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Abstract—While 4G networks have served as the founda-
tion for mobile broadband services, their architecture presents
limitations in handling the increasing demand for higher data
rates, lower latency, and large-scale connectivity. The transition
to 5G addressed these constraints by introducing a more flex-
ible and efficient network design, incorporating key enabling
technologies such as virtualization and network slicing. These
innovations enhance resource allocation, mobility support, and
service differentiation, making 5G a more capable solution for
high-demand applications. However, despite these advancements,
understanding how traffic behavior differs between 4G and 5G
remains a critical challenge, particularly in high-mobility scenar-
ios, where fluctuations in network performance can significantly
impact Quality of Service (QoS). To analyze these differences,
we examine downlink (DL) bitrate, signal quality, and mobility
patterns in both technologies using L-moment ratio diagrams, a
robust statistical tool for characterizing traffic behavior. Results
reveal that 5G offers a more stable and predictable bitrate
distribution, whereas 4G exhibits higher variability, particularly
in mobile scenarios, degrading QoS. Additionally, results also
show inconsistencies in the dataset mainly due to the presence
of traffic from non-declared networks, highlighting the need
for more refined and validated datasets for future studies.
Understanding these differences is also crucial for identifying
current challenges and defining optimization strategies that will
guide the development of next generation networks, ensuring
more stable and efficient performance in dynamic, high-demand
environments.

Index Terms—5G, 4G LTE, traffic analysis, L-moments.

I. INTRODUCTION

The transition from the fourth generation of cellular network
technology (4G) to the fifth (5G) has represented a significant
leap in mobile network capabilities, enabling the deployment
of new high-demand services with unprecedented performance
requirements. 5G networks offer significantly higher data rates,
drastically reduced latency, and enhanced capacity, accom-
modating a higher density of connected devices per base

This work was supported in part by Comunidad de Madrid within the 2023-
2026 agreement with Universidad Rey Juan Carlos for the granting of direct
subsidies for the promotion and encouragement of research and technology
transfer, Line of Action A Emerging Doctors, under Project OrdeNGN (Ref.
F1177); the Spanish Ministry of Science and Innovation under grant PID2023-
1514620B-100; the European Union NextGenerationEU/PRTR, grant
TED2021-131699B-100 (MCIN/AEI/10.13039/501100011033, FEDER); and
INCIBE and the European Union NextGenerationEU/PRTR (C110.23).

Grace Villacrés
Universidad Rey Juan Carlos
Fuenlabrada, Spain
0000-0002-7934-1849

Claudina Rattaro
Universidad de la Reptiblica
Montevideo, Uruguay
0000-0001-7149-5934

Mihaela I. Chidean
Universidad Rey Juan Carlos
Fuenlabrada, Spain
0000-0001-9692-8871

station [1], [2]. These advancements are enabled by key
architectural innovations, like millimeter-wave spectrum, mas-
sive Multiple Input Multiple Output, and Network Function
Virtualization, among others [3]. These innovations provide
greater flexibility, improved network efficiency, and higher
energy performance, meeting the stringent requirements of
emerging applications such as augmented reality, autonomous
vehicles, and Industry 4.0 [4].

In 4G networks, mainly based on Long Term Evolution
(LTE) technology, mobile services were classified into en-
hanced Mobile Broadband (eMBB) and Machine-Type Com-
munications (MTC), with limited support for ultra-low latency
and high-reliability applications. Although LTE-Advanced im-
proved peak data rates and spectral efficiency, its architecture
remained constrained by inherent latency limitations and best-
effort service provisioning [5]. In contrast, 5G introduces a
service-based architecture designed to support three distinct
service categories: eMBB, ultra-Reliable Low Latency Com-
munications (URLLC), and massive MTC (mMTC) [6]. These
categories address the diverse performance demands of next-
generation applications, enabling gigabit-speed connectivity
for immersive media, real-time interactivity for industrial au-
tomation, and large-scale Internet of Things (IoT) deployments
with minimal power consumption [7]. 5G ensures service
differentiation by using network slicing and edge computing,
delivering tailored QoS levels to meet stringent application
requirements beyond the capabilities of LTE networks.

To gain deeper insights into the statistical behavior of
different service categories in 4G-LTE and 5G networks, we
leverage L-moments, a robust statistical tool to characterize the
shape and variability of probability distributions [8]. Unlike
conventional moment-based techniques, L-moments provide a
more reliable estimation of distributional properties, partic-
ularly in scenarios with heavy-tailed or skewed data, which
are common in network traffic analysis [9]. L-moments have
been employed in a wide range of scientific research domains,
including regional frequency [10], stock [11] and network
security analysis [12].

To statistically analyze the behavioral differences between
4G-LTE and 5G services, we use L-moments to generate L-



moment ratio diagrams, enabling a visual representation of
the distributional shapes across different service categories.
The differences in functionality and performance between 4G
and 5G networks have been studied from multiple perspec-
tives, providing valuable insights that contribute to optimizing
network deployments and improving QoS [13], [14]. The
approach considered in this work allows us to capture varia-
tions in key network performance metrics and assess how the
transition to 5G affects service differentiation. In particular, we
focus on characteristics related to bitrate, signal quality, and
user equipment mobility in multimedia traffic scenarios for
both 4G-LTE and 5G. Our results reveal significant differences
in some of these characteristics between the two technologies,
highlighting the impact of 5G’s architectural advancements on
service performance and network behavior.

The remainder of this paper is organized as follows. Sec-
tion II presents the datasets and methodologies considered
in this study. The analysis and results of the experiments
carried out using the described methodology are presented in
Section III. Section IV contains our concluding remarks and
points to some future work directions.

II. DATASETS AND METHODOLOGY

This section contains the datasets and the analysis meth-
ods used. Specifically, it describes both the 4G-LTE and
5G datasets, together with a brief review of the L-moments
statistical theory and the L-moment ratio diagram (LmomRD).

A. Datasets

Two different but quite related datasets are used in this
work: a 4G LTE [15] and a 5G one [16]. The main difference
lies in the specific technology used during the experiments,
while they share similarities in terms of the database structure
and the variables collected. These two databases are commonly
used for comparisons between 4G-LTE and 5G technologies;
however, the methodology employed in this study introduces
a novel approach based on the usage of the LmomRD. In the
following sections, both databases are briefly described.

1) 4G-LTE dataset: The 4G-LTE dataset includes traffic
traces collected through experiments conducted in Ireland [15].
It contains a wide range of features, including performance,
data rates and contextual information for five different mobility
patterns. The mobility patterns are: (i) static, experiments
conducted indoors with the user remaining in a fixed location;
(ii) pedestrian, in which the user walked through the city
of Cork, Ireland; (iii) bus, experiments conducted on public
transport in urban and suburban scenarios; (iv) car, where the
user drove through urban and suburban environments; and (v)
train, experiments performed on the Cork-Dublin and Cork-
Farranfore railway lines. The car mobility pattern has the
highest number of experiments (53 trials), while the static
and bus mobility patterns have the lowest counts (15 and 16
trials, respectively). Additionally, as highlighted in [15], the
train mobility pattern includes traces from multiple network
standards, not just 4G, due to the limited 4G coverage outside
urban areas at the time of data collection. The database

comprises a total of 135 experiments, amounting to more than
2,900 minutes of recorded data.

2) 5G dataset: The 5G dataset was collected in scenarios
comparable to those of the previous study [16]. In this case,
only the static and car mobility patterns are included: (i) static,
experiments performed indoors and in static car scenarios; and
(i1) car, trials included urban and suburban scenarios. Three
applications were considered: the download of a large file
(>200MB), and Netflix and Amazon Prime video streaming
services. The database includes a total of 83 experiments, with
a total duration of more than 3,100 minutes.

Readers are referred to the primary references such as [15]
and [16], and subsequent works for further details regarding
the datasets generation and specific characteristics.

The specific variables considered in this work are:

e« DL_bitrate feature measured at the application layer;

e COQTI for the channel state metrics;

« the velocity in km/h of the mobile device Speed,;

o the State of the download process, idle or active entries;
« the specific technology for each sample NetworkMode.

The selection of DIL_bitrate is based on its impact on re-
source allocation and critical role in determining the perceived
QoS for users. CQT is relevant to understand the performance
of the technology. Speed, State, and NetworkMode are
included for verification purposes.

B. L-moments and LmomRD

The statistical framework for our analysis is the L-moments
statistical theory [8], an approach that has already shown
advantages in the analysis of network flow data [12], [17]. It is
particularly beneficial in scenarios where classical approaches
reach their limitations, such as in the presence of high skew,
heavy tails, or outliers [18], [19].

L-moments, \; for i € N, are computed as linear combina-
tions of expected values of order statistics. One advantage is
that all L-moments exist for any variable with finite mean.
Also, interpretation of A; is analogous to that of classical
statistical moments. That is, A\; is also known as L-location and
is the average value of the dataset; Ay is known as L-scale and
describes the scale of dispersion. Standardized L-moments,
T, = Xi/x, for ¢ € 3,4,..., are bounded to —1 < 7, < 1
for ¢« > 3, facilitating comparison between distributions with
different locations and scales. The 73 and 74 are known as
L-skew and L-kurtosis, respectively. In addition, 72 = 2/x,
is know as Coefficient of L-Variation or L-CV and it is also
bounded by 0 < 75 < 1. For non-negative variables, L-CV
is equivalent to the Gini index [20]. When analyzing actual
datasets, like in this work, a key advantage of L-moment
theory is its highly accurate and precise estimators, which
are unbiased, robust to outliers, and exhibit low sampling
variability [8], [19], even for small sample sizes [8].

Within this framework it is common to include a graphical
tool to perform the exploratory analysis as well as for the
distribution selection. This tool is the LmomRD and it plots
tuples (usually pairs) of L-moment ratios [8], [18]. Readers



TABLE I
SUMMARY OF THE COMMON FEATURES OF THE CONSIDERED DATABASES
Mobility pattern
4G LTE | Static Car
5G Static Car Bus

Application pattern
File Download
File Download Netflix Amazon Prime

are referred to the primary references like [8] and subsequent
works for further details regarding the L-moments theory.

In this work, we estimate the 75, 73 and 74 for selected
dataset features and used them to analyze and compare the
behavior and performance of 4G-LTE and 5G networks. Fur-
thermore, we use the LmomRD tool for the result presentation
in different versions: using {72, 73, 74 } tuple and the respective
2D projections.

These tools from the L-moments statistical theory have been
widely used in state of the art works, in a wide variety of
research fields. Some examples include the regional frequency
analysis [19], [21], stock analysis [11], [22], mechanical pro-
cesses modeling [23], among others. L-moment-based studies
can also be found for network data analysis, where works
such as [12], [17], and [24] have shown the potential of this
framework for gaining deeper insights into specific application
behavior and serving as input for Machine Learning (ML)
algorithms in Distributed Denial-of-Service (DDoS) attack
classification. The results in [17] are a preliminary and limited
version of this study. In this work, we extend the analysis by
providing a direct comparison between two network standards
and incorporating a broader set of features.

III. ANALYSIS AND RESULTS

First, in this section we analyze database features to es-
tablish a common ground for fair comparisons. Next, we
detail data preprocessing, including sample discarding criteria.
Finally, we examine results for Speed, DF_bitrate, and
CQT features.

A. Common features in the 4G-LTE and 5G datasets

Although the experimental setup for both databases is sim-
ilar, a fair comparative analysis requires identifying the exact
common features. The first part of the analysis is dedicated to
identifying this common ground, while the rest of the study
focuses exclusively on these shared aspects of the data.

First, the 4G-LTE dataset includes data from two opera-
tors, while the 5G dataset is limited to one. By examining
network usage conditions in the 4G-LTE dataset [15] and the
applications described in the 5G dataset [16], we identify the
common operator and the subsequent analysis uses exclusively
traces collected from it.

Then, mobility patterns also differ between the datasets,
with only the static and car categories being shared. Addition-
ally, we consider the car and bus patterns in the 5G dataset as a
group, given their similarities in terms of urban mobility. The
usage of this subset of mobility patterns also eliminates the
issue with the train pattern that includes traces with mixed 3G
and 4G technologies [15]. Finally, regarding the application
patterns in the 5G dataset and their equivalence to the 4G-
LTE case, the only strictly comparable experimental setting
is the file download scenario. However, to provide a broader

comparison, all three scenarios are included in the analysis.
In conclusion, Table I provides a summary of the features
considered in the following analysis.

B. Datasets preprocessing

Data preprocessing starts with data exploration to detect any
missing values or erroneous outliers. This exploration revealed
several issues, which were discarded, as follows:

o entries with a State different from ' D’ are removed to
only consider active data transfers.

« entries with absurd velocities, such as > 2km/h in a static
scenario, are also removed.

« entries with a NetworkMode different from the one stated
in the corresponding database are also removed. This in-
cludes, entries with NetworkMode of EDGE, HSPA+,
HSUPA and UMTS in the 4G-LTE database and of HSPA+,
HSUPA, UMTS, LTE and HSDPA in the 5G database.

Table II provides a summary of the number of entries at
the beginning of the preprocessing stage and after each step.
Regarding the removal of entries with absurd velocities from
the database, only 253 samples fell into this category. Finally,
other missing data, for example, an ‘-’ instead of a number in
a given entry, were simply excluded from the specific analysis
of that variable. These cases total less than 200 instances.

The total amount of data available for 4G-LTE and 5G
technologies is considerably lower than originally expected,
as even as much as 40% of the samples were discarded
in some cases. In both cases, this is mainly because the
NetworkMode does not match the expected value. This fact
is not mentioned in any of the works describing these datasets,
except for the train mobility pattern. However, it could have a
significant impact on the interpretation and discussion of the
results, especially in analyses where the specific technology
plays a central role.

C. Speed feature

The mobile device’s Speed feature is relevant for both data
and results validation, specially for non-static patterns. We
compute the empirical values of 75, 73, and 74 for car and
bus patterns. The hypothesis is that these statistics should be
similar, as experiments were conducted in similar conditions,
where comparable urban mobility patterns are expected.

Figure 1 shows the obtained results', revealing that the
hypothesis is not fully satisfied. The main difference is for
Ty, dividing the results in three groups: (a) 4G-LTE car
and bus; (b) 5G car and File download and Amazon Prime
applications; and (c) 5G car and Netflix application. These
groups are distinguished by the three computed variables
showing significant differences in their statistical behavior.

Considering that urban mobility is constantly evolving, par-
ticularly over the two years between the construction of each
database, it is understandable that the speed statistics differ
between them. However, the differences between groups (b)
and (c) are quite unexpected. These can only be explained by
inconsistencies between consecutive trials during the database

Unteractive versions of the 3D subplot are available upon request.



TABLE 11
NUMBER OF ENTRIES IN THE DATABASES AFTER EACH PREPROCESSING. BOLD INDICATES THE FINAL COUNT OF AVAILABLE DATA FOR THE ANALYSIS.

Initial Samples with Samples from Samples with % of entries removed Samples with
samples State=D’ common Operator  proper technology due to technology reasonable Speed
4G Static 15261 15157 12859 12859 0% 12859
LTE Bus 10783 10366 6482 3875 40.21%
Car 75874 75721 58625 37240 38.08%
File download 15617 15552 15552 0% 15552
Static  Netflix 34608 11569 11213 3.07% 10960
5G Amazon Prime 34941 28373 23602 16.81% 23602
File download 27591 26751 13880 48.11%
Car Netflix 38224 16023 10714 33.13%
Amazon Prime 37730 29400 13590 53.77%
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Fig. 1. L-moment ratio diagram including the estimation for L-CV 73, the L-skew 73 and the L-kurtosis 74 of the Speed feature. Both 3D representations
along with the 2D projections for each pair of axes are plotted in subfigures. All subfigures share the legend.

construction, such as trials conducted at different times of
the day or in different areas of the city. As the relative
movement between the mobile device and the base station
affects the communication’s quality — primarily at the physical
level due to the Doppler effect [25] — the presence of these
distinct groups in the 5G database should be considered in the
subsequent analysis of channel quality metrics.

D. DI_bitrate feature

The DL_bitrate is likely the most relevant factor for
the user’s perceived QoS, particularly in streaming services,
as well as in download wait times and overall network usage.
This analysis allows a better understanding of the statistical
behavior of this feature and, in line with the objective of this
study, allows a comparison of the two considered technologies.
Figure 2 presents the obtained results for this feature'.

These results are consistent with previous findings [17],
indicating, for example, that the 5G File Download and Ama-
zon Prime scenarios share significant similarities regarding
the 73 and 74 values, while the Netflix scenario is markedly
different. The inclusion of 75 provides a significant added

value. The DIL_bitrate for Netflix has already shown high
L-skew and high L-kurtosis [17], however it also has high
values for L-CV, revealing a highly unpredictable statistical
behavior for this feature. Also, 75 is the metric that enables
even the differentiation between File Download and Amazon
Prime cases: although they share similar 73 and 74 values,
results show a higher range or 75 for the Amazon Prime case.
This fact shows higher dispersion in the DIL_bitrate, likely
caused by a non-uniform download rate for the streamed video.

The values of 75 are also relevant to distinguish features
in the 4G-LTE network, as observed in the static pattern.
The smallest 7o values are for the 4G-LTE car pattern. The
group of estimated 7; for this specific case is located around
the (0.47,0.25,0.11) centroid, revealing high L-CV — being
0.5 the case of maximum entropy among the values of the
feature [20] — along with a slightly positive L-skew and with
an L-kurtosis similar to a normal distribution.

This behavior suggests that users in the 4G-LTE car pat-
tern experience highly variable DL bitrates, likely due to
frequent handovers and fluctuating signal quality while moving
through different cells. These variations can negatively impact
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Fig. 2. L-moment ratio diagram including the estimation for L-CV 7o, the L-skew 73 and the L-kurtosis 74 of the DL_bitrate feature. Both 3D
representations along with the 2D projections for each pair of axes are plotted in subfigures. All subfigures share the legend.

streaming services and downloads, leading to buffering or
quality degradation due to bitrate adaptation. The slightly
positive L-skew indicates that, while low bitrates occur, users
still experience occasional high-bitrate periods, though not
consistently. The lack of extreme peaks or drops — due to
normal-like L-kurtosis — suggests a moderately stable network
performance, rather than abrupt degradation.

E. CQTI feature

The CQI is computed by the mobile device and utilized by
the network to dynamically adjust the transmission parameters.
It is an indicator of radio channel quality based on multiple
factors like SNR, interference, signal quality, etc. Therefore,
understanding its statistical behavior could provide valuable
insights to improve network management and optimize trans-
mission parameters. Figure 3 presents the obtained results'.

It is observed low value (< 0.22) for 75 across all patterns,
indicating significantly lower data variance for this feature
compared to other analyzed features. These values indicate
uniformity in the measured CQI values, which we consider
beneficial from a network management perspective.

Regarding the 75 and 74 metrics, three groups can be ob-
served: the complete 4G-LTE dataset, the static pattern in 5G,
and the car pattern in 5G. First, the L-skew is approximately
0.09 indicating a higher probability of lower CQI values and
that the dataset’s median is lower than its average, while the
L-kurtosis is close to 0.11 — close to the Gaussian distribution
value of 0.1226. Second, the L-skew is concentrated around
0, while the L-kurtosis is around 0.14, closely matching the
logistic distribution, where 73 = 0 and 74 = 1/6. The
third group exhibits a negative L-skew ranging approximately
between -0.25 and -0.1, along with a very low L-kurtosis

between 0 and 0.07. Data from 5G show a null or negative
L-skew, suggesting a higher probability of higher CQOI values
and that the median is greater than the average. These results
indicate that the CQTI for 4G-LTE is lower than that measured
in the 5G experiments.

At this stage, it would be ideal to determine whether this dif-
ference is directly attributable to the communication standard.
However, it is crucial to consider multiple confounding factors
and avoid the fallacy of equating correlation with causation.
First, the experiments for the two datasets were conducted at
different points in time, likely several years apart [15], [16].
Additionally, there are no guarantees that the experimental
conditions were perfectly comparable. For instance, the routes
followed in the car mobility pattern may have differed due to
changes in the urban mobility infrastructure of Cork.

IV. CONCLUSIONS AND FUTURE WORK

This work has provided a comparative analysis of 4G-LTE
and 5G networks using L-moment ratio diagrams, offering new
insights into their statistical behavior across different mobility
and service categories. Our results highlight significant dif-
ferences in DL bitrate, signal quality, and mobility patterns,
demonstrating the impact of 5G’s architectural advancements
on network performance.

Key findings indicate that 5G offers a more stable and
predictable bitrate distribution, particularly for high-mobility
users, while 4G-LTE networks show higher variability and less
consistent QoS. The L-CV and L-skew further confirm that
4G-LTE users in mobile scenarios experience more frequent
fluctuations in bitrate and a degraded QoS due to higher CQI
variability. Additionally, one of the challenges encountered
in this study was the presence of traffic in the dataset from
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Fig. 3. L-moment ratio diagram including the estimation for L-CV 79, the L-skew 73 and the L-kurtosis 74 of the CQI feature. Both 3D representations
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network standards other than the declared one, which could
introduce inconsistencies in the comparative analysis. This
highlights the difficulty of ensuring dataset homogeneity in
real-world network measurements and underscores the need
for the development of new datasets with stricter validation
and collection methodologies.

Future work could expand this analysis by incorporating
more mobility patterns and service types to gain a broader
perspective on network behavior. Adding QoS metrics such
as packet loss, jitter, and end-to-end latency would provide
a clearer understanding of how network conditions impact
user experience. Additionally, studying network performance
over time, particularly during peak and off-peak hours, could
help uncover relevant traffic trends. Finally, combining the
statistical insights from L-moments with ML techniques to
develop predictive models for traffic optimization could lead
to smarter, more adaptive network management strategies.
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