english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/51823 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLarroca, Federico-
dc.contributor.authorBermolen, Paola-
dc.contributor.authorFiori, Marcelo-
dc.contributor.authorMateos, Gonzalo-
dc.date.accessioned2025-10-01T14:34:03Z-
dc.date.available2025-10-01T14:34:03Z-
dc.date.issued2021-
dc.identifier.citationLarroca, F., Bermolen, P., Fiori, M. y otros. Change point detection in weighted and directed random dot product graphs [en línea]. EN: 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23-27 aug. 2021, pp. 1-5.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/51823-
dc.description.abstractGiven a sequence of possibly correlated randomly generated graphs, we address the problem of detecting changes on their underlying distribution. To this end, we will consider Random Dot Product Graphs (RDPGs), a simple yet rich family of random graphs that subsume Erd¨os-R´enyi and Stochastic Block Model ensembles as particular cases. In RDPGs each node has an associated latent vector and inner products between these vectors dictate the edge existence probabilities. Previous works have mostly focused on the undirected and unweighted graph case, a gap we aim to close here. We first extend the RDPG model to accommodate directed and weighted graphs, a contribution whose interest transcends change-point detection (CPD). A statistic derived from the nodes’ estimated latent vectors (i.e., embeddings) facilitates adoption of scalable geometric CPD techniques. The resulting algorithm yields interpretable results and facilitates pinpointing which (and when) nodes are acting differently. Numerical tests on simulated data as well as on a real dataset of graphs stemming from a Wi-Fi network corroborate the effectiveness of the proposed CPD method.es
dc.description.sponsorshipANII Beca FMV 3 2018 1 148149es
dc.description.sponsorshipNSF Beca CCF-1750428 y ECCS-1809356es
dc.format.extent5 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherEUSIPCOes
dc.relation.ispartof2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23-27 aug. 2021, pp. 1-5.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectChange-point detectiones
dc.subjectGraph representation learninges
dc.subjectNode embeddingses
dc.subjectWireless networkses
dc.titleChange point detection in weighted and directed random dot product graphses
dc.typePonenciaes
dc.contributor.filiacionLarroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionBermolen Paola, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionFiori Marcelo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionMateos Gonzalo, University of Rochester, Rochester, NY, USA-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentTelecomunicacioneses
udelar.investigation.groupAnálisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
LBFM21.pdfVersión definitiva416,2 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons