english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52064 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFernández, Santiago-
dc.contributor.authorGarcía Camargo, Romina Belén-
dc.contributor.authorEisen, Mark-
dc.contributor.authorRibeiro, Alejandro-
dc.contributor.authorLarroca, Federico-
dc.date.accessioned2025-10-14T18:42:18Z-
dc.date.available2025-10-14T18:42:18Z-
dc.date.issued2024-
dc.identifier.citationFernández, S., García Camargo, R., Eisen, M. y otros. On the transferability of graph neural networks for resource allocation in wireless networks [en línea]. EN: 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/52064-
dc.description.abstractEffective radio resource management is crucial for optimizing both current and future wireless communication networks. Significant research has focused on identifying optimal resource allocation policies, which is a challenging mathematical problem. Consequently, learning-based algorithms, in particular those based on Graph Neural Networks (GNNs), have emerged as a practical and effective solution. However, most studies have relied on synthetic data for testing, which necessarily offers a simplified version of the complex propagation phenomena present in real-life wireless systems. In this paper we address this gap by evaluating these algorithms on a real-life dataset. Our experiments demonstrate that these solutions are indeed viable for real-world applications. Furthermore, since data for training will necessarily stem from the past, we verify that non-stationarities of the real-life networks do not negatively impact the trained algorithm’s performance (i.e. time transferability). Finally, given that deployed networks are typically designed to follow certain pre-established patterns, we analyze and confirm that these algorithms not only perform well but they can also be transferred between networks while maintaining strong performance (i.e. spatial transferability). These results confirm the viability of GNNs as practical tools for resource allocation in real wireless networks.es
dc.format.extent5 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.relation.ispartof2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectResource allocationes
dc.subjectGraph neural networkses
dc.subjectTransferabilityes
dc.subjectTraininges
dc.subjectWireless networkses
dc.subjectHandoveres
dc.subjectResource managementes
dc.subjectWireless fidelityes
dc.subjectTestinges
dc.subjectSynthetic dataes
dc.titleOn the transferability of graph neural networks for resource allocation in wireless networkses
dc.typePonenciaes
dc.contributor.filiacionFernández Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionGarcía Camargo Romina Belén, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionEisen Mark, Johns Hopkins University-
dc.contributor.filiacionRibeiro Alejandro, University of Pennsylvania, Philadelphia, USA-
dc.contributor.filiacionLarroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
udelar.academic.departmentTelecomunicacioneses
udelar.investigation.groupAnálisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FGERL24.pdfCamera-Ready2,27 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons