been
proposed and datasets with 3D facial information are becoming more popular [8]. For
example, Zafeiriou et al. [13] propose a four-light source photometric stereo (PS). A similar
idea is elaborated by Zou et a/. [14] who propose to use active near-infrared illumination and
combine a pair of input images to extract an illumination invariant face representation.

Despite the previous mentioned techniques, performing a 3D facial reconstruction is still a
challenging and complicated task. Many strategies have been proposed to tackle this
problem, including time delay based [33], image cue based [9], [34], [35], [36], [37], and
triangulation based methods [38], [39], [40], [41], [42]. Although there has been great recent
development, available technology for 3D scanning is still too complicated to be
ubiquitously deployed [32], [43], [44], [45].

The proposed solution has two key features that make it, to the best of our knowledge,
different from existing alternatives. (a) Because the projected pattern is of a high spatial
frequency, we can recover a standard (low resolution) RGB facial image that can be fed into
state-of-the-art 2D face recognition methods. (b) We avoid the complicated task of 3D facial
reconstruction and instead, extract local 3D features from the local deformation of the
projected pattern. In that sense our ideas can be implemented exploiting existing and future
2D solutions. In addition, our approach is different from those that hallucinate 3D
information. As discussed before and illustrated in Fig. 2 this task requires a strong prior of
the scene which is ineffective, for example, if a spoofing attack is presented (see the example
provided in Fig. 15 in the supplementary material), available online.

3 Proprosep ArproAcH

Notation.—Let .7 ¢ R XWX C denote the space of images with A x W pixels and C color
channels, and &, c R" a space of n-dimensional column vectors (in the context of this work
associated to a facial feature embedding). .7, denotes the set of RGB images (C = 3),
while 7y, is used to denote the space of two channel images (C = 2) associated to the

gradient of a single-channel image z € R X% X1 (The first/second channel represents the
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partial derivative with respect to the first/second coordinate.) Combining Depth and RGB
Information. The proposed approach consists of three main modules as illustrated in Fig. 3:
g I rgh— Jrgh X I v Performs a decomposition of the input image into texture and depth

information, f,.gp: 7 gp — Lns2, AN fy;: 7 v — X pyo extract facial features associated to

the facial texture and depth respectively. These three components are illustrated in Fig. 3 in
blue, yellow, and green, respectively. (We decided to have three modules instead of a single
end-to-end design for several reasons that will be discussed below.)

Algorithm 1.

Compute 2D Facial Features Enhanced With 3D Information

1: procedure FacialEmbedding(/)

Decompose the input image into texture and depth gradient information.
Z {IrgbaIVz} = g()
Extract facial information from each component.
Xrgh = f rgb(I rgb)
4 xvz=fv(Ivz)
Combine texture and depth information.
5: X = Concatenate (xrgb, sz)
6: return x > Facial embedding

7:  end procedure

We denote the facial feature extraction from the input image as fy: .7 g, — 2, Where

foll) = (frgb(lrgb)’ sz(IVz))T
parameters of the mapping # which can be decomposed in three groups 6 = (6. 6,4, 0v ),

with {I,.¢p. Ty .} = g(I). The subscript & represent the

associated to the image decomposition, RGB feature extraction, and depth feature extraction
respectively. In the following we discuss how these parameters are optimized for each
specific task, which is one of the advantages of formulating the problem in a modular
fashion.

Once texture and depth facial information is extracted into a suitable vector representation
x = fo(I) (as illustrated in Algorithm 1), we can select a distance measure d: 2, x ', — Rt

to compare facial samples and estimate whether they have a high likelihood of belonging to
the same subject or not. It is worth noticing that faces are embedded into a space in which
the first half of the dimensions are associated to information extracted from the RGB
representation while the other half codes depth information. These two sources of
information may have associated different confidence levels (depending on the conditions at
deployment). We address this in detail in Section 3.3 and propose an anisotropic distance
adapted to our solution, and capable of leveraging the good performance of 2D solutions in
certain conditions, while improving robustness and handling spoofing attacks in a
continuous and unified fashion.
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3.1 Pattern Design
When a pattern of light p(x, J) is projected over a surface with a height map z(x, )), itis
perceived by a camera located along the x-axis with a deformation given by p(x + ¢(x, y), y)
(p(x,¥) « z(x,y)). A detailed description of active stereo geometry is provided in the
supplementary material Section B, available online. Let us denote /y(x, ) the image we
would acquire under homogeneous illumination, and p(x; ) the intensity profile of the
projected light. Without loss of generality we assume the system baseline is parallel to the x
axis. The image acquired by the camera when the projected light is modulated with a profile

ox ) is

I(x,y) = Io(x, y)p(x + $(x,¥), y) . )

We will restrict to periodic modulation patterns and let 7 denote the pattern spatial period,

we also define £ def % To simplify the system design and analysis, lets also restrict to

periodic patterns that are invariant to the y coordinate. In these conditions we can express
px,y)= Y r® _ ooa,,e"z”"f 0¥ where a, represent the coefficients of the Fourier series of p.

(Note that because of the invariance with respect to the ) coordinate, the coefficients a, are
constant instead of a function of y.) Equation (1) can be expressed as

+o0 .
I(x,y) = z I()(x, y)aneIZﬂnfO(x + ¢(x, ) ) @

n= —0o
Defining g,(x, y) def Io(x, yape' 2099 Equation (2) can be expressed as [46]

+ 00 .
I(x,y) = Z a(x, y)e127mf0x ' 3

n= —o

Applying the 2D Fourier Transform (FT) in both sides of Equation (3) and using standard
properties of the FT [47] we obtain

+0o0

j(fx’ fy) = Z qn(fx - nfO’ fy) . (4)

h= —0o

We denote as I the FT of /and use (fx. fy) to represent the 2D frequency domain associated
to xand y axis respectively.

Equation (4) shows that the FT of the acquired image can be decomposed into the
components g, centered at (17, 0). In the context of this section, we refer to a function /(x,

) being smooth if
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Il A(fxs £)) |
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g <1072 ¥ |f]> 2. ©)
| 2(0,0) || >

Assuming /fo(x, ) and ¢(x, J) are smooth (we empirically validate this hypothesis below),
the components g,, can be isolated as illustrated in Fig. 4. The central component is of
particular interest, go(x, J) = @ Ip(x, ) captures the facial texture information and can be
recovered from /x, )) if £ is large enough (we provide a more precise quantitative analysis
in what follows). On the other hand, relative (gradient) 3D information can be retrieved from
the components {qp, ¢1} as we show in Proposition 1.

Proposition 1: Gradient depth information is encoded in the components {go(Xx, J), q1(X,

Nt

Proof: We define the wrapping function #/(¢) = atan(tan()). This function wraps the real

set into the interval (-/2, /2] [48]. This definition can be extended to vector inputs

wrapping the modulus of the vector field while keeping its direction unchanged, i.e.,
7Y -

W)= = if |71l #0and (@)= 0 if | @ | =0. From gu(x, ¥) and go(x, »)
u

we can computel

q1(x.y)
oy =t REE) A
de’ - Zﬂfoaan [ql(x,y)] i ()

q0(x, y)

where ¢ denotes the wrapped version of ¢. Moreover, ¢y (x, y) = ¢(x, y) + zk(x, y) with
k(x,y) € N (wrapping introduces shifts of magnitude multiple of ). Computing the gradient
both sides leads to V oy (x, y) = V(x,y) + Vk(x,y) where || Vk(x,y) || € N. Assuming the
magnitude of the gradient of ¢(x, y) is bounded by /2 and considering that

| Vk(x,y) || €N, we can apply the wrapping function both sides of the previous equality to
obtain 7' (V¢ )(x, y) = V(x, y) which proves (recall Equation (6)) that the gradient of ¢ can
be extracted from the components gy and g;. To conclude the proof, we use the property of
linearity of the gradient operation and the fact that ¢(x, )) is proportional to the depth map
of the scene (see Equation (12) and Section B in the supplementary material), available
online. O

Analytic versus Data-Driven Texture and Gradient Depth Extraction.—The
previous analysis shows that closed forms can be obtained to extract texture and depth
gradient information. However, to compute these expressions is necessary to isolate different
spectral components g,,. To that end, filters need to be carefully designed. The design of

these filters is challenging, e.g., one need to control over-smoothing versus introducing

L.\We assume images are extended in an even fashion outside the image domain, to guaranteed that a; € R and avoid an additional
offset term.
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ringing artifact which are drastically amplified by a posterior gradient computation [39],
[42]. To overcome these challenges, we chose to perform a depth (gradient) and texture
decomposition in a data-driven fashion, which as we showin Section 4, provides an efficient
and effective solution.

Bounds on fy and Optimal Spectral Orientation.—As discussed above, the projected
pattern p(x, J) should have a large fundamental frequency 7. In addition, the orientation of
the fringes and the system baseline can be optimized if faces present a narrower spectral
content in a particular direction. We study the texture and depth spectrum of the facial
images of ND-2006 dataset (this dataset provides ground truth facial texture and depth
information). We observed (see Fig. 5) that for facial images sampled at a 480 x 480 spatial
resolution, most of the energy is concentrated in a third of the discrete spectral domain
(observe the extracted one dimensional profiles of the spectrum shown at the left side of Fig.
5). In addition, we observe that the spectral content of facial images is approximately
isotropic. See, for example, Fig. 5 and observe how for 1-dimensional sections across
different orientations the 2D spectra envelope is almost constant. We conclude that the
orientation of the fringes does not play a significant role in the context of facial analysis. In
addition, we conclude that the fringes width should be smaller than 7mm (distance measure
over the face).2

3.2 Network Training and the Advantages of Modularity

As described previously, the parameters of the proposed solution can be split in three groups
0 = (04, 0,1 Ov ;). This is an important practical property and we designed the proposed

solution to meet this condition (in contrast to an end-to-end approach).

Let us define %1, B,, and B3 three datasets containing ground truth depth information,

ground truth identity for rgb facial images, and ground truth identity for depth facial images,
respectively. More precisely,

B1 = {(Li(x, y), Lpi(x, ), zi(x, ), i = 1,...,n1}, Bo = {(Toi(x, ), ¥),i =1,...,m}, and B3,
= {(zi, »),yi)i=1,...,m3}

where /{x, ) denotes a (facial or generic) RGB image acquired under the projection of the
designed pattern, Ih{x, ) represents (facial or generic) standard RGB images, z{x, )
denotes a gray image representing the depth of the scene, and y;a scalar integer representing
the subject id.

We denote as {g|(1), g2(I)} = g(I) the RGB and gradient depth components estimated by the

decomposition operation g. We partitioned the parameters of ginto two sets of dedicated

kernels 6, = {egl, 9g2}, the first group focuses on retrieving the texture component while the

second group retrieves the depth gradient. These parameters can be optimized as

2-This numerical results is obtained by approximating the bounding box of the face as a 20cm x 20cm region, sampled with 480 x 480
pixels which corresponds to a pixel length of 2.4mm, a third of the spectral band correspond to signal of a period of 6 pixels which
leads to a binary fringe of at least 7.2mmwide.
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. 2
041 = argmin z: llg1(1:) — Loill2 ©)
(Toi- 1i) € A1

, 2
0,, = argmin ; llga(1;) = Vzillz- ®)
(zi,1j) € B1

(We also evaluated training a shared set of kernels trained with an unified loss, this
alternative is harder to train in practice, due to the natural difference between the dynamic
range and sparsity of gradient images compared with texture images.)

For texture and depth facial feature extraction, we tested models inspired in the Xception
architecture [49]). Additional details are provided in the supplementary material Section D,
available online. To train these models we add an auxiliary fully connected layer on top of
the facial embedding (with as many neurons as identities in the train set) and minimize the
cross-entropy between the ground truth and the predicted labels. More precisely, let us
denote f,gs(1rgs) = [p1. ... pc] the output of the fully connected layer associated to the

embedding f,4(I,.5) Where p;denotes the probability associated to the id /,

ergb = argmin Z Z - 1Yi = clOg(frgb(IOi)[c]) ©)
(0i-yi) € B2 ¢

Oy, = argmin ; Z - 1y,~ = clOg(sz(Vzi)[c])a (10)
(zi-yi) € B3 ¢

where 1, - - denotes the indicator function. (Of course one can choose other alternative
losses to train these modules, see e.g., [5], [27], [28], [50].)

As described above, the proposed design allows to leverage information from three types of
datasets (%1, %B,, %3). This has an important practical advantage as 2D facial and 3D generic

datasets are more abundant, and the pattern dependant set %, can be of modest size as
#(0) < #(0y.gp)-

3.3 Distance Design
Once different modules are set we can compute the facial embedding of test images
following the procedure described in Algorithm 1. Let us define x? € &, and x? € 2, the

feature embedding of two facial images /, and /4, respectively. Recall that the first 7/2
elements of x are associated to features extracted from (a recovered) RGB facial image

while the remaining elements are associated to depth information, i.e.,
T
x = (xpgpl1]. .o Xpgpln/2], xy (1], ... xy £[n/2])" .

We define the distance between two feature representations

x4 = (xfgb! xavz), and x? = (x’lggb’ bez) as

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2021 July 01.
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5. 50) 2 (1 = Dt 5t

b a
+rde(x§ 2. bez)(l + (w) ) , (11)

de: L pia X Xuo — 10, 1] denotes the cosine distance, y € [0, 1] sets the relative weight of RGB

and depth features, and «, # € R define a non-linear response for the distance between depth
features. As we will describe in the following, this provides robustness against common
cases of spoofing attacks.

Intuitively, y allows us to set the relative confidence associated to RGB and depth features,
for example, y = 1/2 gives the same weight to RGB and depth features, while =0 (y=1)
ignores the distance between samples in the depth (RGB) embedding space. This is
important in practice, as is common to obtain substantially more data to train RGB models
than depth ones (|%,| > |%3|). This suggests that in good test conditions (e.g., good lighting)

one may trust more RGB features over depth features () < 1/2). As we will empirically
show in the following section, when two facial candidates are compared,

da, o0, /(X% xP) = (1 = 1)8(xp, xPgp) + 16(x% ., x% ) is an effective distance choice. However, it
does not handle robustly common cases of spoofing attacks. The most common deployments
of spoofing attacks imitate the facial texture more accurately than the facial depth [51], [52],
[53], therefore, the global distance between two samples should be large when the distance
of the depth features is large (i.e., above a certain threshold). To that end, we introduce an
additional non-linear term controlled by parameters gand a, for (x4, x% ;) < f the standard

cosine distance dominates while for large values the distance will be amplified in a non-
linear fashion.

4 ExperivenTts anp Discussion

Data.

Three public dataset are used for experimental validation: FaceScrub [54], CASIA Anti-
spoofing [55], and ND-2006 [56]. FaceScrub contains 100k RGB (2D) facial images of 530
different subjects, and is used to train the texture-based facial embedding. CASIA dataset
contains 150 genuine videos (recording a person) and 450 videos of different types of
spoofing attacks, the data was collected for 50 subjects. We use this dataset to simulate and
imitate the texture properties of images of spoofing attacks. ND-2006 is one of the larges
publicly available datasets with 2D and 3D facial information, it contains 134 images of 838
subjects. We used this set to demonstrate that differential 3D features can be extracted from
a single RGB input, to compare RGB features with 3D features extracted from the
differential 3D input, and to show that when 2D and 3D information is properly combined,
the best properties of each can be obtained.

Texture and Differential 3D Decomposition.

In Section 3.1 we discussed how real 3D information and texture information can be coded
and later extracted using a single RGB image. In addition, we argue that this decomposition
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can be learned efficiently and effectively in a data-driven fashion. To that end, we tested
simple network architectures composed of standard convolutional layers (a full description
of these architectures and the training protocols are provided as supplementary material),
available online. Using ground truth texture and depth facial information, we simulated the
projection of the designed pattern over the 888 subjects provided in ND-2006 dataset.
Illustrative results are presented in Fig. 6 and in the supplementary material, available
online. The 3D geometrical model and a detailed description of the simulation process is
provided in Section D.1. Though the simulation of the deformation of a projected pattern
can be computed in a relatively simple manner (if the depth information is known), the
inverse problem is analytically hard [39], [41], [45].

Despite the previous, we observed that a stack of convolutional layers can efficiently learn
how to infer from the image with the projected pattern, both depth gradient information, and
the standard (2D) facial image. Fig. 7 illustrates some results for subjects in the test set. The
first column corresponds to the input to the network, the second column the ground truth
texture information, and the third column the retrieved texture information. The architecture
of the network and the training protocol is described in detail in the supplementary material
Section D, available online. As we can see in the examples illustrated in Fig. 7, an accurate
low resolution texture representation of the face can be achieved in general, and visible
artifact are observed only in the regions where the depth is discontinuous (see for example,
the regions illustrated at the bottom of Fig. 7).

Fig. 8 illustrates the ground truth and the retrieved depth gradient (again, for random
samples from the test set). To estimate the 3D information, we feed to a different branch of
convolutional layers the gray version of the input image. These layers are fully described in
the supplementary material Table 5, available online. A gray input image is considered
instead of a color one because the projected pattern is achromatic, and therefore, no 3D
information is encoded in the colors of the image. In addition, we crop the input image to
exclude the edges of the face. (Facial registration and cropping is performed automatically
using dlib [57] facial landmarks.) As discussed in Section 3, and in particular, in the proof of
Proposition 1, the deformation of the projected fringes only provide local gradient
information if the norm of the gradient of the depth is bounded. In other words, where the
scene present depth discontinuities, no local depth information can be extracted by our
proposed approach. This is one of the main reasons why differential 3D information can be
exploited for face recognition, while bypassing the more complicated task of a 3D facial
reconstruction.

One of the advantages of the proposed approach is that it extracts local depth information,
and therefore, the existence of depth discontinuities does not affect the estimation on the
smooth portion of the face. This is illustrated in Figs. 9a and 9b, where a larger facial patch
is fed into the network. The decomposition module is composed exclusively of convolutional
layers, and therefore, images of arbitrary size can be evaluated. Fig. 9a shows the input to
the network, and Fig. 9b the first channel of the output (for compactness we display only the
x-partial derivative). As we can see, the existence of depth discontinuities does not affect the
prediction in the interior of the face (we consider the prediction outside this region as noise
and we replace it by 0 for visualization).
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Several algorithms have been proposed to hallucinate 3D information from a 2D facial
image [9], [10], [11], [12]. In order to verify that our decomposition network is extracting
real depth information (in lieu of hallucinating it from texture cues), we simulated an image
where the pattern is projected over a surface with identical texture but with a planar 3D
shape (as in the example illustrated in Fig. 2). Fig. 9a shows the image acquired when the
fringes are projected over the ground truth facial depth, and (c) when instead the depth is set
to 0 (without modifying the texture information). The first component of the output (x-
partial derivative) is shown in (b) and (d), as we can see, the network is actually extracting
true depth information (from the deformation of the fringes) and not hallucinating 3D
information from texture cues. (As we will see next, this property is particularly useful for
joint face recognition and spoofing prevention.)

2D and 3D Face Recognition.

Once the input image is decomposed into a (standard) texture image and depth gradient
information, we can proceed to extract 2D and 3D facial features from each component. To
this end, state-of-the-art network architectures are evaluated. Our method is agnostic to the
RGB and depth feature extractors, moreover, as the retrieved texture image is close to a
standard RGB facial images (in sense of the L2-norm), any pre-train 2D feature extractor
can be used (e.g., [4], [5], [6], [7], [8]). In the experiments presented in this section we tested
a network based on the Xception architecture [49] (details are provided as supplementary
material), available online. For the extraction of texture features, the network is trained using
FaceScrub [54] dataset (as we previously described, this is a public dataset of 2D facial
images). The module that extracts 3D facial features is trained using 2/3 of the subjects of
ND-2006 dataset, leaving the remaining subjects exclusively for testing. The output of each
module is a 512-dimensional feature vector (see, e.g., Fig. 3), hence the concatenation of 2D
+3D features leads to a 1,024-dimensional feature vector. Fig. 10 illustrates a 2D embedding
of the texture features, the depth features, and the combination of both. The 2D mapping is
learned by optimizing the t-SNE [58] over the train partition, then a random subset of test
subjects are mapped for visualization. As we can see, 3D features favor the compactness and
increase the distance between clusters associated to different subjects.

To test the recognition performance, the images of the test subjects are partitioned into two
sets: gallery and probe. For all the images in both sets, the 2D and 3D feature embedding is
computed (using the pre-trained networks described before). Then, for each image in the
probe set, the /7 nearest neighbors in the gallery set are selected. The distance between each
sample (in the embedding space) is measured using the distance defined in Section 3,
Equation (11). For each sample in the probe set, we consider the classification as accurate, if
at least one of the n nearest neighbors is a sample from the same subject. The Rank-n
accuracy is the percentage of samples in the probe set accurately classified.

Fig. 11 and Table 1 show the Rank-n accuracy when: only 2D features (= 0), only 3D
features (= 1), or a combination of both (0 < y < 1) is considered. As explained in Section
3.3, the value of y can be used to balance the weight of texture and depth features. As we
can see, in all the cases a combination of texture and depth information outperforms each of
them individually. This is an expected result as classification tends to improve when
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independent sources of information are combined [59]. ¥ is an hyper-parameter that should
be set depending on the conditions at deployment. In our particular experiments the best
results are obtained for y = 0.3, which suggests that RGB features are slightly more reliable
than depth features. This is an expected result as the module that extract RGB features is
typically trained in a much larger datasets (2D facial images became ubiquitous). We believe
this may change if, for example, testing is performed under low light conditions [21].
Testing this hypothesis is one of the potential path for future research. In the experiment
discussed so far, we ignored the role of gand a (i.e., we set 8= oo and a = 1). As we will
discuss in the following, these parameters become relevant to achieve jointly face
recognition and spoofing prevention.

Robustness to Spoofing Attacks.

Spoofing attack are simulated to test face recognition models, in particular, how robust these
frameworks are under (unseen) spoofing attacks. As in the present work we focus on the
combination of texture and depth based features, the simulation of spoofing attacks must
account for realistic texture and depth models. The models for the synthesis of spoofing
attacks are described in detail in the supplementary material Section D.3, available online.

Fig. 12 illustrates spoofing samples (first four rows) and genuine samples (bottom five
rows). The first two columns correspond to the ground truth texture and depth information,
the third column illustrates the input to our system, and the last three columns correspond to
the outputs of the decomposition network. These three last images are fed into the feature
extraction modules for the extraction of texture and depth based features respectively, as
illustrated in Fig. 3. It is extremely important to highlight, that spoofing samples are
included exclusively at testing time. In other worlds, during all the training process the entire
framework is agnostic to the existence of spoofing examples. If the proposed framework is
capable of extracting real 3D facial features, it should be inherently robust to most common
types of spoofing attacks.

As discussed before, the combination of texture and depth based features improves
recognition accuracy. On the other hand, when spoofing attacks are included, we observe
that texture based features are more vulnerable to spoofing attacks (see for example Figs. 12
and 14). To simultaneously exploit the best of each feature component, we design a non-
linear distance as described in Equation (11). Fig. 13 illustrates the properties of the defined
distance for different values of a and 8. As it can be observed, for those genuine samples
(relative distances lower than B) the non linear component can be ignored and the distance
behave as the euclidean distance with a relative modulation set by . On the other hand, if
the distance between the depth components is above the threshold g, it will dominate the
overall distance achieving a more robust response to spoofing attacks.

To quantitatively evaluate the robustness against spoofing attacks, spoofing samples are
generated for all the subjects in the test set. As before, the test set is separated into a gallery
and a probe set and the generated spoofing samples are aggregated into the probe set. For
each image in the probe set, the distance to a sample of the same subject in the gallery set is
evaluated. If this distance is below a certain threshold A, the image is labeled as genuine,
otherwise, the image is labeled as spoofing. Comparing the classification label with the
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ground truth label we obtain the number of true positive (genuine classified as genuine),
false positive (spoofing classified as genuine), true negative (spoofing classified as
spoofing), and false negative (genuine classified as spoofing). Changing the value of the
threshold A we can control the number of false positive versus the number of false negatives
as illustrated in Fig. 14.

Fig. 14 shows the ratio of false positive and false negative for 1 € [0,2]. As before the
distance between the samples is computed using the definition provided in (11), in blue/red
the RGB/depth baseline is illustrated, the other set of curves (displayed in green tones)
correspond to a combination of texture and depth features with = 0.3 and different values
of a and 8. In Table 2 the ratio of true positive is reported for a fixed ratio of false positives.
The ACER measure (last column) corresponds to the average between the ratio of spoofing
and genuine samples misclassified.

Testing Variations on the Ambient Illumination.

To test the impact of variations on lighting conditions we simulated test samples under
different ambient illumination, implementation details are described in the supplementary
material Section D.4, available online. Table 3 compares the rank-5 accuracy of 2D features
and 2D+3D features as the power of the ambient illumination increases. As described in the
supplementary material, available online, the ambient illumination is modeled with random
orientation, and therefore, the more powerful the illumination is the more diversity between
the test and the gallery samples is introduced.

In the present experiments, we assumed that both the projected pattern and the ambient
illumination have similar spectral content. In practice, one can project the pattern, e.g., on
the infrared band. This would make the system invisible to the user, and reduce the
sensitivity of 3D features to variations on the ambient illuminations. We provide a hardware
implementation feasibility study and illustrate how the proposed ideas can be deployed in
practice in the supplementary material Section E, available online.

Improving State of the Art 2D Face Recognition.

To test how the proposed ideas can impact the performance of state-of-the-art 2D face
recognition systems, we evaluated our features in combination with texture based features
obtained with ArcFace [5]. ArcFace is a powerful method pre-trained on very large datasets,
on ND-2006 examples it achieves perfect recognition accuracy (100 percent rank-1
accuracy). When ArcFace is combined with the proposed 3D features, the accuracy remains
excellent (100 percent rank-1 accuracy), i.e., adding the proposed 3D features does not
negatively affects robust 2D solutions. On the other hand, 3D features improve ArcFace on
challenging conditions as we discuss in the following. Interesting results are observed when
ArcFace is tested under spoofing attacks, as we show in Table 4, ArcFace fails to detect
spoofing attacks. ArcFace becomes more robust when it is combined with 3D features,
improving from nearly 0 TPR@FPR(1073) to 84 percent. In summary, as 2D methods
improve and become more accurate, our 3D features do not affect them negatively when
they work well, while improve their robustness in challenging situations.
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5 ConcLusion

We proposed an effective and modular alternative to enhance 2D face recognition methods
with actual 3D information. A high frequency pattern is designed to exploit the high
resolution cameras ubiquitous in modern smartphones and personal devices. Depth gradient
information is coded in the high frequency spectrum of the captured image while a standard
texture facial image can be recovered to exploit state-of-the-art 2D face recognition
methods. We show that the proposed method can be used to simultaneously leverage 3D
information and texture information. This allows us to enhance state-of-the-art 2D methods
improving their accuracy and making them robust, e.g., to spoofing attack.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Regal 3D face recognition is possible by capturing one single RGB image if a high frequency
pattern is projected. The low frequency components of the captured image can be fed into a
state-of-the-art 2D face recognition method, while the high frequency components encode
local depth information that can be used to extract 3D facial features. It is important to
highlight that, in contrast with most existing 3D alternatives, the proposed approach
provides real 3D information, not 3D hallucination from the RGB input. As a result, state-
of-the-art 2D face recognition methods can be enhanced with real 3D information.
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Image of
surface (a) surface (b) surface (c)

Fig. 2.
Ilustration of three different 3D surfaces that look equivalent from a monocular view (single

RGB image). On top, three surfaces (a), (b) and (c) are simulated, being (a) and (c) flat and
(b) the 3D shape of a test subject. We use classic projective geometry [32] and simulate the
image we obtain when photographing (a), (b) and (c) respectively. The resulting images are
shown at the bottom. As we illustrate with this simple example, the relation between images
and 3D scenes is not bijective and the problem of 3D hallucination is ill-posed. To overcome
this, 3D hallucination solutions enforce important priors about the geometry of the scene.
This is why we argue, that these methods do not really add to the face recognition task,
actual 3D information. (A complementary example is presented in Fig. 15 in the
supplementary material), which can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2986951.
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Fig. 3.
Architecture overview. First a network (illustrated in blue) is used to decompose the input

image that contains overlapped high frequency fringes into a lower resolution (standard)
texture facial image and depth gradient information. The former is used as the input of a
state-of-the-art 2D face recognition DNN (yellow blocks). The depth information is fed to
another network (green blocks) trained to extract discriminative (depth-based) facial
features. Different network architectures are tested, we provide implementation details in
Section D in the supplementary material, available online.
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Input
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Fourier
domain

Fig. 4.
2D plus real 3D in a single rgb image. The first column illustrates the RGB image acquired

by a (standard) camera when horizontal stripes are projected over the face. The second
column isolates the low frequency components of the input image, and the third column
corresponds to the residual high frequency components. (In all the cases the absolute value
of the Fourier Transform is represented in logarithmic scale). As can be seen, high frequency
patterns can be used to extract 3D information of the face (third column) while preserving a
lower resolution version of the facial texture (middle column).
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Mean luminance Fourier transform

-
why

Mean depth Fourier transform

Fig. 5.

Fagces average spectral content. The first column illustrates the mean luminance and depth
map for the faces in the dataset ND-2006. The second column shows the mean Fourier
Transform of the faces luminance and depth respectively. The third column shows the profile
across different sections of the 2D Fourier domain. Columns two and three represent the
absolute value of the Fourier transform in logarithmic scale. Faces are registered using the
eyes landmarks and the size normalized to 480 x 480 pixels.
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.r, \ 1
Fig. 6.

Active light projection. From left to right: ground truth RGB facial image, 3D facial scanner,
and finally the image we would acquire if the designed high frequency pattern is projected
over the face. Two random samples from ND-2006 are illustrated.
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Fig. 7.
Examples of the facial texture recovered from the image with the projected pattern. The first

column, shows the input image (denoted as /in Algorithm 1). The second column shows the
ground truth, and the third column the texture recovered by the network /. This examples
are from the test set and the images associated to these subjects were never seen during the
training phase.
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Ground Truth  Retrieved

Fig. 8.
Differential depth information extracted from the image with the projected pattern. The first

row illustrates the input image (depth information can be extracted from a gray version of
the input as the designed patter is achromatic). The second and third row show the ground
truth and the retrieved xand y partial derivatives of the depth respectively.
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Fig. 9.

Isqrhe network really extracting depth information? In this figure we show the output of the
network for two inputs generated using identical facial texture but different depth ground
truth data. (a) Image obtained when the projected pattern is projected over the face with the
real texture and the real 3D profile. (b) Output of the network when we input (a) (only the x-
partial derivative is displayed for compactness). (c) Image obtained when the projected
pattern is projected over a flat surface with the texture of the real face. (d) Output of the
network when the input is (c). None of these images were seen during training.
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3D =1, pf=m,a=1) 2D (y=0,f=0,a=1) 2D+3D (y=1/2, =, a=1)

Fig. 10.
Facial features low dimensional embedding (for visualization purposes only). We illustrate

texture-based and depth-based features in a low dimensional embedding space. A random
set of subject of the test set is shown. From left to right: the embedding of depth-features,
texture-based features, and finally, the combination of texture and depth features. t-SNE [58]
algorithm is used for the low-dimensional embedding.
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Fig. 11.
Rank-n accuracy for 2D, 3D, and 2D+3D face recognition. As discussed in Section 3 the

value of y can be set to weight texture and depth information in the classification decision.
The extreme cases are y = 0 (only texture is considered) and =1 (only depth is
considered). These extreme cases are illustrated in yellow and blue respectively, while
intermediate solutions (0 < y < 1) are presented in tones of green.
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Fig. 12.
Examples of samples from live subjects and spoofing attacks. From left to right: (1) the

ground truth texture, (2) the ground truth depth, (3) the input to our system (image with the
projected pattern), (4) the recovered texture component (one of the outputs of the
decomposition network), (5)/(6) recovered x/y depth partial derivative. The first four rows
correspond to spoofing samples (as explained in Section D.3), and the bottom five rows to
genuine samples from live subjects.
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Fig. 13.
[llustration of the properties of the distance function defined in (11). On the left side we

illustrate the role of the parameter a, and on the right, we compare the proposed distance
and the standard euclidean distance. As can be observed, both measures are numerically
equivalent in the region [-4/2, /2] x [-5/2, B/2], but the proposed measure gives a higher
penalty to vectors whose v coordinate exceeds the value .
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Fig. 14.
False acceptance rate and false rejection rate under the presence of spoofing attacks. On

color blue we illustrate the RGB baseline () = 0), on the other extreme, the red curve
illustrates the performance when only depth features are considered. The combination of
RGB and depth features is illustrated in tones of green for different values of a and g (in this
experiment we set y = 0.3).
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TABLE 1

Rank-n Accuracy for 2D, 3D, and 2D+3D Face Recognition

Rank-n Accuracy 1 2 5 10

RGB baseline (= 0) 785 826 877 90.6
(Depth baseline (y=1) 77.2 814 874 90.1
(our) y=0.3 906 932 956 964
(our) =05 886 91.0 944 949
(our) =0.8 850 879 915 930

Page 33

As discussed in Section 3 the value of y can be set to weight the impact of texture and depth information. The extreme cases are y =0 (only texture

Is considered) and y = 1 (only depth is considered).
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Spoofing detection results

TABLE 2

TPR% @FPR =102 TPR% @FPR =102 ACER%
RGB baseline (y = 0) 21.8 24.0 38.9
Depth baseline (= 1) 88.4 97.1 4.0
(our) y=03,5=035a=2 85.5 96.9 45
(our) y=0.3,8=035a=5 83.8 97.1 4.0
(our) =03, =035 a = 10 85.0 95.6 3.9
(our) =03, =04 a=2 82.6 96.9 4.7
(our) =0.3,8=04a=5 86.4 97.1 4.4
(our) ¥=0.3, =04 a=10 81.8 97.1 41
(our) y=03,8=05a=2 86.4 96.4 5.3
(our) y=0.3,=05a=5 82.8 95.6 5.7
(our) =03, =05 a =10 85.0 94.4 5.9
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The ratio of true positive for a fixed ratio of false positive and the ACER measure are reported. Texture and depth facial features are combined

using the distance defined in (11). As we can see, the parameters y, a, and  can be set to obtain better facial recognition performance and

robustness against spoofing detection.
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TABLE 3

Recognition Accuracy Under Different Ambient lllumination Conditions

Rank-5 Accuracy power = 100%  power = 150%  power = 200%

RGB baseline (y = 0) 89.2 81.2 53.9
(our) ¥=05 93.6 90.7 80.7

The power of the additional ambient light is provided relative to the power of the projected light, i.e., power = 200% means that the added ambient
illumination is twice as bright as the projected pattern.
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TABLE 4

Spoofing Detection Results for ArcFace and ArcFace Enhanced With 3D Features

TPR% @FPR =10 TPR% @FPR=102 ACER %

ArcFace (y=0) 0 0 46.2
(ArcFace + 3D) (y=0.5) 84.7 94.7 7.9

Like in Table 2, the ratio of true positive for a fixed ratio of false positive and the ACER measure are reported.
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