english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52159 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGaleano-Brajones, Jesús-
dc.contributor.authorVillacrés, Grace-
dc.contributor.authorRattaro, Claudina-
dc.contributor.authorCarmona-Murillo, Javier-
dc.contributor.authorChidean, Mihaela I.-
dc.date.accessioned2025-10-20T16:35:12Z-
dc.date.available2025-10-20T16:35:12Z-
dc.date.issued2025-
dc.identifier.citationGaleano-Brajones, J., Villacrés, G., Rattaro, C. y otros. Leveraging L-moments to characterize traffic behavior in 4G and 5G networks [en línea]. EN: 2025 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Nice, France, 07-10 jul. 2025, pp. 1-6. DOI: 10.1109/MeditCom64437.2025.11104433.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/52159-
dc.description.abstractWhile 4G networks have served as the foundation for mobile broadband services, their architecture presents limitations in handling the increasing demand for higher data rates, lower latency, and large-scale connectivity. The transition to 5G addressed these constraints by introducing a more flexible and efficient network design, incorporating key enabling technologies such as virtualization and network slicing. These innovations enhance resource allocation, mobility support, and service differentiation, making 5G a more capable solution for high-demand applications. However, despite these advancements, understanding how traffic behavior differs between 4G and 5G remains a critical challenge, particularly in high-mobility scenarios, where fluctuations in network performance can significantly impact Quality of Service (QoS). To analyze these differences, we examine downlink (DL) bitrate, signal quality, and mobility patterns in both technologies using L-moment ratio diagrams, a robust statistical tool for characterizing traffic behavior. Results reveal that 5G offers a more stable and predictable bitrate distribution, whereas 4G exhibits higher variability, particularly in mobile scenarios, degrading QoS. Additionally, results also show inconsistencies in the dataset mainly due to the presence of traffic from non-declared networks, highlighting the need for more refined and validated datasets for future studies. Understanding these differences is also crucial for identifying current challenges and defining optimization strategies that will guide the development of next generation networks, ensuring more stable and efficient performance in dynamic, high-demand environments.es
dc.description.sponsorshipEste trabajo fue financiado en parte por la Comunidad de Madrid, en el marco del convenio 2023-2026 con la Universidad Rey Juan Carlos para la concesión de becas directas para la promoción y el fomento de la investigación y la transferencia de tecnología, Línea de Acción A, Doctores Emergentes, en el marco del Proyecto Orden NGN (Ref. F1177); el Ministerio de Ciencia e Innovación de España, en el marco de la beca PID2023-151462OB-100; la Unión Europea, NextGenerationEU/PRTR, beca TED2021-131699B-I00 (MCIN/AEI/10.13039/501100011033, FEDER); e INCIBE y la Unión Europea, NextGenerationEU/PRTR (C110.23).es
dc.format.extent6 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.relation.ispartof2025 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Nice, France, 07-10 jul. 2025, pp. 1-6.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subject5Ges
dc.subject4G LTEes
dc.subjectTraffic analysises
dc.subjectL-momentses
dc.subjectTechnological innovationes
dc.subject5G mobile communicationes
dc.subjectNetwork slicinges
dc.subjectBit ratees
dc.subjectQuality of servicees
dc.subjectResource managementes
dc.subjectVirtualizationes
dc.subjectOptimizationes
dc.subjectNext generation networkinges
dc.subjectLong Term Evolutiones
dc.titleLeveraging L-moments to characterize traffic behavior in 4G and 5G networkses
dc.typePonenciaes
dc.contributor.filiacionGaleano-Brajones Jesús, Universidad de Extremadura Mérida, España-
dc.contributor.filiacionVillacrés Grace, Universidad Rey Juan Carlos Fuenlabrada, España-
dc.contributor.filiacionRattaro Claudina, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCarmona-Murillo Javier, Universidad de Extremadura Mérida, España-
dc.contributor.filiacionChidean Mihaela I., Universidad Rey Juan Carlos Fuenlabrada, España-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
udelar.academic.departmentTelecomunicacioneses
udelar.investigation.groupAnálisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
GVRCC25.pdfCamera-Ready2,43 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons