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Abstract—Effective radio resource management is crucial for
optimizing both current and future wireless communication
networks. Significant research has focused on identifying opti-
mal resource allocation policies, which is a challenging mathe-
matical problem. Consequently, learning-based algorithms, in
particular those based on Graph Neural Networks (GNNs),
have emerged as a practical and effective solution. However,
most studies have relied on synthetic data for testing, which
necessarily offers a simplified version of the complex propa-
gation phenomena present in real-life wireless systems. In this
paper we address this gap by evaluating these algorithms on
a real-life dataset. Our experiments demonstrate that these
solutions are indeed viable for real-world applications. Fur-
thermore, since data for training will necessarily stem from the
past, we verify that non-stationarities of the real-life networks
do not negatively impact the trained algorithm’s performance
(i.e. time transferability). Finally, given that deployed networks
are typically designed to follow certain pre-established patterns,
we analyze and confirm that these algorithms not only perform
well but they can also be transferred between networks while
maintaining strong performance (i.e. spatial transferability).
These results confirm the viability of GNNs as practical tools
for resource allocation in real wireless networks.

Index Terms—resource allocation, graph neural networks,
transferability

I. INTRODUCTION

Over recent years, wireless systems have seen a dramatic
rise in usage. As devices become more ubiquitous and data
transmission volumes expand, communication technologies
are continuously advancing. The deployment of 5G networks
and ongoing research into future 6G networks promise to
significantly enhance services and capabilities for users [1],
[2]. However, with technological advancements come greater
challenges in developing innovative and efficient network
management solutions.

Effective resource allocation, crucial for ensuring optimal
communication among users, is thus increasingly relevant,
even more so as network demands grow. The mathemat-
ical formulations required to address these challenges are
often complex and computationally costly, leading to the
adoption of various heuristic approaches. Notably, machine
learning techniques have demonstrated promising results in
parameterizing solutions to these problems [3]-[5]. Given
that communication networks are naturally represented as
graphs, Graph Neural Networks (GNNs) [6] have emerged as
a fitting architecture for these algorithms. While studies like

[7] and [8] have shown efficient and innovative GNN-based
solutions for the resource allocation problem, it is important
to note that these algorithms were evaluated on simulations
using synthetic data. However, there are important and chal-
lenging patterns of the propagation characteristics of a real
wireless channel that are very difficult to grasp in simulation.
These include correlations between channel gains (or even
non-stationarity), non-classical noise distributions due to
interference, a difficult to model dependency of attenuation
with distance, or simply miscalibrations that generate non-
symmetric channels [9]-[11].

It remains unclear whether these characteristics will pose
significant obstacles for learning-based algorithms or if
they will outperform other heuristics in these challenging
scenarios. A potentially more daunting issue is the ques-
tion of time transferability, as training data will inevitably
come from a previous time period compared to when the
algorithm is in operation. The previously mentioned non-
stationarities could represent a significant challenge in this
context. Additionally, a network operator managing multiple
networks would benefit from training on one network and
then applying the learned policy to other networks (i.e.,
spatial transferability).

In this work, we empirically demonstrate that GNN-based
resource allocation algorithms are indeed applicable to real-
world scenarios by evaluating them over a real-life dataset.
Most importantly, we affirmately answer two critical ques-
tions regarding the transferability of these solutions. First,
can a learning system trained on data from one period of
time effectively provide well-performing policies for a future
time period? Second, can a model learn relevant features
of a specific network and be applied to other networks
maintaining a strong performance? While transferability
between any two graphs does not necessarily hold (see
for instance [12]), the consistent design patterns observed
accross networks suggest that certain structural elements can
enable successful transferability of trained models.

The rest of the article is organized as follows. Section
II presents the problem we worked with. In Sec. III, we
describe the setup for the experiments, including details
about the dataset and necessary preprocessing. This section
also outlines the implemented algorithm and presents the
obtained results. Finally, Sec. IV presents some concluding
remarks and future work.



II. PROBLEM FORMULATION
A. Radio Resource Allocation

Consider a wireless system consisting of m transmitters
and n receivers. Each transmitter ¢ € {1,...,m} is linked to
a specific receiver r(i) € {1,...,n}. Multiple transmitters
can be associated to the same receiver. Time is divided into
slots, with connections between nodes in each slot charac-
terized by fading channel coefficients. Let h;;(t) denote the
channel between transmitter ¢ and receiver 7(j) at time slot
t. We arrange all channel coefficients in the matrix H(t),
with entries [H(t)];; = h;;(t). In order to represent the node
states we introduce variables x;(t) representing the random
state of communication between transmitter ¢ and receiver
(i) at time slot ¢. The states could represent for example the
processing capabilities of each agent or the amount of data
ready for transmission. These state variables come together
in the vector x(t) with entries [x(t)]; = x;(t).

The radio resource allocation problem we consider here is
to choose the power p; of each transmitter (i.e. a vector p(¢)
has to be chosen for each t), so that a certain network-wise
performance indicator is maximized. In this choice, there
are naturally certain constraints, typically in the form of a
power budget constraint. One way to address the problem
would be to use the set of random fading states H(¢)
and the set of random node states x(t) to determine an
instantaneous allocation policy p(t) = p(H(t),x(t)). This
policy is obtained by maximizing the performance indicator
function while respecting the constraints. Once the policy
p(t) is chosen, the system pair H(¢),x(t) produces an
instantaneous vector reward r(t).

However, this strategy implies a high computational cost
and potentially poses an infeasible computational burden be-
cause it requires solving a constrained optimization problem
for each instance of the channel and node states. Moreover,
in fast fading scenarios, the instantaneous performance of
the system tends to vary very quickly, and users experience
instead its long-term average across time slots. Let us
consider the sum over all transmitters of their Shannon
capacity as the network indicator, and assume that they may
either transmit with power pg or not at all. Then, taking the
above into consideration, one can formulate the following
optimization problem with average power constraints:
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In (1), we seek to find a binary power allocation policy that
maximizes the sum of rate capacities subject to two average
value constraints. The first is a reward value constraint,
where we use the capacity experienced by each transmitter
over an AWGN channel with noise power o2 and interfer-
ence among users. The second is a power constraint, where
we restrict the average power consumed by all transmitters
in the network. Several other forms of the radio resource

allocation problem exist, and it is rather straightforward to
modify (1) to consider them (see for instance [7], [13]).
However, the formulation in (1) is a very popular and well
studied problem, which is the reason behind our choice.

B. Learning to Solve the Radio Resource Allocation Prob-
lem

Generally, there is no exact solution for problem (1). One
possible heuristic is to use data-driven learning techniques
to parameterize and learn the resource allocation policy.
However, both the performance indicator function as well
as the constraints are based on expected values, posing
a significant challenge for traditional learning algorithms.
Expected or mean rewards are the subject of Reinforcement
Learning [14]. However, learning constrained policies is
a challenging task, which we will tackle through a dual
representation of the problem.

To this end, consider the Lagrangian of the constrained
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and p are now ergodic averages of the Shannon capacity and
transmitted power (e.g. for an observed period of 7' times-
lots, p; = Z;T:l p;(t)/T). Following [7], we will take a ran-
dom policy provided by a parametric function ®(H, x; o).
That is to say, for each time-step ¢, ®(H(t),x(¢); o) will
provide the probability for each node to either transmit at
power py or not transmit in that particular time-step. This
function will be learned through a modified version the RE-
INFORCE algorithm, a classic policy gradient method [14],
[15]. For each iteration, we consider a batch of graphs and
sample the power allocation policy. The rewards for each
time slot are computed, as well as the accumulated rewards.
These are then used in order to update the dual variable
(through a simple gradient ascent) as well as the parameters
o (through REINFORCE). This procedure is summarized in
Algorithm 1.

Algorithm 1 REINFORCE algorithm with constraints
Initialize wo, g
for iteration j in 1, ..., num_iterations do
Run iteration:
Sample H; and p; ~ ®(H;; x; o)
Compute rewards R, for times ¢ in {1,...,T},
Ri=Y7 vl — - ulrt)
Compute accumulated rewards R; = ZZT:t R,
Loss(aj) = — Zthl R;log(®(Hy; x; o))
a1  Adam(Loss(a;))
fy1 = g — € u(ry)

Where u is the constraint function associated with the
available power in the network. The considered family of
functions ®(H, x; ) from where we will choose the re-
source allocation policy are GNNs. The decision is supported
by their attractive properties such as transferability (i.e. they
can generalize patterns across different graph structures),
and stability to deformations of the underlying graph (i.e.
small changes in the graph result in small changes of the
output) [16].



In order to properly use this architecture we must rein-
terpret the following objects. First, the node state vector
x € R™ will be considered a signal supported on nodes
i = 1,...,m. Second, the channel matrix H € R™*™
will be used as an adjacency matrix representation of each
graph. In a nutshell, GNNs consists of a concatenation of
several layers consisting of a graph convolutional filters
supported on the graph matrix H followed by a pointwise
non-linearity o. That is to say, a single layer is simply y =
o (ZkK:_Ol Hkxak). In this case, a = (ap, ay, ..., a 1) is
the set of K filter coefficients.

III. EXPERIMENTS

In order to evaluate the performance of the proposed
solution, a series of experiments were conducted. A real
dataset was analyzed and preprocessed for the work. We
first introduce the characteristics of said dataset. We then
describe the implementation of Algorithm 1 and the settings
employed for the tests, as well as presenting the obtained
results.

A. Dataset

The dataset used in these experiments was provided by
Plan Ceibal [9]. It contains data from various school build-
ings across Uruguay, ranging from multi-story buildings,
housing hundreds of students to small rural schools with only
a few dozen students. The network graphs were constructed
with double-band WiFi Access Points (APs) as nodes and
the wireless links between them as edges. The initial dataset
comprised information on the transmission power, the chan-
nels used and the Radio Signal Strength Indicator (RSSI)
measurements that each node detects from others within
range. Data were collected throughout the school year 2018,
with samples taken every hour from March to December.

Preprocessing of the dataset was required for the data to
be suitable for the experiments. Most of the datafields were
removed, retaining essentially the transmission and reception
power, so as to compute the attenuation between nodes.
These values were used to construct the adjacency matrix
of the graph. In particular, in order to construct the channel
matrix H, it was necessary to define for each transmitter ¢ the
corresponding pair (7). The criterion used towards this end
was to assigned each transmitter the receiver with the best
channel condition. This is illustrated with an example in Fig.
1. In addition to dropping irrelevant fields, school buildings
with missing data for several months or with corrupted
information were excluded from the analysis. Ultimately, the
dataset included data from 1,424 buildings, with network
sizes up to 33 APs. Experiments were conducted using
network states for both the 2.4 GHz and the 5 GHz frequency
bands, employing various scaling factors to account for
differences in channel power values.

B. Numerical Results

The architecture consists of a 5-layer GNN, using a filter
of order K = 3. The dataset is organized in batches of 64
graphs. The same learning rate was used both for updating
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Fig. 1. Example of a small network where we show channel matrix
coefficients h;; and transmitter-receiver pairs 7(z) using colored edges.
For example, hi11 represents the channel gain between transmitter 1 and
its receiver, whereas hi2 represents the channel gain between transmitter
1 and the receiver of transmitter 2.

the dual variable and the weights of the neural network. The
step was defined as 5 x 1074, The ADAM optimizer was
used for updating the GNN weights a [17].

The experiments were run using a 20-node graph as
reference, so as to evaluate the algorithm on a graph of
considerable size within the dataset. The graph from the
building with ID 856 was considered for training, using
several other school buildings for validation of the trans-
ferability properties of our algorithm.!

In order to compare and grasp a better idea of the perfor-
mance of the algorithm, various baseline implementations
were conducted. The first, referenced to as baseline 1,
defines a random amount of transmitting nodes using a
probability 0 = P,,,.../(mpo), Here, Py, is the available
power, py is the power used for the transmission of a
single node and m is the amount of nodes considered.
This baseline divides the mean available power between
the nodes that are set to transmit. A second baseline,
baseline 2, divides the available power equally between all
network nodes, each assigned P,,,./m. This implies that
all nodes are transmitting throughout the entire experiment.
It is reasonable to expect that baseline I will perform better
than baseline 2, given that not all nodes are transmitting
at all times. Finally, we consider a policy variation of the
popular WMMSE heuristic [18]. This baseline consists on
running the traditional WMMSE algorithm on the graph for
each timestep independently. This yields a policy vector
Popt(t) which represents the optimal power combination
given the state of the network and does not necessarily
need to be a binary policy. Then, in order to conduct a fair
comparison and to satisfy the average power constraint, we
define node probabilities for transmission using the optimal
allocation. Let 6; = (popti Pmaz)/(Po1T popt) for all nodes
in the network. This implies that nodes that received higher
power through the traditional WMMSE algorithm will have
a higher probability of transmission.

The model from the proposed solution was trained using
data from the months of March through August. In Fig.
2, the sum capacity throughout the experiment is recorded

IThe code for our experiments is available in our repository:
https://github.com/sfernandezr/wireless-learning
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Fig. 2. Training process of the proposed algorithm. Specifically, the
evolution of the sum capacity is presented. Baselines are considered for
comparison. The REINFORCE algorithm outperforms them all.

and compared to the previously presented baselines. The
REINFORCE algorithm outperforms the baselines after only
a few iterations, resulting in an increase of around 20%.

In order to test spatial and temporal transferability prop-
erties two experiments were conducted. In both of these
experiments the model weights were trained using school
building 856 and then transferred to various other schools.
Specifically, the following schools were considered: building
84 (26 APs), building 814 (24 APs), building 67 (22 APs),
building 800 (15 APs), building 838 (15 APs), building
1141 (15 APs), building 201 (10 APs) and building 211 (10
APs). For each of these schools, the model was validated.
A first experiment with aim to test spatial transferability
was conducted. The model was trained with data during the
months of March to December and then validated on this
same time period. A second experiment attempted to test
not only spatial but also temporal transferability. In this case
the model was trained with data during the months of March
to August and then validated with data from September to
December.

The results of the transferability experiments are shown
in Fig.3 and Fig.4. The first corresponding to spatial trans-
ferability and the latter corresponding to both spatial and
temporal transferability scenarios. The experiments aim to
compare the performance of the REINFORCE algorithm to
the corresponding baselines. Not only does the proposed
algorithm continue to outperform the baselines in nearly all
schools, but it also succeeds in performing well in various
scenarios. Note that the proposed algorithm outperforms
all other baselines except for a single school building (the
smallest one, where the WMMSE baseline slightly outper-
forms the learning algorithm). In general, the REINFORCE
algorithm maintains strong performance when applied to
both larger and smaller sized networks, in comparison to
the original 20-node network.
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Fig. 3. Resulting box plots of spatial transferability experiments. The model
is trained on building with ID 856 (with 20 nodes) from March to December.
It is then validated in other school buildings during the same months. The
GNN-based resource allocation algorithm maintains a good performance
even in networks it has not been trained on.
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Fig. 4. Resulting box plots of the spatial and time transferability exper-
iments. The model is trained on building with ID 856 (with 20 nodes)
from March to August. It is then validated in other school buildings during
the months of September through December. The GNN-based resource
allocation algorithm maintains a good performance even in networks it has
not been trained on.

IV. CONCLUSIONS

We considered the problem of learning optimal resource
allocation policies in wireless networks. A possible solution
for this problem was discussed and implemented, with the
intention of testing said solution in a real-world dataset.
In particular, a data-driven learning technique based on the
REINFORCE algorithm was studied, which uses GNNs as
the learning architecture. It was shown that the implemented
algorithm results in good performance, specifically in com-
parison to the defined baselines. Most importantly, both time
and spatial transferability experiments were conducted, and
strong performance results were maintained when testing in
different scenarios and time periods.

For future work, we plan to consider other more challeng-
ing variants of the resource allocation problem and evalu-
ate them on this real-life dataset. For instance, frequency
selection policies or user assignment and handover. In this
case, we may compare the learned policy with that of the



propietary algorithm used by the Wi-Fi controller.
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