Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/52064
Cómo citar
Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Fernández, Santiago | - |
| dc.contributor.author | García Camargo, Romina Belén | - |
| dc.contributor.author | Eisen, Mark | - |
| dc.contributor.author | Ribeiro, Alejandro | - |
| dc.contributor.author | Larroca, Federico | - |
| dc.date.accessioned | 2025-10-14T18:42:18Z | - |
| dc.date.available | 2025-10-14T18:42:18Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.citation | Fernández, S., García Camargo, R., Eisen, M. y otros. On the transferability of graph neural networks for resource allocation in wireless networks [en línea]. EN: 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5. | es |
| dc.identifier.uri | https://hdl.handle.net/20.500.12008/52064 | - |
| dc.description.abstract | Effective radio resource management is crucial for optimizing both current and future wireless communication networks. Significant research has focused on identifying optimal resource allocation policies, which is a challenging mathematical problem. Consequently, learning-based algorithms, in particular those based on Graph Neural Networks (GNNs), have emerged as a practical and effective solution. However, most studies have relied on synthetic data for testing, which necessarily offers a simplified version of the complex propagation phenomena present in real-life wireless systems. In this paper we address this gap by evaluating these algorithms on a real-life dataset. Our experiments demonstrate that these solutions are indeed viable for real-world applications. Furthermore, since data for training will necessarily stem from the past, we verify that non-stationarities of the real-life networks do not negatively impact the trained algorithm’s performance (i.e. time transferability). Finally, given that deployed networks are typically designed to follow certain pre-established patterns, we analyze and confirm that these algorithms not only perform well but they can also be transferred between networks while maintaining strong performance (i.e. spatial transferability). These results confirm the viability of GNNs as practical tools for resource allocation in real wireless networks. | es |
| dc.format.extent | 5 p. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | en | es |
| dc.relation.ispartof | 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5. | es |
| dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
| dc.subject | Resource allocation | es |
| dc.subject | Graph neural networks | es |
| dc.subject | Transferability | es |
| dc.subject | Training | es |
| dc.subject | Wireless networks | es |
| dc.subject | Handover | es |
| dc.subject | Resource management | es |
| dc.subject | Wireless fidelity | es |
| dc.subject | Testing | es |
| dc.subject | Synthetic data | es |
| dc.title | On the transferability of graph neural networks for resource allocation in wireless networks | es |
| dc.type | Ponencia | es |
| dc.contributor.filiacion | Fernández Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.contributor.filiacion | García Camargo Romina Belén, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.contributor.filiacion | Eisen Mark, Johns Hopkins University | - |
| dc.contributor.filiacion | Ribeiro Alejandro, University of Pennsylvania, Philadelphia, USA | - |
| dc.contributor.filiacion | Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
| udelar.academic.department | Telecomunicaciones | es |
| udelar.investigation.group | Análisis de Redes, Tráficos y Estadísticas de Servicios (ARTES) | es |
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| FGERL24.pdf | Camera-Ready | 2,27 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons