english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/50873 Cómo citar
Título: AI is a viable alternative to high throughput screening: a 318‑target study
Autor: The Atomwise AIMS Program
Aguilera, Elena
Tipo: Artículo
Palabras clave: Drug discovery, High-throughput screening, Machine learning, Virtual screening
Fecha de publicación: 2024
Resumen: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on‑demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high‑quality X‑ray crystal structures, or manual cherry‑picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug‑like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small‑ molecule drug discovery.
Descripción: Información suplementaria en: https://doi.org/10.1038/s41598-024-54655-z.
The Atomwise AIMS Program está formado por más de 300 investigadores de distintos países.
Editorial: Nature
EN: Scientific reports, 2024, 14: 7526.
Citación: The Atomwise AIMS Program y Aguilera, E. "AI is a viable alternative to high throughput screening: a 318‑target study". Scientific reports. [en línea] 2024, 14: 7526. 16 h. DOI: 10.1038/s41598-024-54655-z
ISSN: 2045-2322
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
10.1038-s41598-024-54655-z.pdf1,6 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons