english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/50738 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorBaliosian, Javier-
dc.contributor.advisorRichart, Matías-
dc.contributor.authorSerantes, Santiago-
dc.date.accessioned2025-07-23T18:24:47Z-
dc.date.available2025-07-23T18:24:47Z-
dc.date.issued2025-
dc.identifier.citationSerantes, S. Optimizing cloud elasticity : A Deep Reinforcement Learning approach enhanced by transfer learning [en línea]. Tesis de maestría. Montevideo : Udelar. FI, 2025.es
dc.identifier.issn1688-2792-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/50738-
dc.description.abstractCloud elasticity enables providers to dynamically scale application resources in response to fluctuating demand. Traditional scaling mechanisms often rely on simple heuristics, which can lead to suboptimal performance and resource utilization. This work proposes a Deep Reinforcement Learning based controller designed to manage cloud resources more efficiently. Although RL-based controllers have been explored previously, they often suffer from poor initial performance, which limits their practical applicability in real-world scenarios. To address this issue, an investigation into transfer learning is performed, and two distinct transfer learning techniques are explored: Sim-to-Real Transfer and Learning from Demonstrations, which significantly enhance initial controller performance, making RL viable for cloud elasticity management from the outset. Sim-to-Real Transfer utilizes simulation-based training to embed the model with prior knowledge, while Learning from Demonstrations leverages expert behaviors to significantly improve early-stage performance, thereby reducing the time required for effective scaling. The proposed model was evaluated using CloudSim Plus, a well established cloud simulation tool. The results demonstrate substantial performance improvements over traditional heuristic methods, with both transfer learning techniques notably improving the initial deployment phase of the RL controller. Specifically, these advancements render the use of RL in cloud elasticity scenarios not only viable but also highly advantageous. These findings open avenues for further exploration of RL-based cloud management strategies and demonstrate the potential of transfer learning to make RL models suitable in scenarios where it was previously unfeasible.es
dc.format.extent86 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherUdelar.FIes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.titleOptimizing cloud elasticity : A Deep Reinforcement Learning approach enhanced by transfer learning.es
dc.typeTesis de maestríaes
dc.contributor.filiacionSerantes Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.-
thesis.degree.grantorUniversidad de la República (Uruguay). Facultad de Ingeniería.es
thesis.degree.nameMagíster en Ciencia de Datos y Aprendizaje Automáticoes
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Tesis de Posgrado - Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
Ser25.pdfTesis de maestría942,13 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons