Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/51574
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Castro, Graciana | - |
dc.contributor.author | Hoffman, Romina | - |
dc.contributor.author | Musitelli, Mateo | - |
dc.contributor.author | Fariello, María Inés | - |
dc.contributor.author | Lecumberry, Federico | - |
dc.date.accessioned | 2025-09-11T12:12:02Z | - |
dc.date.available | 2025-09-11T12:12:02Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Castro, G., Hoffman, R., Musitelli, M. y otros. Transformers for genomic prediction : working with Yeast and Wheat traits [en línea] Póster, 2025. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/51574 | - |
dc.description.abstract | AI is becoming state-of-the-art across scientific fields, giving novel solutions to age-old problems. In genomic prediction, Machine Learning methods could not outperform linear regressions in a general way yet, but are becoming closer. An important feature when working with genomic data, which is non other than a long sequence of information, is to account for the linkage disequilibrium, i.e. dependencies between genome variations that do not need to be close in the genome, and variate with respect to the reference genome. To explode this feature, we evaluate Transformers, known for their great performance with long sequences. We worked with two databases: the first one composed of Yeast SNPs seeking to predict the growth of each individual in two different environments and the second one composed of Wheat SNPs seeking to predict four phenotypes. We compare the results with different linear models (BRR, BayesA, BayesB, BayesC and BayesL) typically used for genomic prediction and also with XGBoost, commonly known to have well performance in the area. We conclude that Transformers have shown to be a competitive model for genomic prediction, even tho it does not achieve the state-of-the-art yet. | es |
dc.description.sponsorship | ANII IA_1_2022_1_173411. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.relation.ispartof | Póster presentado en la Conferencia : KHIPU 2025, Santiago, Chile. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Genomic prediction | es |
dc.subject | Deep Learning | es |
dc.subject | Transformers | es |
dc.title | Transformers for genomic prediction : working with Yeast and Wheat traits | es |
dc.type | Póster | es |
dc.contributor.filiacion | Castro Graciana, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Hoffman Romina, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Musitelli Mateo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
CHMLF25.pdf | Póster | 952,39 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons