Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/50873
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | The Atomwise AIMS Program | - |
dc.contributor.author | Aguilera, Elena | - |
dc.date.accessioned | 2025-08-04T17:02:06Z | - |
dc.date.available | 2025-08-04T17:02:06Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | The Atomwise AIMS Program y Aguilera, E. "AI is a viable alternative to high throughput screening: a 318‑target study". Scientific reports. [en línea] 2024, 14: 7526. 16 h. DOI: 10.1038/s41598-024-54655-z | es |
dc.identifier.issn | 2045-2322 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/50873 | - |
dc.description | Información suplementaria en: https://doi.org/10.1038/s41598-024-54655-z. | es |
dc.description | The Atomwise AIMS Program está formado por más de 300 investigadores de distintos países. | es |
dc.description.abstract | High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on‑demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high‑quality X‑ray crystal structures, or manual cherry‑picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug‑like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small‑ molecule drug discovery. | es |
dc.format.extent | 16 h | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | Nature | es |
dc.relation.ispartof | Scientific reports, 2024, 14: 7526. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Drug discovery | es |
dc.subject | High-throughput screening | es |
dc.subject | Machine learning | es |
dc.subject | Virtual screening | es |
dc.title | AI is a viable alternative to high throughput screening: a 318‑target study | es |
dc.type | Artículo | es |
dc.contributor.filiacion | The Atomwise AIMS Program | - |
dc.contributor.filiacion | Aguilera Elena, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Química Biológica. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.1038/s41598-024-54655-z | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Facultad de Ciencias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
10.1038-s41598-024-54655-z.pdf | 1,6 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons