Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/51964
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Azziz, Julia | - |
dc.contributor.author | Lema, Josefina | - |
dc.contributor.author | Anzibar Fialho, Maximiliano | - |
dc.contributor.author | Ziegler, Lucía | - |
dc.contributor.author | Steinfeld, Leonardo | - |
dc.contributor.author | Rocamora, Martín | - |
dc.date.accessioned | 2025-10-08T12:09:54Z | - |
dc.date.available | 2025-10-08T12:09:54Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Azziz, J., Lema, J., Anzibar Fialho, M. y otros. Assessing a domain-adaptive deployment workflow for selective audio recording in wildlife acoustic monitoring [en línea]. EN: DCASE 2025 Proceedings of the 10th Workshop on Detection and Classification of Acoustic Scenes and Events, Barcelona, Spain, 30-31 oct 2025, pp. 200-204. | es |
dc.identifier.uri | https://dcase.community/workshop2025/proceedings | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/51964 | - |
dc.description.abstract | Passive acoustic monitoring is a valuable tool for wildlife research, but scheduled recording often results in large volumes of audio, much of which may not be of interest. Selective audio recording, where audio is only saved when relevant activity is detected, offers an effective alternative. In this work, we leverage a low-cost embedded system that implements selective recording using an on-device classification model and evaluate its deployment for penguin vocalization detection. To address the domain shift between training and deployment conditions (e.g. environment, recording device), we propose a lightweight domain adaptation strategy based on fine-tuning the model with a small amount of location-specific data. We replicate realistic deployment scenarios using data from two geographically distinct locations, Antarctica and Falkland Islands, and assess the impact of fine-tuning on classification and selective recording performance. Our results show that fine-tuning with location-specific data substantially improves generalization ability and reduces both false positives and false negatives in selective recording. These findings highlight the value of integrating model fine-tuning into field monitoring workflows, in order to improve the reliability of acoustic data collection. | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | DCASE | es |
dc.relation.ispartof | DCASE 2025 Proceedings of the 10th Workshop on Detection and Classification of Acoustic Scenes and Events, Barcelona, Spain, 30-31 oct 2025, pp. 200-204. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Domain shift | es |
dc.subject | Bioacoustics | es |
dc.subject | Passive acoustic monitoring | es |
dc.title | Assessing a domain-adaptive deployment workflow for selective audio recording in wildlife acoustic monitoring | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Azziz Julia, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Lema Josefina, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Anzibar Fialho Maximiliano, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Ziegler Lucía, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Steinfeld Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Rocamora Martín, Universitat Pompeu Fabra, Barcelona, Spain | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Procesamiento de Señales | es |
udelar.investigation.group | Procesamiento de Audio (GPA) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ALAZSR25.pdf | Versión publicada | 2,24 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons