english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/51964 Cómo citar
Título: Assessing a domain-adaptive deployment workflow for selective audio recording in wildlife acoustic monitoring
Autor: Azziz, Julia
Lema, Josefina
Anzibar Fialho, Maximiliano
Ziegler, Lucía
Steinfeld, Leonardo
Rocamora, Martín
Tipo: Ponencia
Palabras clave: Domain shift, Bioacoustics, Passive acoustic monitoring
Fecha de publicación: 2025
Resumen: Passive acoustic monitoring is a valuable tool for wildlife research, but scheduled recording often results in large volumes of audio, much of which may not be of interest. Selective audio recording, where audio is only saved when relevant activity is detected, offers an effective alternative. In this work, we leverage a low-cost embedded system that implements selective recording using an on-device classification model and evaluate its deployment for penguin vocalization detection. To address the domain shift between training and deployment conditions (e.g. environment, recording device), we propose a lightweight domain adaptation strategy based on fine-tuning the model with a small amount of location-specific data. We replicate realistic deployment scenarios using data from two geographically distinct locations, Antarctica and Falkland Islands, and assess the impact of fine-tuning on classification and selective recording performance. Our results show that fine-tuning with location-specific data substantially improves generalization ability and reduces both false positives and false negatives in selective recording. These findings highlight the value of integrating model fine-tuning into field monitoring workflows, in order to improve the reliability of acoustic data collection.
Editorial: DCASE
EN: DCASE 2025 Proceedings of the 10th Workshop on Detection and Classification of Acoustic Scenes and Events, Barcelona, Spain, 30-31 oct 2025, pp. 200-204.
Citación: Azziz, J., Lema, J., Anzibar Fialho, M. y otros. Assessing a domain-adaptive deployment workflow for selective audio recording in wildlife acoustic monitoring [en línea]. EN: DCASE 2025 Proceedings of the 10th Workshop on Detection and Classification of Acoustic Scenes and Events, Barcelona, Spain, 30-31 oct 2025, pp. 200-204.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Procesamiento de Audio (GPA)
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
ALAZSR25.pdfVersión publicada2,24 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons