Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/51964
Cómo citar
Título: | Assessing a domain-adaptive deployment workflow for selective audio recording in wildlife acoustic monitoring |
Autor: | Azziz, Julia Lema, Josefina Anzibar Fialho, Maximiliano Ziegler, Lucía Steinfeld, Leonardo Rocamora, Martín |
Tipo: | Ponencia |
Palabras clave: | Domain shift, Bioacoustics, Passive acoustic monitoring |
Fecha de publicación: | 2025 |
Resumen: | Passive acoustic monitoring is a valuable tool for wildlife research, but scheduled recording often results in large volumes of audio, much of which may not be of interest. Selective audio recording, where audio is only saved when relevant activity is detected, offers an effective alternative. In this work, we leverage a low-cost embedded system that implements selective recording using an on-device classification model and evaluate its deployment for penguin vocalization detection. To address the domain shift between training and deployment conditions (e.g. environment, recording device), we propose a lightweight domain adaptation strategy based on fine-tuning the model with a small amount of location-specific data. We replicate realistic deployment scenarios using data from two geographically distinct locations, Antarctica and Falkland Islands, and assess the impact of fine-tuning on classification and selective recording performance. Our results show that fine-tuning with location-specific data substantially improves generalization ability and reduces both false positives and false negatives in selective recording. These findings highlight the value of integrating model fine-tuning into field monitoring workflows, in order to improve the reliability of acoustic data collection. |
Editorial: | DCASE |
EN: | DCASE 2025 Proceedings of the 10th Workshop on Detection and Classification of Acoustic Scenes and Events, Barcelona, Spain, 30-31 oct 2025, pp. 200-204. |
Citación: | Azziz, J., Lema, J., Anzibar Fialho, M. y otros. Assessing a domain-adaptive deployment workflow for selective audio recording in wildlife acoustic monitoring [en línea]. EN: DCASE 2025 Proceedings of the 10th Workshop on Detection and Classification of Acoustic Scenes and Events, Barcelona, Spain, 30-31 oct 2025, pp. 200-204. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Procesamiento de Audio (GPA) |
Licencia: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ALAZSR25.pdf | Versión publicada | 2,24 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons