english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/51284 Cómo citar
Título: Selective audio recording device for wildlife research using embedded machine learning
Autor: Azziz, Julia
Lema, Josefina
Steinfeld, Leonardo
Acevedo, Emiliano
Rocamora, Martín
Tipo: Ponencia
Palabras clave: Wildlife monitoring, Sound recording, Embedded machine learning, Low-power, Real-time audio classification, Power demand, Event detection, Wildlife, Memory management, Prototypes, Machine learning, Real-time systems, Acoustics, Monitoring, Testing
Fecha de publicación: 2025
Resumen: Wildlife monitoring through sound recording has become an essential tool in ecological research. However, challenges such as limited power and memory constraints hinder large-scale, long-term deployment of monitoring devices. To address these limitations, this paper presents a novel wildlife monitoring device that integrates embedded machine learning (ML) for event-triggered recording. This system captures only relevant sounds, leading to a more efficient memory usage and power consumption than the traditional fixed-schedule scheme, and a significantly larger percentage of useful data collected. The device features a low-cost, low-power hardware design equipped with a digital microphone, dual MicroSD storage and a flexible power system. Its embedded ML component enables real-time audio classification and selective recording triggered by specific acoustic events. Preliminary testing using a prototype device demonstrated effective detection of penguin vocalizations, achieving an average current intake ranging from 4.06 to 6.02 mA, depending on the operational mode. This enables the device to be powered by a small, cost-effective rechargeable battery and solar power, supporting near-perpetual operation. The proposed system represents a step forward in deploying low-cost, low-power scalable devices for acoustic wildlife monitoring.
EN: 2025 IEEE Latin Conference on IoT (LCIoT), Fortaleza, Brazil, 23-25 apr. 2025, pp. 65-68.
Citación: Azziz, J., Lema, J., Steinfeld, L. y otros. Selective audio recording device for wildlife research using embedded machine learning [en línea]. EN: 2025 IEEE Latin Conference on IoT (LCIoT), Fortaleza, Brazil, 23-25 apr. 2025, pp. 65-68. DOI: 10.1109/LCIoT64881.2025.11118542.
Departamento académico: Procesamiento de Señales y Electrónica
Grupo de investigación: Procesamiento de Audio (GPA) y Microelectrónica
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
ALSAR25.pdfVersión de los autores417,58 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons