Selective Audio Recording Device for Wildlife
Research Using Embedded Machine Learning

Julia Azziz*, Josefina Lema*, Leonardo Steinfeld*, Emiliano Acevedo* and Martin Rocamora* "
*Facultad de Ingenieria, Universidad de la Republica, Montevideo, Uruguay
TMusic Technology Group, Universitat Pompeu Fabra, Barcelona, Spain
Email: {jazziz, jlema, leo, eacevedo} @fing.edu.uy, martin.rocamora@upf.edu

Abstract—Wildlife monitoring through sound recording has
become an essential tool in ecological research. However, chal-
lenges such as limited power and memory constraints hinder
large-scale, long-term deployment of monitoring devices. To
address these limitations, this paper presents a novel wildlife
monitoring device that integrates embedded machine learning
(ML) for event-triggered recording. This system captures only
relevant sounds, leading to a more efficient memory usage and
power consumption than the traditional fixed-schedule scheme,
and a significantly larger percentage of useful data collected.
The device features a low-cost, low-power hardware design
equipped with a digital microphone, dual MicroSD storage and
a flexible power system. Its embedded ML component enables
real-time audio classification and selective recording triggered
by specific acoustic events. Preliminary testing using a prototype
device demonstrated effective detection of penguin vocalizations,
achieving an average current intake ranging from 4.06 to 6.02
mA, depending on the operational mode. This enables the device
to be powered by a small, cost-effective rechargeable battery and
solar power, supporting near-perpetual operation. The proposed
system represents a step forward in deploying low-cost, low-
power scalable devices for acoustic wildlife monitoring.

Index Terms—wildlife monitoring, sound recording, embedded
machine learning, low-power, real-time audio classification

I. INTRODUCTION

The monitoring of wildlife is essential for understanding
biodiversity, ecosystem dynamics, and the effects of environ-
mental changes. Among the various monitoring techniques,
sound recording has proven to be a powerful tool, allowing
researchers to capture a wide range of ecological interactions,
from animal calls to environmental sounds that are indicative
of habitat conditions. However, deploying sound recording
devices in the wild presents several challenges, including
limited power resources, high operational costs, and the sheer
volume of unfiltered data generated. These challenges make
it difficult for long-term and large-scale studies to capture
meaningful data without extensive manual intervention.

Traditional monitoring approaches use passive acoustic
monitoring (PAM) devices that continuously capture audio
data on a fixed schedule [1]. For this task, several commercial
devices are available. Among the resources available to guide
the selection of PAM equipment, the World Wildlife Fund
provides a comprehensive list of hardware and software com-
ponents in its guidelines for PAM in ecology and conservation
[2]. According to this guide, the most commonly used com-
mercial systems are the Song Meter by Wildlife Acoustics [3]

and the BAR series by Frontier Labs [4], both highly regarded
for their recording quality. These commercial PAM devices
support high-fidelity recording, which aligns well with the
needs of bioacoustic monitoring projects. However, their high
cost, often exceeding 800 USD per unit, can be prohibitive
for large-scale deployments where many recording points are
required. In response to this, the AudioMoth [5], developed
by Open Acoustic Devices, offers a more affordable alter-
native at only 97 USD. With comparable features, including
open-source support, it provides flexibility for adaptation and
integration into custom monitoring projects.

In addition, the AudioMoth offers a triggered recording
mode, where audio samples are only recorded when triggered
by a specific event. This trigger can be either the signal
amplitude or the response within a specific frequency band
surpassing a given threshold. However, such triggers are
inherently limited, as they are not necessarily indicative of
events of interest. For example, loud ambient sounds may
exceed the amplitude threshold despite not being relevant to
the study. As a result, these trigger mechanisms may still
generate substantial amounts of unnecessary data.

In this paper, we introduce a novel design for a wildlife
sound recording device that utilizes embedded machine learn-
ing (ML) to automatically detect and record only relevant
sounds. By integrating an ML model into the device, we
can minimize unnecessary recordings, thereby extending the
device’s operational lifespan and optimizing memory usage.
This selective recording method ensures that only essential
data is captured, reducing the need for post-processing while
conserving battery life. We present the design and implemen-
tation and analyze preliminary measurements that showcase
the device’s performance.

This work is organized as follows: Section II presents the
overall system architecture, describing all hardware, firmware
and machine learning components. Section III presents ex-
perimental results, including model performance metrics and
power consumption measurements. Section IV further analy-
ses the current implementation and delves into future work.
Finally, Section V concludes the paper.

II. SYSTEM DESCRIPTION

The device was designed to balance low-power operation,
efficient memory usage and reliable audio processing. Given

the constraints of continuous field deployment, key design
considerations included optimizing power consumption, en-
suring enough memory for high-quality audio data and meet-
ing the timing requirements for real-time activity detection.
The following sections outline the hardware, firmware, and
machine learning model used in the device.

A. Hardware

Figure 1 displays the proposed overall hardware architec-
ture. The device is based on an EFR32MG24 microcontroller,
chosen primarily due to its integrated Bluetooth Low Energy
(BLE) capabilities and hardware accelerator. The system
employs a digital ICS-43434 microphone and stores audio
data using direct memory access (DMA), in order to offload
the transfer process from the microcontroller. Among the
microphone’s specifications, we highlight its low power mode,
which it can enter automatically when the sampling frequency
is between 6.25 and 18.75 kHz.

MicroSD

Fig. 1. Diagram showing the overall hardware architecture.

The board design includes two MicroSD card slots with
separate SPI and power supply lines. This dual-slot configura-
tion supports the use of either one or both cards; when the first
one reaches capacity, data storage automatically switches to
the second one. This setup helps prevent memory shortages in
long-term deployments, ensuring continuous data recording.

A charging circuit was integrated into the PCB, designed
around Texas Instruments’ BQ24074 battery charger and
specifically designed for flexibility in power sources. The
system is primarily designed for use with a 1 W solar panel,
charging a 3.7 V, 2500 mAh battery for off-grid functional-
ity. However, the circuit also includes a USB input option,
allowing for operation when solar power is unavailable. The
USB input is only used as a power source, as the board is
programmed via the SWD interface with a J-Link debugger.

To further minimize power usage, the device includes
hardware-level power management for components like the
SD card interface, allowing selective power control to reduce
energy consumption when data storage is not active. A reed
switch is used to activate BLE functionality, triggering a
digital enable signal when a magnet is brought near.

Figure 2 shows the designed 2-layer PCB, which has a size
of 58.4 x 51.2 mm. Components were only placed on the top
side of the board. The building cost for this device is 53 USD.

B. Firmware

Firmware was developed using Silicon Labs’ software
development kit (SDK) and the TensorFlow Lite for Micro-
controllers (TFLM) C++ library. The core functionality is the

Fig. 2. Rendered 3D view of the designed PCB.

main audio processing loop, which can be divided into three
stages: feature extraction, model inference and file recording.

Audio data is continuously acquired from the microphone
and stored in a ring buffer in chunks of 512 bytes using
DMA. This allows for parallel execution of the main audio
processing task, which begins once a full buffer transfer is
completed and the microphone starts to capture the next one.
Immediately after completed, the last audio buffer is copied
so that DMA can continue filling the original ring buffer,
and its features are extracted using the TFLM library (as
will be detailed in Section II-C). The buffer size is left as
a configurable parameter, and its length will determine the
maximum latency for a full iteration of the processing loop:

Tbuffer > Tfeatures + rfinference + Twriting- (1)

The file recording sequence was implemented using a double
hysteresis mechanism, to ensure that relevant audio is captured
with sufficient context while avoiding the capture of spurious
events. The recording process starts when n 1-second frames
activity are detected, which helps filter out transient sounds
or noise so that only sustained activity triggers the recording.
Similarly, it waits for m consecutive frames of no activity
to stop recording. Figure 3 shows a timing diagram of the
recording sequence, using n = 1 s and m = 2 s. The
recorded file includes not only the full activity period, which
covers the initial n frames, but also incorporates the last
frame of preceding inactivity and the first frame of subsequent
inactivity.

Recorded WAV file Recorded WAV file

A, —im, P N —im
T T T f } 1 T T T T T +—> Time (s)
File recording File recording File recording File recording
begins is stopped begins is stopped

‘ [] Detected activity ~ — No activity ‘

Fig. 3. Diagram showing the timing of the recording sequence, using n = 1
sand m =2 s.

To ensure accurate timekeeping and maintain continuity
after a reset, the device relies on a low-power RTC module
integrated into the EFR32MG24 that periodically records the
current epoch to a non-volatile flash partition. Upon reboot,

the system loads this timestamp and reprograms the RTC,
ensuring that all recorded files have the correct timestamp.
This introduces a trade-off between time precision after a reset
and the frequency at which current time is stored.

C. Machine learning model

The EFR32MG24’s hardware accelerator supports acceler-
ation for all TensorFlow operators used in a convolutional
neural network (CNN), one of the most commonly used
architectures in audio classification. To take advantage of this
computational offload, the model should be either developed
using TensorFlow or converted to the TFLite format after
training. The resulting binary file is then converted to a C++
array, which is loaded by the TFLM API in the system
initialization function. The firmware was designed with a
model-agnostic architecture, isolating the machine learning
model from the core functionality. This enables the user to
replace the model file based on the specific target, sound, or
species of interest without having to modify application code.

Inference time and RAM usage represent the main con-
straints when developing the model. As shown by Eq. 1,
and considering that inference is the most computationally
expensive stage of the loop, the length of the audio buffer
can be taken as an upper limit for inference time. Inference
must be completed within this period to ensure real-time re-
sponsiveness and no data loss. Additionally, RAM limitations
require a compromise in model complexity, especially for
higher sampling frequencies that demand larger buffer sizes.

The system was designed to use log-mel spectrograms
as input features. Given that the specific parameters will
vary according to the target species, the configuration will
be loaded from the TFLite model’s metadata, which can be
specified by the user and is embedded into the binary file
during conversion. When training the model, features should
be computed using the Python wrapper for the TFLM log-mel
spectrogram function, provided by the MLTK. This ensures
that training and validation data are consistent with the 8-
bit feature arrays generated by the device during deployment,
avoiding significant loss in performance after the trained
model is further quantized.

III. EXPERIMENTS AND RESULTS

The feasibility of the proposed concept was evaluated in
terms of both model performance and power consumption. For
preliminary testing, we used Silicon Labs’ xG24 Development
Kit (DK) in place of the custom-designed PCBs, which were
still under production. The DK features the same microcon-
troller and microphone as the target hardware, allowing us to
evaluate basic functionality.

A. Experimental setup

To demonstrate the effectiveness of the device for wildlife
sound detection, penguin vocalizations were chosen as the
target audio class. For the binary audio classification task
a ResNetl8 CNN was selected, due to its suitability for

audio classification and reduced size [6]. The input log-mel
spectrograms were configured with a sampling rate of 16 kHz,
a window length of 30 ms and an overlap of 10 ms, yielding
96 mel bands. The device was set to record with an activation
threshold of n = 1 s and and inactivity threshold of m = 2 s.
A 128 GB MicroSD card was connected to the DK through
a breakout board.

B. Model performance

To evaluate model performance across different quantiza-
tion levels, accuracy, memory usage and inference time were
selected as the key metrics.

Three different quantization methods were compared. The
first method is full integer quantization, which converts all
parameters and operations to int8 format. Similarly, dynamic
range quantization converts weights and activations to 8-
bit integers while maintaining floating-point outputs. Finally,
16x8 quantization results in 16-bit activations with 8-bit
weights. Despite models converted using 16x8 quantization
not being supported by the hardware accelerator, this method
was evaluated in order to assess the impact of quantizing
activations. Table I presents a comparative overview of the
four models, in order to evaluate key performance metrics:
accuracy, memory usage and inference time. Memory usage
has two components: model size, which represents static
parameter storage in flash memory, and runtime memory,
which is the necessary RAM allocation required. Memory and
inference time measurements were estimated using Silicon
Labs’ Machine Learning Tool Kit (MLTK) [7], which allows
for direct on-device profiling.

TABLE I
PERFORMANCE METRICS ACROSS DIFFERENT MODEL QUANTIZATION
METHODS, ESTIMATED WITH THE MLTK.

Quantization Size Runtime Inference Accuracy
memory (kB) time (ms)

None 1.3 MB 196.7 763.2 0.948

Full integer 370.9 kB 71.3 114.7 0.947

Dynamic range 359.6 kB 196.7 763.2 0.946

16x8 383.5 kB 107.3 767.6 0.947

Full integer quantization shows the most substantial re-
duction in runtime memory usage, cutting it by nearly 61%
compared to the original model. This method also achieves
the fastest inference time, reducing latency by approximately
85%. Dynamic range quantization achieves the smallest mem-
ory footprint, but it fails to improve inference speed due to
its reliance on floating-point operations. Meanwhile, 16x8
quantization yields moderate reductions in memory usage
but offers no improvement in inference time due to its
incompatibility with hardware acceleration. Table I also shows
that the accuracy of all quantization methods remains largely
consistent, with only marginal variations observed.

Considering the strict RAM limitations and the timing re-
quirements described in previous sections, the fully quantized
model is the most efficient overall choice.

C. Power consumption

Nordic’s Power Profiler Kit II was used to measure current
consumption, using the fully quantized model. Given that
these measurements were taken during preliminary testing on
the DK, they do not fully represent the power characteristics
of the final custom hardware. However, these measurements
are still useful as they demonstrate how specific hardware
or firmware modifications impact overall power usage. For
instance, reducing current draw by deactivating the MicroSD
card is expected to yield similar savings on the final device,
as the effect of such actions on current consumption remains
consistent across configurations.

The average current intake during normal operating con-
ditions was measured to be 6.02 mA when writing a file
and 4.06 mA when not writing. This allows the device to
be powered by a small, cost-effective rechargeable battery
and solar power, supporting near-perpetual operation. Table II
provides a breakdown of the duration and average current
consumption for all states in one full iteration of the main
recording loop. This includes the baseline current intake from
DK-specific hardware. Table II also demonstrates that the
complete iteration takes less than one second, since the record-
ing and DMA are executed in parallel, leaving headroom to
employ a more complex model with a longer inference time
while still maintaining correct operation.

TABLE I
CURRENT INTAKE MEASUREMENTS FOR DIFFERENT STATES INVOLVED IN
THE MAIN RECORDING LOOP.

Description Duration (s) Average

current (mA)

Recording + DMA Continuous 3.55
Feature extraction! Tteatures = 0.246 3.86
Running inference! Tinference = 0.279 4.66
Writing to SD card! Tiyriting = 0.109 232

! Measurements also include the recording + DMA current.

IV. FURTHER ANALYSIS AND FUTURE WORK

Future work will focus on conducting extensive field
testing to properly validate the device’s performance, using
the designed PCB instead of the DK prototype. We expect
this will yield more accurate measurements, particularly in
terms of power consumption. Due to the DK and the custom
board having fundamental differences in terms of hardware
components, with the DK containing numerous additional
features and peripherals, power consumption is expected to
decrease significantly. To complement laboratory testing, we
plan on deploying the device in proximity to a penguin
colony for three weeks. By installing the device near active
penguin habitats, we aim to assess both the device’s ability
to selectively record vocalizations and its battery lifespan in
real operating conditions. A key focus will be evaluating
the precision-recall trade-off, which determines how well
the device captures what it is supposed to record, and how

accurately it filters out irrelevant sounds. With this goal,
we also plan to compare the performance of the adaptive
recording system with that of a fixed-schedule recorder, which
will be installed alongside the proposed device.

In addition, future iterations of the device are intended
include adaptive power management techniques, such as
more refined duty cycling and advanced sleep modes, ensur-
ing energy efficiency while maintaining a reliable detection
and recording schedule. Furthermore, Bluetooth Low Energy
(BLE) connectivity will be implemented, enabling users to
consult status variables in real time to monitor device be-
havior and gather usage statistics. This will allow for more
comprehensive debugging and performance analysis during
field deployments, as well as collecting statistical data about
the target species’ behavior.

V. CONCLUSIONS

This paper presents a novel wildlife monitoring device
that integrates embedded machine learning to enable event-
triggered recording of relevant audio, significantly reducing
power consumption and memory usage. The design’s modular
architecture allows users to easily adapt it for different target
species by replacing the embedded model without modifying
the firmware. Preliminary results demonstrate the feasibility of
the proposed approach, showcasing effective real-time audio
classification for penguin vocalizations. Measurements taken
using a prototype built around the xG24 DK yield a maximum
average current intake of 6.02 mA, which is taken as an upper
limit for the designed board’s actual power consumption.

Future work will focus on extensive field testing to evaluate
the device’s performance under real conditions. Additional op-
timizations will include further reducing power consumption,
integrating alternative energy sources such as solar panels
and implementing BLE connectivity. The proposed system
represents a promising step toward scalable, low-cost, efficient
solutions for wildlife acoustic monitoring.

REFERENCES

[1] L. Sugai, C. Desjonqueres, T. Silva, and D. Llusia, “A roadmap for survey
designs in terrestrial acoustic monitoring,” Remote Sensing in Ecology
and Conservation, vol. 6, 11 2019.

[2] E. Browning, R. Gibb, P. Glover-Kapfer, and K. E.
Jones, “Passive acoustic ~ monitoring in ecology and
conservation,” WWEF-UK, Tech. Rep. 1(2), 2017. [On-
line]. Available: https://www.wwf.org.uk/sites/default/files/2019-

04/Acousticmonitoring-W WF-guidelines.pdf

[3] Wildlife Acoustics, Inc., Song Meter User Guide, June 2024. [Online].
Available: https://www.wildlifeacoustics.com/uploads/user-guides/SM4-
USER-GUIDE-EN-2024-06-11.pdf

[4] Frontier Labs, Bioacoustic Audio Recorder - Long Term User Guide,
2017.

[S] A. P. Hill, P. Prince, J. L. Snaddon, C. P. Doncaster, and A. Rogers,
“AudioMoth: A low-cost acoustic device for monitoring biodiversity
and the environment,” HardwareX, vol. 6, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2468067219300306

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[7]1 S. Labs, “Silicon Labs Machine Learning Toolkit (MLTK).” [Online].
Available: https://github.com/SiliconLabs/mltk

