english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/50873 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorThe Atomwise AIMS Program-
dc.contributor.authorAguilera, Elena-
dc.date.accessioned2025-08-04T17:02:06Z-
dc.date.available2025-08-04T17:02:06Z-
dc.date.issued2024-
dc.identifier.citationThe Atomwise AIMS Program y Aguilera, E. "AI is a viable alternative to high throughput screening: a 318‑target study". Scientific reports. [en línea] 2024, 14: 7526. 16 h. DOI: 10.1038/s41598-024-54655-zes
dc.identifier.issn2045-2322-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/50873-
dc.descriptionInformación suplementaria en: https://doi.org/10.1038/s41598-024-54655-z.es
dc.descriptionThe Atomwise AIMS Program está formado por más de 300 investigadores de distintos países.es
dc.description.abstractHigh throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on‑demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high‑quality X‑ray crystal structures, or manual cherry‑picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug‑like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small‑ molecule drug discovery.es
dc.format.extent16 hes
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherNaturees
dc.relation.ispartofScientific reports, 2024, 14: 7526.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectDrug discoveryes
dc.subjectHigh-throughput screeninges
dc.subjectMachine learninges
dc.subjectVirtual screeninges
dc.titleAI is a viable alternative to high throughput screening: a 318‑target studyes
dc.typeArtículoes
dc.contributor.filiacionThe Atomwise AIMS Program-
dc.contributor.filiacionAguilera Elena, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Química Biológica.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.1038/s41598-024-54655-z-
Aparece en las colecciones: Publicaciones académicas y científicas - Facultad de Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
10.1038-s41598-024-54655-z.pdf1,6 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons