Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/51823
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Larroca, Federico | - |
dc.contributor.author | Bermolen, Paola | - |
dc.contributor.author | Fiori, Marcelo | - |
dc.contributor.author | Mateos, Gonzalo | - |
dc.date.accessioned | 2025-10-01T14:34:03Z | - |
dc.date.available | 2025-10-01T14:34:03Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Larroca, F., Bermolen, P., Fiori, M. y otros. Change point detection in weighted and directed random dot product graphs [en línea]. EN: 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23-27 aug. 2021, pp. 1-5. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/51823 | - |
dc.description.abstract | Given a sequence of possibly correlated randomly generated graphs, we address the problem of detecting changes on their underlying distribution. To this end, we will consider Random Dot Product Graphs (RDPGs), a simple yet rich family of random graphs that subsume Erd¨os-R´enyi and Stochastic Block Model ensembles as particular cases. In RDPGs each node has an associated latent vector and inner products between these vectors dictate the edge existence probabilities. Previous works have mostly focused on the undirected and unweighted graph case, a gap we aim to close here. We first extend the RDPG model to accommodate directed and weighted graphs, a contribution whose interest transcends change-point detection (CPD). A statistic derived from the nodes’ estimated latent vectors (i.e., embeddings) facilitates adoption of scalable geometric CPD techniques. The resulting algorithm yields interpretable results and facilitates pinpointing which (and when) nodes are acting differently. Numerical tests on simulated data as well as on a real dataset of graphs stemming from a Wi-Fi network corroborate the effectiveness of the proposed CPD method. | es |
dc.description.sponsorship | ANII Beca FMV 3 2018 1 148149 | es |
dc.description.sponsorship | NSF Beca CCF-1750428 y ECCS-1809356 | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | EUSIPCO | es |
dc.relation.ispartof | 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23-27 aug. 2021, pp. 1-5. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Change-point detection | es |
dc.subject | Graph representation learning | es |
dc.subject | Node embeddings | es |
dc.subject | Wireless networks | es |
dc.title | Change point detection in weighted and directed random dot product graphs | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Bermolen Paola, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Fiori Marcelo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Mateos Gonzalo, University of Rochester, Rochester, NY, USA | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.academic.department | Telecomunicaciones | es |
udelar.investigation.group | Análisis de Redes, Tráficos y Estadísticas de Servicios (ARTES) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
LBFM21.pdf | Versión definitiva | 416,2 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons