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Abstract

Active illumination is a prominent complement to enhance 2D face recognition and make it more 

robust, e.g., to spoofing attacks and low-light conditions. In the present work we show that it is 

possible to adopt active illumination to enhance state-of-the-art 2D face recognition approaches 

with 3D features, while bypassing the complicated task of 3D reconstruction. The key idea is to 

project over the test face a high spatial frequency pattern, which allows us to simultaneously 

recover real 3D information plus a standard 2D facial image. Therefore, state-of-the-art 2D face 

recognition solution can be transparently applied, while from the high frequency component of the 

input image, complementary 3D facial features are extracted. Experimental results on ND-2006 

dataset show that the proposed ideas can significantly boost face recognition performance and 

dramatically improve the robustness to spoofing attacks.
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1 INTRODUCTION

TWO-DIMENSIONAL face recognition has become extremely popular as it can be 

ubiquitously deployed and large datasets are available. In the past several years, tremendous 

progress has been achieved in making 2D approaches more robust and useful in real-world 
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applications. Though 2D face recognition has surpassed human performance in certain 

conditions, challenges remain to make it robust to facial poses, uncontrolled ambient 

illumination, aging, low-light conditions, and spoofing attacks [1], [2], [3], [4]. In the 

present work we address some of these issues by enhancing the captured RGB facial image 

with 3D information as illustrated in Fig. 1.

High resolution cameras became ubiquitous, although for 2D face recognition, we only need 

a facial image of moderate or low resolution. For example latest phones frontal camera have 

a very high resolution (e.g., 3088 × 2320 pixels) while the resolution of the input to most 

face recognition systems is limited to 224 × 224 pixels [4], [5], [6], [7], [8]. This means that, 

in the context of face recognition, we are drastically underutilizing most of the resolution of 

captured images. We propose an alternative to use the discarded portion of the spectra and 

extract real 3D information by projecting a high frequency light pattern. Hence, a low 

resolution version of the RGB image remains approximately invariant allowing the use of 

standard 2D approaches, while 3D information is extracted efficiently from the local 

deformation of the projected patterns.

The proposed solution to extract 3D facial features has key differences with the two common 

approaches presented in existing literature: 3D hallucination [9], [10], [11], [12] and 3D 

reconstruction [13], [14]. We will discuss these differences in detail in the following section. 

We illustrate the main limitation of 3D hallucination in the context of face recognition in 

Fig. 2, which emphasizes the lack of real 3D information on a standard RGB input image. 

We demonstrate that it is possible to extract actual 3D facial features bypassing the ill-posed 

problem of explicit depth estimation. Our contributions are summarized as follows:

• Analyzing the spectral content of thousands of facial images, we design a high 

frequency light pattern that simultaneously allow us to retrieve a standard 2D low 

resolution facial image plus a 3D gradient facial representation.

• We propose an effective and modular solution that achieves 2D and 3D 

information decomposition and facial feature extraction in a data-driven fashion 

(bypassing a 3D facial reconstruction).

• We show that by defining an adequate distance function in the space of the 

feature embedding, we can leverage the advantages of both 2D and 3D features. 

We can transparently exploit existing state-of-the-art 2D methods and improve 

their robustness, e.g., to spoofing attacks.

2 RELATED WORK

To recognize or validate the identity of a subject from a 2D color photograph is a 

longstanding problem of computer vision and has been largely studied for over forty years 

[15], [16]. Recent advances in machine learning, and in particular, the success of deep neural 

networks, reshaped the field and yielded more efficient, accurate, and reliable 2D methods 

such as: ArcFace [5], VGG-Face [6], DeepFace [4], and FaceNet [7].

In spite of this, spoofing attacks and variations in pose, expression and illumination are still 

active challenges and significant efforts are being made to address them [14], [17], [18], 
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[19], [20], [21], [22], [23], [24], [25]. For example, Deng et al. [26] attempt to handle large 

pose discrepancy between samples. To that end, they propose an adversarial facial UV map 

completion GAN. Complementing previous approaches that seek for robust feature 

representations, several works propose more robust loss and metric functions [27], [28].

3D hallucination From Single RGB.

To enhance 2D approaches a common trend is to hallucinate a 3D representation from an 

input RGB image which is used to extract 3D features [9], [10], [11], [12], [29], [30]. For 

example, Cui et al. [31] introduce a cascade of networks that simultaneously recover depth 

from an RGB input while seeking for separability of individual subjects. The estimated 

depth information is then used as a complementary modality to RGB.3D Face 
Recognition.The approaches described previously share an important practical advantage 

that at the same time is their weakness, they extract all the information from a standard 

(RGB) 2D photograph of the face. As depicted in Fig. 2a single image does not contain 

actual 3D information. To overcome this intrinsic limitation different ideas have been 

proposed and datasets with 3D facial information are becoming more popular [8]. For 

example, Zafeiriou et al. [13] propose a four-light source photometric stereo (PS). A similar 

idea is elaborated by Zou et al. [14] who propose to use active near-infrared illumination and 

combine a pair of input images to extract an illumination invariant face representation.

Despite the previous mentioned techniques, performing a 3D facial reconstruction is still a 

challenging and complicated task. Many strategies have been proposed to tackle this 

problem, including time delay based [33], image cue based [9], [34], [35], [36], [37], and 

triangulation based methods [38], [39], [40], [41], [42]. Although there has been great recent 

development, available technology for 3D scanning is still too complicated to be 

ubiquitously deployed [32], [43], [44], [45].

The proposed solution has two key features that make it, to the best of our knowledge, 

different from existing alternatives. (a) Because the projected pattern is of a high spatial 

frequency, we can recover a standard (low resolution) RGB facial image that can be fed into 

state-of-the-art 2D face recognition methods. (b) We avoid the complicated task of 3D facial 

reconstruction and instead, extract local 3D features from the local deformation of the 

projected pattern. In that sense our ideas can be implemented exploiting existing and future 

2D solutions. In addition, our approach is different from those that hallucinate 3D 

information. As discussed before and illustrated in Fig. 2 this task requires a strong prior of 

the scene which is ineffective, for example, if a spoofing attack is presented (see the example 

provided in Fig. 15 in the supplementary material), available online.

3 PROPOSED APPROACH

Notation.—Let ℐ ⊂ ℝH × W × C denote the space of images with H × W pixels and C color 

channels, and Xn ⊂ ℝn a space of n-dimensional column vectors (in the context of this work 

associated to a facial feature embedding). ℐrgb denotes the set of RGB images (C = 3), 

while ℐ∇z is used to denote the space of two channel images (C = 2) associated to the 

gradient of a single-channel image z ∈ ℝH × W × 1. (The first/second channel represents the 
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partial derivative with respect to the first/second coordinate.)Combining Depth and RGB 
Information. The proposed approach consists of three main modules as illustrated in Fig. 3: 

g:ℐrgb ℐrgb × ℐ∇z performs a decomposition of the input image into texture and depth 

information, frgb:ℐrgb Xn/2, and f ∇z:ℐ∇z Xn/2 extract facial features associated to 

the facial texture and depth respectively. These three components are illustrated in Fig. 3 in 

blue, yellow, and green, respectively. (We decided to have three modules instead of a single 

end-to-end design for several reasons that will be discussed below.)

Algorithm 1.

Compute 2D Facial Features Enhanced With 3D Information

1: procedure FacialEmbedding(I)

Decompose the input image into texture and depth gradient information.

2:  Irgb, I∇z = g(I)
Extract facial information from each component.

3:  xrgb = frgb Irgb
4:  x∇z = f ∇z I∇z

Combine texture and depth information.

5:  x = Concatenate xrgb, x∇z
6:  return x ⊳ Facial embedding

7: end procedure

We denote the facial feature extraction from the input image as fθ:ℐrgb Xn, where 

fθ(I) = frgb Irgb , f ∇z I∇z
T  with Irgb, I∇z = g(I). The subscript θ represent the 

parameters of the mapping f, which can be decomposed in three groups θ = θg, θrgb, θ∇z , 

associated to the image decomposition, RGB feature extraction, and depth feature extraction 

respectively. In the following we discuss how these parameters are optimized for each 

specific task, which is one of the advantages of formulating the problem in a modular 

fashion.

Once texture and depth facial information is extracted into a suitable vector representation 

x = fθ(I) (as illustrated in Algorithm 1), we can select a distance measure d:Xn × Xn ℝ+

to compare facial samples and estimate whether they have a high likelihood of belonging to 

the same subject or not. It is worth noticing that faces are embedded into a space in which 

the first half of the dimensions are associated to information extracted from the RGB 

representation while the other half codes depth information. These two sources of 

information may have associated different confidence levels (depending on the conditions at 

deployment). We address this in detail in Section 3.3 and propose an anisotropic distance 

adapted to our solution, and capable of leveraging the good performance of 2D solutions in 

certain conditions, while improving robustness and handling spoofing attacks in a 

continuous and unified fashion.
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3.1 Pattern Design

When a pattern of light p(x, y) is projected over a surface with a height map z(x, y), it is 

perceived by a camera located along the x-axis with a deformation given by p(x + ϕ(x, y), y)
(ϕ(x, y) ∝ z(x, y)). A detailed description of active stereo geometry is provided in the 

supplementary material Section B, available online. Let us denote I0(x, y) the image we 

would acquire under homogeneous illumination, and p(x, y) the intensity profile of the 

projected light. Without loss of generality we assume the system baseline is parallel to the x 
axis. The image acquired by the camera when the projected light is modulated with a profile 

p(x, y) is

I(x, y) = I0(x, y)p(x + ϕ(x, y), y) . (1)

We will restrict to periodic modulation patterns and let T denote the pattern spatial period, 

we also define f0 =def 1
T . To simplify the system design and analysis, lets also restrict to 

periodic patterns that are invariant to the y coordinate. In these conditions we can express 

p(x, y) = ∑n = − ∞
+∞ anei2πnf0x where an represent the coefficients of the Fourier series of p. 

(Note that because of the invariance with respect to the y coordinate, the coefficients an are 

constant instead of a function of y.) Equation (1) can be expressed as

I(x, y) = ∑
n = − ∞

+∞
I0(x, y)anei2πnf0(x + ϕ(x, y)) . (2)

Defining qn(x, y) =def I0(x, y)anei2πnf0ϕ(x, y), Equation (2) can be expressed as [46]

I(x, y) = ∑
n = − ∞

+∞
qn(x, y)ei2πnf0x . (3)

Applying the 2D Fourier Transform (FT) in both sides of Equation (3) and using standard 

properties of the FT [47] we obtain

I fx, fy = ∑
n = − ∞

+∞
qn fx − nf0, fy . (4)

We denote as I the FT of I and use fx, fy  to represent the 2D frequency domain associated 

to x and y axis respectively.

Equation (4) shows that the FT of the acquired image can be decomposed into the 

components qn centered at (nf0, 0). In the context of this section, we refer to a function h(x, 

y) being smooth if
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∥ ℎ fx, fy ∥
∥ ℎ(0, 0) ∥

< 10−3 ∀ fx > f0
2 . (5)

Assuming I0(x, y) and ϕ(x, y) are smooth (we empirically validate this hypothesis below), 

the components qn can be isolated as illustrated in Fig. 4. The central component is of 

particular interest, q0(x, y) = a0 I0(x, y) captures the facial texture information and can be 

recovered from I(x, y) if f0 is large enough (we provide a more precise quantitative analysis 

in what follows). On the other hand, relative (gradient) 3D information can be retrieved from 

the components {q0, q1} as we show in Proposition 1.

Proposition 1: Gradient depth information is encoded in the components {q0(x, y), q1(x, 
y)}.

Proof: We define the wrapping function W(u) = atan(tan(u)). This function wraps the real 

set into the interval (−π/2, π/2] [48]. This definition can be extended to vector inputs 

wrapping the modulus of the vector field while keeping its direction unchanged, i.e., 

W( u ) = W( ∥ u ∥ )
∥ u ∥

u if ∥ u ∥ ≠ 0 and W( u ) = 0 if ∥ u ∥ = 0. From q1(x, y) and q0(x, y) 

we can compute1

ϕW(x, y) = 1
2πf0

atan
Im q1(x, y)

q0(x, y)

Re q1(x, y)
q0(x, y)

, (6)

where ϕW denotes the wrapped version of ϕ. Moreover, ϕW(x, y) = ϕ(x, y) + πk(x, y) with 

k(x, y) ∈ ℕ (wrapping introduces shifts of magnitude multiple of π). Computing the gradient 

both sides leads to ∇ϕW(x, y) = ∇ϕ(x, y) + π∇k(x, y) where ∥ ∇k(x, y) ∥ ∈ ℕ. Assuming the 

magnitude of the gradient of ϕ(x, y) is bounded by π/2 and considering that 

∥ ∇k(x, y) ∥ ∈ ℕ, we can apply the wrapping function both sides of the previous equality to 

obtain W ∇ϕW (x, y) = ∇ϕ(x, y) which proves (recall Equation (6)) that the gradient of ϕ can 

be extracted from the components q0 and q1. To conclude the proof, we use the property of 

linearity of the gradient operation and the fact that ϕ(x, y) is proportional to the depth map 

of the scene (see Equation (12) and Section B in the supplementary material), available 

online. □

Analytic versus Data-Driven Texture and Gradient Depth Extraction.—The 

previous analysis shows that closed forms can be obtained to extract texture and depth 

gradient information. However, to compute these expressions is necessary to isolate different 

spectral components qn. To that end, filters need to be carefully designed. The design of 

these filters is challenging, e.g., one need to control over-smoothing versus introducing 

1.We assume images are extended in an even fashion outside the image domain, to guaranteed that a1 ∈ ℝ and avoid an additional 

offset term.
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ringing artifact which are drastically amplified by a posterior gradient computation [39], 

[42]. To overcome these challenges, we chose to perform a depth (gradient) and texture 

decomposition in a data-driven fashion, which as we showin Section 4, provides an efficient 

and effective solution.

Bounds on f0 and Optimal Spectral Orientation.—As discussed above, the projected 

pattern p(x, y) should have a large fundamental frequency f0. In addition, the orientation of 

the fringes and the system baseline can be optimized if faces present a narrower spectral 

content in a particular direction. We study the texture and depth spectrum of the facial 

images of ND-2006 dataset (this dataset provides ground truth facial texture and depth 

information). We observed (see Fig. 5) that for facial images sampled at a 480 × 480 spatial 

resolution, most of the energy is concentrated in a third of the discrete spectral domain 

(observe the extracted one dimensional profiles of the spectrum shown at the left side of Fig. 

5). In addition, we observe that the spectral content of facial images is approximately 

isotropic. See, for example, Fig. 5 and observe how for 1-dimensional sections across 

different orientations the 2D spectra envelope is almost constant. We conclude that the 

orientation of the fringes does not play a significant role in the context of facial analysis. In 

addition, we conclude that the fringes width should be smaller than 7mm (distance measure 

over the face).2

3.2 Network Training and the Advantages of Modularity

As described previously, the parameters of the proposed solution can be split in three groups 

θ = θg, θrgb, θ∇z . This is an important practical property and we designed the proposed 

solution to meet this condition (in contrast to an end-to-end approach).

Let us define ℬ1, ℬ2, and ℬ3 three datasets containing ground truth depth information, 

ground truth identity for rgb facial images, and ground truth identity for depth facial images, 

respectively. More precisely, 

ℬ1 = Ii(x, y), I0i(x, y), zi(x, y) , i = 1, …, n1 , ℬ2 = I0i(x, y), yi , i = 1, …, n2 , and ℬ3
= zi(x, y), yi , i = 1, …, n3

, 

where Ii(x, y) denotes a (facial or generic) RGB image acquired under the projection of the 

designed pattern, I0i(x, y) represents (facial or generic) standard RGB images, zi(x, y) 

denotes a gray image representing the depth of the scene, and yi a scalar integer representing 

the subject id.

We denote as g1(I), g2(I) = g(I) the RGB and gradient depth components estimated by the 

decomposition operation g. We partitioned the parameters of g into two sets of dedicated 

kernels θg = θg1, θg2 , the first group focuses on retrieving the texture component while the 

second group retrieves the depth gradient. These parameters can be optimized as

2.This numerical results is obtained by approximating the bounding box of the face as a 20cm × 20cm region, sampled with 480 × 480 
pixels which corresponds to a pixel length of 2.4mm, a third of the spectral band correspond to signal of a period of 6 pixels which 
leads to a binary fringe of at least 7.2mm wide.

Di Martino et al. Page 7

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



θg1 = argmin ∑
I0i, Ii ∈ ℬ1

‖g1 Ii − I0i‖2
2

(7)

θg2 = argmin ∑
zi, Ii ∈ ℬ1

‖g2 Ii − ∇zi‖2
2 .

(8)

(We also evaluated training a shared set of kernels trained with an unified loss, this 

alternative is harder to train in practice, due to the natural difference between the dynamic 

range and sparsity of gradient images compared with texture images.)

For texture and depth facial feature extraction, we tested models inspired in the Xception 

architecture [49]). Additional details are provided in the supplementary material Section D, 

available online. To train these models we add an auxiliary fully connected layer on top of 

the facial embedding (with as many neurons as identities in the train set) and minimize the 

cross-entropy between the ground truth and the predicted labels. More precisely, let us 

denote frgb Irgb = p1, …, pc  the output of the fully connected layer associated to the 

embedding frgb Irgb  where pi denotes the probability associated to the id i,

θrgb = argmin ∑
I0i, yi ∈ ℬ2

∑
c

− 1yi = clog frgb I0i [c]
(9)

θ∇z = argmin ∑
zi, yi ∈ ℬ3

∑
c

− 1yi = clog f ∇z ∇zi [c] ,
(10)

where 1yi = c denotes the indicator function. (Of course one can choose other alternative 

losses to train these modules, see e.g., [5], [27], [28], [50].)

As described above, the proposed design allows to leverage information from three types of 

datasets (ℬ1, ℬ2, ℬ3). This has an important practical advantage as 2D facial and 3D generic 

datasets are more abundant, and the pattern dependant set ℬ1 can be of modest size as 

# θg ≪ # θrgb .

3.3 Distance Design

Once different modules are set we can compute the facial embedding of test images 

following the procedure described in Algorithm 1. Let us define xa ∈ Xn and xb ∈ Xn the 

feature embedding of two facial images Ia and Ib respectively. Recall that the first n/2 

elements of x are associated to features extracted from (a recovered) RGB facial image 

while the remaining elements are associated to depth information, i.e., 

x = xrgb[1], …, xrgb[n/2], x∇z[1], …, x∇z[n/2] T .

We define the distance between two feature representations 

xa = xrgb
a , x∇z

a , and xb = xrgb
b , x∇z

b  as
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dα, β, γ xa, xb =def (1 − γ)dc xrgb
a , xrgb

b

+γdc x∇z
a , x∇z

b 1 +
dc x∇z

a , x∇z
b

β

α
.

(11)

dc:Xn/2 × Xn/2 [0, 1] denotes the cosine distance, γ ∈ [0, 1] sets the relative weight of RGB 

and depth features, and α, β ∈ ℝ define a non-linear response for the distance between depth 

features. As we will describe in the following, this provides robustness against common 

cases of spoofing attacks.

Intuitively, γ allows us to set the relative confidence associated to RGB and depth features, 

for example, γ = 1/2 gives the same weight to RGB and depth features, while γ = 0 (γ = 1) 

ignores the distance between samples in the depth (RGB) embedding space. This is 

important in practice, as is common to obtain substantially more data to train RGB models 

than depth ones ( ℬ2 ≫ ℬ3 ). This suggests that in good test conditions (e.g., good lighting) 

one may trust more RGB features over depth features (γ < 1/2). As we will empirically 

show in the following section, when two facial candidates are compared, 

dα, ∞, γ xa, xb = (1 − γ)δ xrgb
a , xrgb

b + γδ x∇z
a , x∇z

b  is an effective distance choice. However, it 

does not handle robustly common cases of spoofing attacks. The most common deployments 

of spoofing attacks imitate the facial texture more accurately than the facial depth [51], [52], 

[53], therefore, the global distance between two samples should be large when the distance 

of the depth features is large (i.e., above a certain threshold). To that end, we introduce an 

additional non-linear term controlled by parameters β and α, for δ x∇z
a , x∇z

b < β the standard 

cosine distance dominates while for large values the distance will be amplified in a non-

linear fashion.

4 EXPERIMENTS AND DISCUSSION

Data.

Three public dataset are used for experimental validation: FaceScrub [54], CASIA Anti-

spoofing [55], and ND-2006 [56]. FaceScrub contains 100k RGB (2D) facial images of 530 

different subjects, and is used to train the texture-based facial embedding. CASIA dataset 

contains 150 genuine videos (recording a person) and 450 videos of different types of 

spoofing attacks, the data was collected for 50 subjects. We use this dataset to simulate and 

imitate the texture properties of images of spoofing attacks. ND-2006 is one of the larges 

publicly available datasets with 2D and 3D facial information, it contains 13k images of 888 

subjects. We used this set to demonstrate that differential 3D features can be extracted from 

a single RGB input, to compare RGB features with 3D features extracted from the 

differential 3D input, and to show that when 2D and 3D information is properly combined, 

the best properties of each can be obtained.

Texture and Differential 3D Decomposition.

In Section 3.1 we discussed how real 3D information and texture information can be coded 

and later extracted using a single RGB image. In addition, we argue that this decomposition 
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can be learned efficiently and effectively in a data-driven fashion. To that end, we tested 

simple network architectures composed of standard convolutional layers (a full description 

of these architectures and the training protocols are provided as supplementary material), 

available online. Using ground truth texture and depth facial information, we simulated the 

projection of the designed pattern over the 888 subjects provided in ND-2006 dataset. 

Illustrative results are presented in Fig. 6 and in the supplementary material, available 

online. The 3D geometrical model and a detailed description of the simulation process is 

provided in Section D.1. Though the simulation of the deformation of a projected pattern 

can be computed in a relatively simple manner (if the depth information is known), the 

inverse problem is analytically hard [39], [41], [45].

Despite the previous, we observed that a stack of convolutional layers can efficiently learn 

how to infer from the image with the projected pattern, both depth gradient information, and 

the standard (2D) facial image. Fig. 7 illustrates some results for subjects in the test set. The 

first column corresponds to the input to the network, the second column the ground truth 

texture information, and the third column the retrieved texture information. The architecture 

of the network and the training protocol is described in detail in the supplementary material 

Section D, available online. As we can see in the examples illustrated in Fig. 7, an accurate 

low resolution texture representation of the face can be achieved in general, and visible 

artifact are observed only in the regions where the depth is discontinuous (see for example, 

the regions illustrated at the bottom of Fig. 7).

Fig. 8 illustrates the ground truth and the retrieved depth gradient (again, for random 

samples from the test set). To estimate the 3D information, we feed to a different branch of 

convolutional layers the gray version of the input image. These layers are fully described in 

the supplementary material Table 5, available online. A gray input image is considered 

instead of a color one because the projected pattern is achromatic, and therefore, no 3D 

information is encoded in the colors of the image. In addition, we crop the input image to 

exclude the edges of the face. (Facial registration and cropping is performed automatically 

using dlib [57] facial landmarks.) As discussed in Section 3, and in particular, in the proof of 

Proposition 1, the deformation of the projected fringes only provide local gradient 

information if the norm of the gradient of the depth is bounded. In other words, where the 

scene present depth discontinuities, no local depth information can be extracted by our 

proposed approach. This is one of the main reasons why differential 3D information can be 

exploited for face recognition, while bypassing the more complicated task of a 3D facial 

reconstruction.

One of the advantages of the proposed approach is that it extracts local depth information, 

and therefore, the existence of depth discontinuities does not affect the estimation on the 

smooth portion of the face. This is illustrated in Figs. 9a and 9b, where a larger facial patch 

is fed into the network. The decomposition module is composed exclusively of convolutional 

layers, and therefore, images of arbitrary size can be evaluated. Fig. 9a shows the input to 

the network, and Fig. 9b the first channel of the output (for compactness we display only the 

x-partial derivative). As we can see, the existence of depth discontinuities does not affect the 

prediction in the interior of the face (we consider the prediction outside this region as noise 

and we replace it by 0 for visualization).
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Several algorithms have been proposed to hallucinate 3D information from a 2D facial 

image [9], [10], [11], [12]. In order to verify that our decomposition network is extracting 

real depth information (in lieu of hallucinating it from texture cues), we simulated an image 

where the pattern is projected over a surface with identical texture but with a planar 3D 

shape (as in the example illustrated in Fig. 2). Fig. 9a shows the image acquired when the 

fringes are projected over the ground truth facial depth, and (c) when instead the depth is set 

to 0 (without modifying the texture information). The first component of the output (x-

partial derivative) is shown in (b) and (d), as we can see, the network is actually extracting 

true depth information (from the deformation of the fringes) and not hallucinating 3D 

information from texture cues. (As we will see next, this property is particularly useful for 

joint face recognition and spoofing prevention.)

2D and 3D Face Recognition.

Once the input image is decomposed into a (standard) texture image and depth gradient 

information, we can proceed to extract 2D and 3D facial features from each component. To 

this end, state-of-the-art network architectures are evaluated. Our method is agnostic to the 

RGB and depth feature extractors, moreover, as the retrieved texture image is close to a 

standard RGB facial images (in sense of the L2-norm), any pre-train 2D feature extractor 

can be used (e.g., [4], [5], [6], [7], [8]). In the experiments presented in this section we tested 

a network based on the Xception architecture [49] (details are provided as supplementary 

material), available online. For the extraction of texture features, the network is trained using 

FaceScrub [54] dataset (as we previously described, this is a public dataset of 2D facial 

images). The module that extracts 3D facial features is trained using 2/3 of the subjects of 

ND-2006 dataset, leaving the remaining subjects exclusively for testing. The output of each 

module is a 512-dimensional feature vector (see, e.g., Fig. 3), hence the concatenation of 2D 

+3D features leads to a 1,024-dimensional feature vector. Fig. 10 illustrates a 2D embedding 

of the texture features, the depth features, and the combination of both. The 2D mapping is 

learned by optimizing the t-SNE [58] over the train partition, then a random subset of test 

subjects are mapped for visualization. As we can see, 3D features favor the compactness and 

increase the distance between clusters associated to different subjects.

To test the recognition performance, the images of the test subjects are partitioned into two 

sets: gallery and probe. For all the images in both sets, the 2D and 3D feature embedding is 

computed (using the pre-trained networks described before). Then, for each image in the 

probe set, the n nearest neighbors in the gallery set are selected. The distance between each 

sample (in the embedding space) is measured using the distance defined in Section 3, 

Equation (11). For each sample in the probe set, we consider the classification as accurate, if 

at least one of the n nearest neighbors is a sample from the same subject. The Rank-n 

accuracy is the percentage of samples in the probe set accurately classified.

Fig. 11 and Table 1 show the Rank-n accuracy when: only 2D features (γ = 0), only 3D 

features (γ = 1), or a combination of both (0 < γ < 1) is considered. As explained in Section 

3.3, the value of γ can be used to balance the weight of texture and depth features. As we 

can see, in all the cases a combination of texture and depth information outperforms each of 

them individually. This is an expected result as classification tends to improve when 
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independent sources of information are combined [59]. γ is an hyper-parameter that should 

be set depending on the conditions at deployment. In our particular experiments the best 

results are obtained for γ = 0.3, which suggests that RGB features are slightly more reliable 

than depth features. This is an expected result as the module that extract RGB features is 

typically trained in a much larger datasets (2D facial images became ubiquitous). We believe 

this may change if, for example, testing is performed under low light conditions [21]. 

Testing this hypothesis is one of the potential path for future research. In the experiment 

discussed so far, we ignored the role of β and α (i.e., we set β = ∞ and α = 1). As we will 

discuss in the following, these parameters become relevant to achieve jointly face 

recognition and spoofing prevention.

Robustness to Spoofing Attacks.

Spoofing attack are simulated to test face recognition models, in particular, how robust these 

frameworks are under (unseen) spoofing attacks. As in the present work we focus on the 

combination of texture and depth based features, the simulation of spoofing attacks must 

account for realistic texture and depth models. The models for the synthesis of spoofing 

attacks are described in detail in the supplementary material Section D.3, available online.

Fig. 12 illustrates spoofing samples (first four rows) and genuine samples (bottom five 

rows). The first two columns correspond to the ground truth texture and depth information, 

the third column illustrates the input to our system, and the last three columns correspond to 

the outputs of the decomposition network. These three last images are fed into the feature 

extraction modules for the extraction of texture and depth based features respectively, as 

illustrated in Fig. 3. It is extremely important to highlight, that spoofing samples are 

included exclusively at testing time. In other worlds, during all the training process the entire 

framework is agnostic to the existence of spoofing examples. If the proposed framework is 

capable of extracting real 3D facial features, it should be inherently robust to most common 

types of spoofing attacks.

As discussed before, the combination of texture and depth based features improves 

recognition accuracy. On the other hand, when spoofing attacks are included, we observe 

that texture based features are more vulnerable to spoofing attacks (see for example Figs. 12 

and 14). To simultaneously exploit the best of each feature component, we design a non-

linear distance as described in Equation (11). Fig. 13 illustrates the properties of the defined 

distance for different values of α and β. As it can be observed, for those genuine samples 

(relative distances lower than β) the non linear component can be ignored and the distance 

behave as the euclidean distance with a relative modulation set by γ. On the other hand, if 

the distance between the depth components is above the threshold β, it will dominate the 

overall distance achieving a more robust response to spoofing attacks.

To quantitatively evaluate the robustness against spoofing attacks, spoofing samples are 

generated for all the subjects in the test set. As before, the test set is separated into a gallery 

and a probe set and the generated spoofing samples are aggregated into the probe set. For 

each image in the probe set, the distance to a sample of the same subject in the gallery set is 

evaluated. If this distance is below a certain threshold λ, the image is labeled as genuine, 

otherwise, the image is labeled as spoofing. Comparing the classification label with the 
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ground truth label we obtain the number of true positive (genuine classified as genuine), 

false positive (spoofing classified as genuine), true negative (spoofing classified as 

spoofing), and false negative (genuine classified as spoofing). Changing the value of the 

threshold λ we can control the number of false positive versus the number of false negatives 

as illustrated in Fig. 14.

Fig. 14 shows the ratio of false positive and false negative for λ ∈ [0, 2]. As before the 

distance between the samples is computed using the definition provided in (11), in blue/red 

the RGB/depth baseline is illustrated, the other set of curves (displayed in green tones) 

correspond to a combination of texture and depth features with γ = 0.3 and different values 

of α and β. In Table 2 the ratio of true positive is reported for a fixed ratio of false positives. 

The ACER measure (last column) corresponds to the average between the ratio of spoofing 

and genuine samples misclassified.

Testing Variations on the Ambient Illumination.

To test the impact of variations on lighting conditions we simulated test samples under 

different ambient illumination, implementation details are described in the supplementary 

material Section D.4, available online. Table 3 compares the rank-5 accuracy of 2D features 

and 2D+3D features as the power of the ambient illumination increases. As described in the 

supplementary material, available online, the ambient illumination is modeled with random 

orientation, and therefore, the more powerful the illumination is the more diversity between 

the test and the gallery samples is introduced.

In the present experiments, we assumed that both the projected pattern and the ambient 

illumination have similar spectral content. In practice, one can project the pattern, e.g., on 

the infrared band. This would make the system invisible to the user, and reduce the 

sensitivity of 3D features to variations on the ambient illuminations. We provide a hardware 

implementation feasibility study and illustrate how the proposed ideas can be deployed in 

practice in the supplementary material Section E, available online.

Improving State of the Art 2D Face Recognition.

To test how the proposed ideas can impact the performance of state-of-the-art 2D face 

recognition systems, we evaluated our features in combination with texture based features 

obtained with ArcFace [5]. ArcFace is a powerful method pre-trained on very large datasets, 

on ND-2006 examples it achieves perfect recognition accuracy (100 percent rank-1 

accuracy). When ArcFace is combined with the proposed 3D features, the accuracy remains 

excellent (100 percent rank-1 accuracy), i.e., adding the proposed 3D features does not 

negatively affects robust 2D solutions. On the other hand, 3D features improve ArcFace on 

challenging conditions as we discuss in the following. Interesting results are observed when 

ArcFace is tested under spoofing attacks, as we show in Table 4, ArcFace fails to detect 

spoofing attacks. ArcFace becomes more robust when it is combined with 3D features, 

improving from nearly 0 TPR@FPR(10−3) to 84 percent. In summary, as 2D methods 

improve and become more accurate, our 3D features do not affect them negatively when 

they work well, while improve their robustness in challenging situations.
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5 CONCLUSION

We proposed an effective and modular alternative to enhance 2D face recognition methods 

with actual 3D information. A high frequency pattern is designed to exploit the high 

resolution cameras ubiquitous in modern smartphones and personal devices. Depth gradient 

information is coded in the high frequency spectrum of the captured image while a standard 

texture facial image can be recovered to exploit state-of-the-art 2D face recognition 

methods. We show that the proposed method can be used to simultaneously leverage 3D 

information and texture information. This allows us to enhance state-of-the-art 2D methods 

improving their accuracy and making them robust, e.g., to spoofing attack.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Real 3D face recognition is possible by capturing one single RGB image if a high frequency 

pattern is projected. The low frequency components of the captured image can be fed into a 

state-of-the-art 2D face recognition method, while the high frequency components encode 

local depth information that can be used to extract 3D facial features. It is important to 

highlight that, in contrast with most existing 3D alternatives, the proposed approach 

provides real 3D information, not 3D hallucination from the RGB input. As a result, state-

of-the-art 2D face recognition methods can be enhanced with real 3D information.
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Fig. 2. 
Illustration of three different 3D surfaces that look equivalent from a monocular view (single 

RGB image). On top, three surfaces (a), (b) and (c) are simulated, being (a) and (c) flat and 

(b) the 3D shape of a test subject. We use classic projective geometry [32] and simulate the 

image we obtain when photographing (a), (b) and (c) respectively. The resulting images are 

shown at the bottom. As we illustrate with this simple example, the relation between images 

and 3D scenes is not bijective and the problem of 3D hallucination is ill-posed. To overcome 

this, 3D hallucination solutions enforce important priors about the geometry of the scene. 

This is why we argue, that these methods do not really add to the face recognition task, 

actual 3D information. (A complementary example is presented in Fig. 15 in the 

supplementary material), which can be found on the Computer Society Digital Library at 

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2986951.
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Fig. 3. 
Architecture overview. First a network (illustrated in blue) is used to decompose the input 

image that contains overlapped high frequency fringes into a lower resolution (standard) 

texture facial image and depth gradient information. The former is used as the input of a 

state-of-the-art 2D face recognition DNN (yellow blocks). The depth information is fed to 

another network (green blocks) trained to extract discriminative (depth-based) facial 

features. Different network architectures are tested, we provide implementation details in 

Section D in the supplementary material, available online.
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Fig. 4. 
2D plus real 3D in a single rgb image. The first column illustrates the RGB image acquired 

by a (standard) camera when horizontal stripes are projected over the face. The second 

column isolates the low frequency components of the input image, and the third column 

corresponds to the residual high frequency components. (In all the cases the absolute value 

of the Fourier Transform is represented in logarithmic scale). As can be seen, high frequency 

patterns can be used to extract 3D information of the face (third column) while preserving a 

lower resolution version of the facial texture (middle column).

Di Martino et al. Page 22

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Faces average spectral content. The first column illustrates the mean luminance and depth 

map for the faces in the dataset ND-2006. The second column shows the mean Fourier 

Transform of the faces luminance and depth respectively. The third column shows the profile 

across different sections of the 2D Fourier domain. Columns two and three represent the 

absolute value of the Fourier transform in logarithmic scale. Faces are registered using the 

eyes landmarks and the size normalized to 480 × 480 pixels.
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Fig. 6. 
Active light projection. From left to right: ground truth RGB facial image, 3D facial scanner, 

and finally the image we would acquire if the designed high frequency pattern is projected 

over the face. Two random samples from ND-2006 are illustrated.
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Fig. 7. 
Examples of the facial texture recovered from the image with the projected pattern. The first 

column, shows the input image (denoted as I in Algorithm 1). The second column shows the 

ground truth, and the third column the texture recovered by the network Irgb. This examples 

are from the test set and the images associated to these subjects were never seen during the 

training phase.

Di Martino et al. Page 25

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Differential depth information extracted from the image with the projected pattern. The first 

row illustrates the input image (depth information can be extracted from a gray version of 

the input as the designed patter is achromatic). The second and third row show the ground 

truth and the retrieved x and y partial derivatives of the depth respectively.
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Fig. 9. 
Is the network really extracting depth information? In this figure we show the output of the 

network for two inputs generated using identical facial texture but different depth ground 

truth data. (a) Image obtained when the projected pattern is projected over the face with the 

real texture and the real 3D profile. (b) Output of the network when we input (a) (only the x-

partial derivative is displayed for compactness). (c) Image obtained when the projected 

pattern is projected over a flat surface with the texture of the real face. (d) Output of the 

network when the input is (c). None of these images were seen during training.
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Fig. 10. 
Facial features low dimensional embedding (for visualization purposes only). We illustrate 

texture-based and depth-based features in a low dimensional embedding space. A random 

set of subject of the test set is shown. From left to right: the embedding of depth-features, 

texture-based features, and finally, the combination of texture and depth features. t-SNE [58] 

algorithm is used for the low-dimensional embedding.
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Fig. 11. 
Rank-n accuracy for 2D, 3D, and 2D+3D face recognition. As discussed in Section 3 the 

value of γ can be set to weight texture and depth information in the classification decision. 

The extreme cases are γ = 0 (only texture is considered) and γ = 1 (only depth is 

considered). These extreme cases are illustrated in yellow and blue respectively, while 

intermediate solutions (0 < γ < 1) are presented in tones of green.
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Fig. 12. 
Examples of samples from live subjects and spoofing attacks. From left to right: (1) the 

ground truth texture, (2) the ground truth depth, (3) the input to our system (image with the 

projected pattern), (4) the recovered texture component (one of the outputs of the 

decomposition network), (5)/(6) recovered x/y depth partial derivative. The first four rows 

correspond to spoofing samples (as explained in Section D.3), and the bottom five rows to 

genuine samples from live subjects.
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Fig. 13. 
Illustration of the properties of the distance function defined in (11). On the left side we 

illustrate the role of the parameter α, and on the right, we compare the proposed distance 

and the standard euclidean distance. As can be observed, both measures are numerically 

equivalent in the region [−β/2, β/2] × [−β/2, β/2], but the proposed measure gives a higher 

penalty to vectors whose u coordinate exceeds the value β.
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Fig. 14. 
False acceptance rate and false rejection rate under the presence of spoofing attacks. On 

color blue we illustrate the RGB baseline (γ = 0), on the other extreme, the red curve 

illustrates the performance when only depth features are considered. The combination of 

RGB and depth features is illustrated in tones of green for different values of α and β (in this 

experiment we set γ = 0.3).
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TABLE 1

Rank-n Accuracy for 2D, 3D, and 2D+3D Face Recognition

Rank-n Accuracy 1 2 5 10

RGB baseline (γ = 0) 78.5 82.6 87.7 90.6

(Depth baseline (γ = 1) 77.2 81.4 87.4 90.1

(our) γ = 0.3 90.6 93.2 95.6 96.4

(our) γ = 0.5 88.6 91.0 94.4 94.9

(our) γ = 0.8 85.0 87.9 91.5 93.0

As discussed in Section 3 the value of γ can be set to weight the impact of texture and depth information. The extreme cases are γ = 0 (only texture 
is considered) and γ = 1 (only depth is considered).
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TABLE 2

Spoofing detection results

TPR% @FPR = 10−3 TPR% @FPR = 10−2 ACER %

RGB baseline (γ = 0) 21.8 24.0 38.9

Depth baseline (γ = 1) 88.4 97.1 4.0

(our) γ = 0.3, β = 0.35 α = 2 85.5 96.9 4.5

(our) γ = 0.3, β = 0.35 α = 5 83.8 97.1 4.0

(our) γ = 0.3, β = 0.35 α = 10 85.0 95.6 3.9

(our) γ = 0.3, β = 0.4 α = 2 82.6 96.9 4.7

(our) γ = 0.3, β = 0.4 α = 5 86.4 97.1 4.4

(our) γ = 0.3, β = 0.4 α = 10 81.8 97.1 4.1

(our) γ = 0.3, β = 0.5 α = 2 86.4 96.4 5.3

(our) γ = 0.3, β = 0.5 α = 5 82.8 95.6 5.7

(our) γ = 0.3, β = 0.5 α = 10 85.0 94.4 5.9

The ratio of true positive for a fixed ratio of false positive and the ACER measure are reported. Texture and depth facial features are combined 
using the distance defined in (11). As we can see, the parameters γ, α, and β can be set to obtain better facial recognition performance and 
robustness against spoofing detection.
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TABLE 3

Recognition Accuracy Under Different Ambient Illumination Conditions

Rank-5 Accuracy power = 100% power = 150% power = 200%

RGB baseline (γ = 0) 89.2 81.2 53.9

(our) γ = 0.5 93.6 90.7 80.7

The power of the additional ambient light is provided relative to the power of the projected light, i.e., power = 200% means that the added ambient 
illumination is twice as bright as the projected pattern.
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TABLE 4

Spoofing Detection Results for ArcFace and ArcFace Enhanced With 3D Features

TPR% @FPR = 10−3 TPR% @FPR = 10−2 ACER %

ArcFace (γ = 0) 0 0 46.2

(ArcFace + 3D) (γ = 0.5) 84.7 94.7 7.9

Like in Table 2, the ratio of true positive for a fixed ratio of false positive and the ACER measure are reported.
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