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stante, las reuniones semanales y el compromiso tanto conmigo como con el proyecto fueron
fundamentales para superar los desaf́ıos y llevar adelante el desarrollo de la tesis. Gracias
por su paciencia, dedicación y por compartir todo su conocimiento conmigo.

También quiero agradecer a mi familia, que estuvo siempre a mi lado durante todo el
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Abstract

Cloud elasticity enables providers to dynamically scale application resources in response to
fluctuating demand. Traditional scaling mechanisms often rely on simple heuristics, which
can lead to suboptimal performance and resource utilization.

This work proposes a Deep Reinforcement Learning based controller designed to manage
cloud resources more efficiently. Although RL-based controllers have been explored previ-
ously, they often suffer from poor initial performance, which limits their practical applica-
bility in real-world scenarios. To address this issue, an investigation into transfer learning is
performed, and two distinct transfer learning techniques are explored: Sim-to-Real Transfer
and Learning from Demonstrations, which significantly enhance initial controller perfor-
mance, making RL viable for cloud elasticity management from the outset. Sim-to-Real
Transfer utilizes simulation-based training to embed the model with prior knowledge, while
Learning from Demonstrations leverages expert behaviors to significantly improve early-stage
performance, thereby reducing the time required for effective scaling.

The proposed model was evaluated using CloudSim Plus, a well established cloud simu-
lation tool. The results demonstrate substantial performance improvements over traditional
heuristic methods, with both transfer learning techniques notably improving the initial de-
ployment phase of the RL controller. Specifically, these advancements render the use of RL
in cloud elasticity scenarios not only viable but also highly advantageous. These findings
open avenues for further exploration of RL-based cloud management strategies and demon-
strate the potential of transfer learning to make RL models suitable in scenarios where it
was previously unfeasible.
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Chapter 1

Introduction

Cloud computing has gained significant popularity in recent times, allowing clients to focus
exclusively on the development of applications without the need of managing the underlying
infrastructure. A key functionality enabled by cloud computing is resource scaling, which is
the ability to dynamically adjust the number of resources deployed to run an application.
This capability is essential for adapting to the varying demands of users and applications
efficiently.

This capability can significantly reduce operational costs by efficiently managing allo-
cated resources in response to real-time demand fluctuations, using only the necessary re-
sources to satisfy incoming demand and thereby lowering costs. Additionally, it can lead to
an enhanced user experience, decreased energy consumption, and consequently a reduction
in environmental impact, among other benefits [30].

However, achieving optimal resource management in cloud environments is an exceed-
ingly complex issue due to the dynamic and unpredictable incoming demand, which is di-
rectly influenced by end-user interaction. A major challenge is that this demand can vary
significantly, exhibiting both predictable patterns and elements of high randomness.

Traditional resource management approaches in cloud environments are usually based
on simple heuristics, such as threshold-based policies, and frequently prove inadequate for
efficiently handling unpredictable and dynamic workloads, leading to sub-optimal resource
provisioning. These conventional approaches often result in either under-provisioning, which
compromises system performance and user satisfaction, or over-provisioning, which incurs
unnecessary costs.

It is critical for the resource manager to guarantee the fulfillment of Service Level Agree-
ments (SLAs), which are contracts between providers and clients that define acceptable
performance metrics, such as maximum response times. Failure to meet these metrics can
result in penalties or a degraded user experience. The impact of SLAs is especially signif-
icant when it comes to response times. When the system does not have enough resources
to meet demand, it experiences increased response times, and unprocessed requests start to
accumulate. This delay can directly lead to SLA violations, leading to penalties. Conversely,
over-allocating resources to prevent SLA violations results in higher costs, undermining the
cost-efficiency of the system.

Resource scaling can be classified into two categories: horizontal scaling or vertical scal-
ing. Horizontal scaling involves scaling the resources by increasing the number of instances
allocated to the task (servers or VMs), distributing the load across a larger number of in-
stances, therefore increasing the total system’s capabilities. On the other hand, vertical
scaling augments the resources allocated to a specific instance in order to augment its ca-
pacity. There are a number of resources that can be scaled. Most often it is the number of
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CPU cores, but other possibilities include the amount of memory, data bandwidth, storage,
and more.

However, cloud elasticity also has its drawbacks, including the potential for increased
latency during scaling events, unpredictable cost fluctuations due to dynamic resource al-
location, and the complexity of managing autoscaling policies, which can result in over- or
under-provisioning if not carefully tuned.

1.1 Objectives
The objectives of this thesis are twofold. The first objective is to engineer a generic deep
reinforcement learning-based controller capable of managing cloud resources dynamically by
learning optimal provisioning strategies in response to demand fluctuations, which aims to
improve upon the performance achievable with existing solutions. In addition to serving
as a resource management solution, the controller provides a framework for evaluating the
impact of transfer learning techniques on its performance.

The second objective is to study the use of transfer learning techniques in the context of
reinforcement learning for cloud resource management. This analysis explores their poten-
tial to enhance the initial performance of the RL controller and mitigate the traditionally
extensive training process required to learn effective strategies. Based on a review of transfer
learning approaches, two techniques—Simulation to Reality (Sim-to-Real) [54] and Learning
from Demonstrations [56]—were selected for further investigation.

1.2 Solution
The proposed solution is based on a Deep Reinforcement Learning (DRL) controller for man-
aging cloud resources, a decision motivated by several key reasons. Its model-free approach
eliminates the need to learn or model the complex, dynamic, and non-deterministic environ-
ment, as it can learn the transition dynamics and identify actions that optimize rewards. It
is capable of handling a large state space, which is crucial for managing the extensive size of
continuous input variables. DRL optimizes long-term decision-making, which is essential for
balancing immediate and long-term effects. Moreover, it supports continuous learning, con-
stantly adapting to evolving environmental dynamics, unlike static train-then-deploy models.
Additionally, DRL can easily be adapted to different elasticity policies, allowing it to perform
effectively across diverse operational scenarios.

Nevertheless, designing an RL controller to manage resources poses a number of complex
challenges. One such challenge is the issue of delayed rewards, where the effects of actions
taken are not immediately apparent. For instance, allocating additional CPU to reduce
high response times will only show marginal improvements initially, making it difficult for
the controller to associate actions with their long-term impacts on system performance.
Additionally, the controller must adapt to dynamic workloads in cloud environments that
can change rapidly, which is essential to maintain a positive user experience. Furthermore,
balancing performance requirements with cost considerations is a crucial challenge, as the
controller must optimize resource allocation for both performance and cost-effectiveness.
Finally, Reinforcement Learning-based models require a significant period of time interacting
with the environment to properly learn a highly performing policy. Although there are several
techniques that promise to minimize the learning period, none can completely eliminate it,
rendering the deployment of an RL controller in real environments unviable, given that poor
performance during training is intolerable in production settings.

It is this last challenge that leads to the second objective of this thesis: investigating
the use of transfer learning techniques to minimize or eliminate the RL controller’s poor
performance during the training phase.

2



1.3. Main Challenges

Transfer learning facilitates knowledge transfer from a source domain to a target domain.
By leveraging data and experience from similar or pre-existing systems, this approach can
be used to pre-train an RL controller. This preliminary training allows the controller to
achieve a satisfactory performance level more rapidly, potentially even from the outset.

The field of transfer learning is vast, offering a variety of techniques adaptable to different
use cases. Two techniques are particularly suitable for the case study. The first technique,
Sim-to-Real, involves pre-training the RL controller in a simulator. This method allows the
controller to learn a policy based on the simulator’s behavior, which should be similar to the
real-world conditions, providing prior knowledge of system behavior. When transferred to
the real environment, the controller already possesses a solid knowledge base. The second
technique, learning from demonstrations, involves using examples of actions from an expert
or a pre-existing controller, such as a threshold-based controller, to pre-train the model
to imitate the demonstrations provided. Once pre-trained with these examples, the RL
controller is deployed in the real environment, already embedded with some understanding
of optimal actions.

This research specifically addresses the optimization of cloud resource management for
a generic API serving as a video server, characterized by highly variable demand driven by
user interactions.

To validate the efficacy of the proposed resource manager and the improvements in
comparison to conventional techniques, experiments were conducted within a simulated en-
vironment, mirroring real-world cloud computing scenarios.

This investigation aims to demonstrate that a machine learning-based approach can sig-
nificantly refine resource management efficiency in cloud computing, thereby minimizing
operational costs, increasing user satisfaction, and potentially reducing the environmental
footprint of data centers. Additionally, it seeks to demonstrate that applying transfer learn-
ing can significantly shorten the required training time, enabling new use cases that cannot
tolerate sub-optimal initial performance.

1.3 Main Challenges
There are several challenges that arise when designing a controller for resource management.

1.3.1 State and Action Spaces
Defining appropriate state and action spaces for the Reinforcement Learning (RL) algo-
rithm is crucial. The state should capture relevant information about the system, and the
action space should be capable of adjusting resources appropriately. Choosing these spaces
effectively impacts the learning process significantly.

1.3.2 Delayed Rewards
Actions take time to impact the system; that is, the state of the system begins to change
only after an action is taken, and the full extent of the action’s effects may only be fully
appreciated after a prolonged period of time. For instance, if the system is in a state where
more resources are needed (due to high response times) and additional CPU is allocated,
the response time will only gradually decrease, remaining high for a period of time. The
challenge lies in enabling the controller to associate actions with their long-term effects on
system performance, a difficulty that is further exacerbated by the continuing nature of the
task, where there is no clearly defined endpoint or episode after which the quality of all
actions can be evaluated.

3



Chapter 1. Introduction

1.3.3 Scaling Delay
Another related difficulty arises once an action is decided upon; it may entail a lengthy
period before a new resource can be effectively added, whether it involves setting up a new
virtual machine and reconfiguring the load balancer, or adding a new core to an existing
virtual machine.

1.3.4 Dynamic Workloads
Workloads in cloud environments can change rapidly, and the controller must adapt quickly
to avoid negatively affecting the user experience of those utilizing the service.

1.3.5 Non Determinism
The complexity of managing dynamic workloads is further emphasized by their inherent
randomness. For a given state and action, the reward obtained may vary depending on how
the demand evolves. Consequently, the optimal action might differ based on the future of the
workload, which is unknown to the controller. This uncertainty complicates the controller’s
learning of an optimal and stable policy.

1.3.6 Multi-Objective Problem
Resource management in cloud elasticity is a multi-objective problem. Balancing perfor-
mance requirements with cost considerations presents a crucial challenge. The controller
must optimize resource allocation not only for performance but also for cost-effectiveness.

1.3.7 Data Efficiency and Training Time
Training a model often requires a significant amount of data. In cloud environments, collect-
ing and labeling data for training can be challenging. Techniques for efficient data learning
must be explored. Deploying the controller without prior training can result in poor initial
performance, to the extent that deploying it in reality is not viable.

4



Chapter 2

Background

This chapter provides an overview of key concepts and tools relevant to the development of a
reinforcement learning controller for managing cloud elasticity, and the use of transfer learn-
ing to improve its training speed. It starts with an introduction to cloud elasticity, covering
its advantages, challenges, and exploring different resolution strategies. The next section
introduces the fundamentals of reinforcement learning, followed by a detailed investigation
of transfer learning, covering its foundational concepts and classifications or categorizations.
Finally, a review of cloud simulation tools is presented, with a focus on available platforms,
their capabilities, and the selection of an appropriate simulator for this work.

2.1 Cloud Elasticity
2.1.1 Introduction
Resource elasticity is one of the most notable features of cloud computing [32]. Elasticity
refers to the ability to dynamically add or release computing resources in a system. This
capability allows application providers to automatically scale allocated resources without
human intervention in response to dynamic workloads. This is done with the goal of min-
imizing resource costs while maintaining or improving compliance with Quality of Service
(QoS) requirements. While it is most common for elastic systems to automatically adjust
resources, a manual alternative does exist, where administrators can adjust resources man-
ually in real time as the needs change.

There are two alternatives to resource scaling: horizontal scaling and vertical scaling [3].
Horizontal scaling involves adding or removing instances (servers or VMs) to handle

changes in demand. This is typically done by distributing workloads across multiple in-
stances to improve system capacity and ensure availability during peak demand periods.
Horizontal scaling allows systems to dynamically increase their capacity by simply adding
more instances, making it ideal for handling large, distributed applications.

Vertical scaling, on the other hand, involves increasing or decreasing the capacity of an
existing instance. This typically includes increasing the amount of resources such as CPU,
memory, or storage allocated to a single machine. Unlike horizontal scaling, where more
instances are added, vertical scaling involves making a single instance more powerful. While
vertical scaling can provide scalability, it has limitations due to the physical constraints of
the hardware on which the instance is running. For example, increasing the memory or CPU
of a server will eventually hit a limit, at which point horizontal scaling may be required to
continue supporting growth [35].
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Elasticity is closely related to, but distinct from, scalability. Scalability is the system’s
ability to handle increasing workloads by expanding its resource capacity, whether through
vertical or horizontal scaling. The critical difference between the two is that scalability is a
static property, concerned with how a system can be designed to grow to meet future demand,
whereas elasticity is a dynamic property, concerned with how a system automatically adjusts
to demand changes in real-time. Scalability is a system’s potential for growth, while elasticity
is how efficiently and quickly a system can adapt to fluctuations in demand.

2.1.2 Principles of Cloud Elasticity
In cloud systems, elasticity is performed through automated components called scaling con-
trollers, which dynamically adjust resource allocations in response to real-time fluctuations
in user demand. These controllers continuously monitor system metrics and make decisions
aimed at balancing performance with operational costs.

An application providing video streaming via an API can be used as an example. Users
access the application at various rates during the day, sometimes creating peaks in demand.
Each user request consumes a portion of the application’s processing resources—typically
computational resources like CPU cycles, memory, and bandwidth. As demand increases,
the amount of computational effort required by the application also grows. Eventually,
the application’s allocated resources will reach their maximum capacity. At this point,
additional incoming requests cannot be adequately processed, resulting in increased response
times, accumulation of queued requests, and ultimately, violations of performance guarantees
(Service Level Agreements). To avoid this, the controller must take a scaling action, adding
more resources to increase the application’s processing capability. This action is known as
scaling out.

Conversely, when demand decreases, the application might become over-provisioned,
meaning it has more resources than necessary. In this case, continuing to maintain excess
resources leads to unnecessary costs. To prevent this waste, the controller must again take
a scaling action, this time reducing resources, an action known as scaling in.

The component responsible for managing these scaling actions is the reinforcement learn-
ing controller, which acts as a decision-making agent interacting with the cloud environment.
The RL controller follows a specific workflow composed of three fundamental steps: moni-
toring, decision-making, and acting.

In the first step, the RL controller monitors the current state of the system. This state
comprises various metrics that characterize system performance and workload, including but
not limited to:

• Resource utilization (e.g., CPU, memory, or network usage percentage).

• Average response time for user requests.

• Number of requests currently queued, awaiting processing.

• Throughput, defined as the number of requests processed per unit of time.

This monitoring is not continuous but occurs at discrete, periodic intervals known as
the scaling interval. The choice of this interval directly influences the responsiveness of
the system. Short intervals allow more reactive adjustments but increase computational
overhead, while longer intervals reduce overhead at the risk of slower adaptation to workload
changes.

In the second step, the RL controller takes the collected metrics (the current state) and
decides on an appropriate scaling action. To make this decision, the RL controller relies on
a policy learned through interactions with the environment. This policy dictates whether
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the application should scale out (add resources), scale in (remove resources), or maintain the
current resource allocation (no action). For example:

• If resource utilization is persistently high and the number of queued requests is in-
creasing, the controller recognizes a need to scale out by adding more instances to
distribute the load and maintain performance standards.

• Conversely, if resource utilization is low and the system has spare capacity, the RL
controller will likely decide to scale in, removing unused instances to reduce costs.

In the third step, after deciding the appropriate scaling action, the RL controller exe-
cutes the action by interacting with the cloud platform. It issues commands to provision or
de-provision resources. For instance, scaling out might involve launching new virtual ma-
chines (VMs) or containers, while scaling in involves shutting down or releasing existing ones.

An important aspect of the RL controller’s decision-making is its attempt to balance two
conflicting objectives:

• Minimizing costs, by reducing the number of allocated resources.

• Maximizing user experience, by ensuring low response times and high performance
levels.

These objectives inherently pull the controller in opposite directions. Scaling out quickly
can improve user experience significantly but increases operational costs. Conversely, scaling
in aggressively lowers costs but risks violating performance guarantees if demand suddenly
spikes. The RL controller must seek an optimal balance, learning from historical data and
past decisions, progressively improving its scaling policy through repeated interactions with
the environment.

Figure 2.1 provides a visual representation of the described workflow, illustrating clearly
the interaction between the RL controller, the monitored system state, and the scaling actions
taken.

Figure 2.1: Overview of the RL Controller’s Workflow in Cloud Elasticity

This continuous cycle of monitoring, decision-making, and action execution ensures that
the system maintains optimal resource utilization in the face of dynamic and unpredictable
workloads, efficiently managing resources to achieve a balance between performance and
cost.
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2.1.3 Advantages
The growth of cloud computing has created new possibilities for the management of applica-
tions or services. One of these possibilities is cloud elasticity, which focuses on its capacity
to radically transform how applications manage and utilize computational resources in cloud
environments.

This functionality allows for unprecedented cost optimization by dynamically adjusting
resources to exactly match the needs of the workload in real time. By doing so, applications
can avoid unnecessary expenses on unused resources while ensuring sufficient capacity to
handle demand spikes, resulting in more cost-efficient operations.

Moreover, elasticity plays a crucial role in maintaining a high level of Quality of Service.
By allowing resources to scale to meet demand, it ensures that application performance
does not degrade during periods of high demand. This is vitally important for critical
applications where adherence to Service Level Agreements (SLAs) is fundamental to the
provider’s success. Additionally, elastic cloud environments strengthens the reliability of
services by providing high availability and fault tolerance due to their capacity to replicate
VMs and containers, thereby preventing downtime.

The adaptability and scalability provided by elasticity are especially valuable in today’s
business environment, where agility and adaptability are critical factors for success. Cloud
elasticity facilitates this adaptability without requiring significant investments in additional
infrastructure or human resources for its management.

Cloud Elasticity additionally provides the ability to quickly meet capacity demands,
which allows for a faster rollout of new services and applications, keeping pace with market
dynamics.

Finally, the inherent automation in elasticity reduces the need for manual intervention
and constant monitoring by IT staff. This allows teams to focus on more strategic and
less operational tasks, enhancing overall efficiency and enabling more agile IT infrastructure
management. This aspect of elasticity contributes to greater innovation by freeing up valu-
able resources that can be redirected towards the development of new functionalities and
services.

2.1.4 Challenges
While Cloud Elasticity can have a number of advantages, it is not without its challenges.

One of the main challenges is to comply with SLAs while managing elastic resources.
SLAs specify the expected performance and availability levels, and failing to meet these can
result in penalties [23].

Another challenge in cloud elasticity is the delay in resource allocation, which can severely
impact the performance of applications, particularly those requiring high responsiveness and
real-time data processing. The process of starting up new virtual machines, configuring
networks, and deploying applications can introduce unacceptable delays, contradicting the
very principle of elasticity.

Additionally, the multi-tenant nature of cloud computing introduces the challenge of
performance isolation, where activities from one tenant can negatively affect the performance
of others sharing the same physical resources [39]. Ensuring elastic scaling without resource
contention is complex and requires advanced resource management and scheduling algorithms
to dynamically allocate resources while protecting individual tenants’ performance.

Lastly, resource elasticity increases overall complexity, and for applications with pre-
dictable, steady demand, the cost and complexity of implementing an elastic solution may
outweigh its benefits.

8



2.1. Cloud Elasticity

2.1.5 Resolution Strategies
Resource management in the cloud is a challenge of complex nature. Over time, various
approaches have emerged to address this issue [41] [55]. The initial variants used simpler
techniques, but more recently, there has been a trend towards the use of increasingly sophis-
ticated techniques with the purpose of improving outcomes.

The different methods can be classified into two main categories [32]: reactive methods
and predictive or proactive methods. Reactive methods adjust resources in response to ob-
served changes in workload, whereas predictive methods attempt to anticipate such changes
to make proactive adjustments. Reactive methods are simpler and more straightforward to
implement, but they may not be as efficient in handling unexpected spikes in demand. Solely
relying on reactive mechanisms can result in delayed responses to traffic spikes, causing tem-
porary performance degradation. On the other hand, predictive methods can offer better
resource management and cost efficiency by anticipating future needs, using historical data
to forecast future demands and preparing the system in advance for expected load changes.
These controllers are usually based on machine learning models. However, the effectiveness
of predictive scaling is highly dependent on the accuracy of the forecasts, which can be
compromised by abrupt and atypical workload patterns.

Reactive Methods

Reactive methods adjust computing resources in response to current changes in demand or
performance, without attempting to predict future fluctuations.

Threshold-based rules are methods that operate by reacting to changes in specific
system metrics, such as CPU utilization, memory, network bandwidth, or latency. These
performance metrics are monitored in real-time or at regular intervals to assess the current
state of the system. When these metrics cross a predefined threshold, a self-scaling action
is triggered, such as adding or removing resources. This method is simple to implement but
can lead to delayed or premature scaling decisions due to its reactive nature. One case can
be found in [9].

Fuzzy Rules, unlike traditional techniques that operate under binary logic (all or noth-
ing), evaluate input data on a continuous spectrum of truth values, allowing for a more
robust and adaptable scaling decision to subtle variations in the system state. The process
has three stages: Fuzzification, where input values are taken and converted into fuzzy values,
for example, utilization value is translated into high, medium, low values. The second stage
is the application of rules consisting of if-else statements, and the last stage is Defuzzification,
which involves transforming the outcome of the rule application into a concrete value with
the action to be taken. The method is recognized for its flexibility and its ability to handle
the uncertainty and imprecision inherent in monitoring and analyzing the performance of
web applications. However, its successful implementation depends on the ability to precisely
define rules that best reflect the desired needs and behavior. A work based on this technique
is [31].

Predictive Methods

Predictive methods aim to anticipate future resource demands by utilizing historical data
and analytical models, enabling proactive resource adjustments.

Application Profiling is a technique that involves a thorough analysis of application
behavior under different workloads, identifying how variations in demand affect resource
usage and performance. Through this analysis, the goal is to establish a predictive model
that can foresee resource needs before significant changes in demand occur, thus ensuring
optimal performance and efficient resource management in the cloud. [38] bases its work on
this method.
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There are two variants: offline profiling and online profiling. Offline profiling is con-
ducted before deploying the application in a production environment and involves running
the application under various test scenarios to gather data on resource consumption and per-
formance in response to varied workloads. From the collected data, it is possible to deduce
the application’s behavior in response to demand changes, and generate a basis for resource
adjustment in actual deployment. Unlike offline profiling, online profiling occurs in real-time
while the application is operational in a production environment. This phase involves contin-
uously monitoring the application’s performance and resource usage, dynamically adapting
to demand fluctuations.

Control Theory is a technique that relies on mathematical models and algorithms
to anticipate the system’s future behavior and proactively adjust resources to meet pre-
established performance and Quality of Service goals. Implementation is carried out using the
MAPE cycle, which consists of four stages: Monitoring, Analysis, Planning, and Execution.
One work based on this approach is [21].

Queueing Theory is based on mathematical models that describe the behavior of
request queues within a system, allowing for the prediction of workload and optimization of
performance and availability of applications. By predicting the buildup of requests in the
queue and the necessary processing time, systems can anticipate when existing resources will
be insufficient and require scaling. This is particularly valuable during unexpected demand
peaks, where a swift scaling response can prevent performance degradation and violations
of the Service Level Agreement. An implementation based on this technique can be found
in [4].

Time Series Analysis employs statistical models to predict future demands based
on historical usage data. This allows the auto-scaling system to anticipate demand spikes
and adjust resources before they occur, improving efficiency and preventing performance
degradation. [37] employs time series analysis to predict future workload demand and adjust
resources accordingly.

Lately, various machine learning techniques have played a fundamental role in multiple
areas of computing, and resource scaling is no exception. Within ML, different approaches
can be found to address the problem of scaling in the cloud.

The most popular is Reinforcement Learning and its variant, Q-Learning. These
techniques enable an agent controlling the auto-scaling to learn and adapt from interaction
with the environment. In the context of auto-scaling, these methods focus on making optimal
decisions for resource allocation without explicit guidance, based on rewards and penalties
derived from previous actions. For instance, [44] uses this approach.

Another technique involves Hidden Markov Models (HMMs). HMMs are a statisti-
cal approach that models systems with hidden states. In auto-scaling, HMMs can be used
to predict workload patterns or application behavior based on indirect observations. The
hidden states represent internal conditions of the system or application that are not di-
rectly observable, while the observations are measurable indicators that reflect the system’s
behavior. The work found in [26] uses HMMs for resource scaling.

A less popular technique involves the use of Support Vector Machines (SVMs). This
is a supervised learning technique, and it can be used for classifying the state of the system
or load, or for predicting values such as future demand. Such a use case can be found in [22].

Although previously mentioned, machine learning and deep learning techniques can be
used with the goal of taking time series analysis to the next level. Among the various ML
techniques, the use of Recurrent Neural Networks, especially LSTM networks, stands out.
LSTM networks’ unique capability to remember information over long periods makes them
particularly suitable for capturing complex patterns and temporal dependencies in time series
data, thus enabling precise predictions about future resource demands, and thereby acting
proactively in response to changes in demand.
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2.2 Reinforcement Learning
Reinforcement learning is a subfield of machine learning that focuses on learning through
interaction with an environment. Reinforcement learning has two elements, a RL agent, and
an environment. The agent observes the state of the environment and selects an action based
on its current policy, receiving a reward for the action and transitioning to a new state in
the environment. The goal of the agent is to learn an optimal policy that maximizes the
expected cumulative reward over time.

Reinforcement learning (RL) algorithms can be classified into two main categories: model-
based and model-free.

Model-based reinforcement learning algorithms learn a model of the environment, which
includes a transition function that captures the probabilities of transitioning from one state
to another upon taking a specific action, and a reward function that specifies the reward
obtained for each state-action pair. The agent then uses this model to plan its actions by
simulating the consequences of different actions and selecting the action that leads to the
highest expected reward.

On the other hand, model-free reinforcement learning algorithms directly learn a policy
or value function without explicitly modeling the environment. Model-free algorithms es-
timate the value of a state or state-action pair based exclusively on the observed rewards
and transitions from samples. This might require more samples to converge to an optimal
policy or value function compared to a model-based method. The most common algorithm
in model-free RL is Q-Learning, which learns the optimal action-value function (Q-function)
by iteratively updating the Q-values for each state-action pair using Bellman’s equation.

In recent years, deep reinforcement learning has grown in popularity. Traditional RL
algorithms, such as Q-Learning, use a lookup table to store the Q-values for each state-
action pair. However, in high-dimensional state and action spaces, this approach becomes
infeasible as the number of state-action pairs grows exponentially as dimensionality increases.
This is where deep reinforcement learning (DRL) comes in.

DRL, and specifically Deep Q-Learning, uses deep neural networks to approximate the
value function or policy of the RL agent. Deep neural networks are powerful function approx-
imators that can handle high-dimensional input spaces and capture complex relationships
between inputs and outputs.

Reinforcement learning (RL) algorithms can also be categorized based on their opti-
mization objectives. Finite Horizon RL [11] focuses on optimizing decisions within a fixed
number of steps. This approach is relevant for tasks with a clear endpoint, with the objective
of maximizing the rewards within this bounded timeframe. Infinite Horizon RL is designed
for scenarios where decision-making extends indefinitely, with the aim of maximizing cumu-
lative rewards across an infinite timeline. In this case, discount factors are often used to
ensure the summation of rewards converges, allowing for a stationary optimal policy. Con-
tinuous Horizon RL [53] represents a subset of infinite horizon RL, where the environment
continuously evolves without a set termination, requiring perpetual adaptation of strategies.

A variant of traditional Q-Learning, N-step Q-Learning [12], extends the traditional
technique by incorporating a sequence of future rewards into the update process, rather
than relying solely on the immediate reward. This method leverages a trajectory of actions
and states over N number of steps to update the Q-values, which can provide a more accurate
view of outcomes. Aggregating rewards over multiple steps allows for a smoother and often
more stable learning process as it reduces the variance that comes with basing updates on a
single next step, which might not fully represent the value of the state-action pair.

This technique is particularly advantageous in environments where rewards are sparse or
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delayed, as it allows the agent to foresee and evaluate the outcomes of sequences of actions
rather than individual moves.

2.3 Transfer Learning
2.3.1 Introduction
Transfer learning is a complex and highly varied topic that involves transferring knowledge
learned in one domain to another. This approach is particularly valuable in machine learning,
where it allows models trained on large datasets in one context or domain to be adapted
for use in different but related contexts. The essence of transfer learning lies in its ability
to leverage previously acquired knowledge to improve learning efficiency and performance in
new tasks, reducing the need for extensive data collection and training from scratch. This
makes it a valuable technique in fields where data is scarce or expensive to obtain.

2.3.2 Differences Between Domains
To implement transfer learning, it is necessary to have two distinct domains: a source do-
main, from which we want to extract knowledge, and a target domain, to which we want
to transfer the knowledge. Depending on the type of transfer learning, there may or may
not be one or more differences between these domains [56]. In the following, the generic
differences typically found in transfer learning are outlined, with specific examples of how
these differences manifest in reinforcement learning (RL).

• Data Distribution
The state spaces in both domains may differ. This can manifest as variations in the
distributions of states or in the observations across different Reinforcement Learning
(RL) environments.

• Feature Space
Differences in the feature space. In the case of RL, this is reflected in variations
in how states are represented, such as differences in sensory inputs or in the visual
representation of environments.

• Action Space
Variations in the action space (the set of all possible actions that the agent can take)
between tasks can affect the applicability of a learned policy or value function. This
includes differences in the number, type, and consequences of actions.

• Label Space
There may also be differences in the label space, between continuous vs. categorical
variables. This translates to the reward structure in RL, where the rewards in the
source task might not directly align with those in the target task, necessitating a
reevaluation or reshaping of the reward function.

• Objectives - Reward Function Values
The overall objectives or goals of the tasks could differ, leading to different optimal
strategies. Even if the state and action spaces are similar, different objectives may
require completely distinct strategies for optimal resolution. In the case of reinforce-
ment learning, this is seen as differences in the reward function, specifically the values
of the function. These define the task’s goal by assigning rewards to state-action pairs,
and differences between them can lead to different optimal policies.

• Transition Dynamics
The transition dynamics, which describe the probability of moving from one state
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to another given an action, may differ between tasks. This includes changes in the
environment rules or the physics of the world.

• Initial State µ0

Variations in the distribution of initial states from which the agent begins in the
environment can influence the learning process and the applicability of transferred
knowledge.

Depending on the differences between the two domains, different transfer techniques can
be applied to better adjust to such differences.

2.3.3 Categories of Transfer Learning
A primary classification of transfer learning includes Homogeneous Transfer Learning and
Heterogeneous Transfer Learning [47]. Homogeneous Transfer Learning occurs when the fea-
ture space is the same in both the source and the target domains, and there is an intersection
between the labels or, in the case of RL, the actions. The difference between the source and
the target then lies in the data distributions, the objectives, or the transition dynamics. On
the other hand, Heterogeneous Transfer Learning occurs when there is no intersection in the
state spaces and/or no intersection in the labels. This latter case is much more complex.

Within Homogeneous Transfer Learning, a specific classification of transfer learning
methods can be derived from [29] and [57]. It is classified into four categories:

• Instance-Based Transfer Learning
This method involves reusing data instances from the source domain during training
in the target domain, but by re-weighting the instances. This consists of assigning
weights to instances in such a way that greater importance or weight is given to those
that better approximate the distribution of the target domain, therefore ensuring that
representative data is used to train in the target domain. These samples are used
directly for learning in the target domain. This method is particularly effective when
the two data domains have similar but slightly different probability distributions.

In reinforcement learning, instance-based transfer learning can be applied by reusing
and re-weighting trajectories or transitions collected in the source domain for training
in the target domain. For example, in simulation-to-reality transfer, trajectories from
a simulator can be re-weighted based on how well they match the dynamics of the real-
world environment. This ensures that the agent prioritizes learning from trajectories
that are more representative of the target domain.

• Feature-Based Transfer Learning
This technique is applicable to both homogeneous and heterogeneous transfer learn-
ing. With homogeneous problems, these methods aim to reduce the gap between the
probability distributions of the source and target domains, by transforming the feature
space to a common space between both domains.

There are two versions. The first approach, Asymmetric Feature Transformation,
transforms the feature space from the source domain to that of the target domain.
Conversely, Symmetric Feature Transformation modifies the feature space of both
domains to a new feature space, generally of lower dimension. This is particularly
useful in scenarios where the domains have similar features but distinct distributions.

In the case of RL, these methods can be applied to adapt state representations between
domains. For example, symmetric transformations can project state representations
from related RL environments into a shared latent space, facilitating policy transfer.
Conversely, asymmetric transformations can be used to map simpler state representa-
tions from a source domain into the more complex state space of a target domain.
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• Parameter-Based Transfer Learning
This technique involves sharing or transferring model parameters (such as the weights
of a neural network) from the source domain to the target domain. This method is
particularly useful when the domains are identical between the source and the target,
and the tasks are related, allowing the target task to benefit from the pre-trained
knowledge of the source task, leading to faster convergence and improved performance.
It is commonly applied in deep learning, where transferring the weights of a deep
neural network from one source to a target task can significantly increase learning
efficiency. In reinforcement learning and DRL, this approach can be used to transfer
learned policies or value functions from one environment to another, especially when
the environments share similar dynamics or objectives.

Broadly, there are two ways to perform parameter-based transfer learning: soft weight
sharing, and hard weight sharing. In the former, the model is penalized if it signifi-
cantly deviates from the original weights. In the latter, a simple copy of the model
parameters is made.

• Relational-Based Transfer Learning
This method involves transferring the learned knowledge, in the form of relationships
or rules common to both domains, from the source domain to the target domain. It
is useful when the data from the domains are not independent but are connected by
relationships or rules.

In the context of RL, relational-based transfer learning can be used to transfer knowl-
edge of environmental dynamics or structural patterns. This is particularly applicable
in domains where relationships, such as spatial layouts or causal interactions, are of
great importance. For example, in a maze-navigation task, the agent could trans-
fer relational knowledge such as ”walls block movement” or ”shorter paths lead to
higher rewards”. This relational understanding can then generalize to new mazes with
different layouts.

2.4 Cloud Simulation Tools

2.4.1 Introduction

Cloud simulation tools enable developers and researchers to test a number of different as-
pects of cloud computing [45], including architecture, provisioning algorithms, and multiple
performance metrics, in a repeatable manner, allowing for rapid and cost-effective evaluation
of various configurations that may not be feasible to test in a real environment. No simulator
is capable of fully replicating all aspects of reality [28]. Therefore, it is crucial to select the
simulator that most closely matches the requirements to achieve the most accurate results.

In order to identify the most suitable simulator for this work, a comprehensive survey
of available tools was conducted. Several key factors were prioritized during the selection
process. Firstly, a robust and widely adopted simulation tool was desired. Furthermore, the
simulator needed to have built-in resource scaling capabilities, as this would eliminate the
need for the extensive time and effort required to develop such functionality from scratch.
Lastly, the simulator had to be extensible, allowing for the necessary integration of custom
features, such as the external connection to the resource controller. The following sections
provide an analysis of the tools evaluated during this survey.
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2.4.2 CloudSim
Introduction

CloudSim [8] is an open-source software tool designed for simulating cloud computing in-
frastructures and services [1]. It enables researchers and developers to model, simulate, and
experiment with resource management strategies in cloud environments, without the need
to conduct tests on real infrastructures, which can be complex and costly. It supports the
simulation of large-scale cloud platforms, including the ability to describe users, applications,
data centers, brokers, scheduling, and provisioning policies, without immersing in low-level
details. CloudSim is useful for studying both cloud infrastructure and the services it offers,
facilitating research in this field.

Functionalities

CloudSim is a versatile simulation tool for the cloud computing environment that offers a
wide range of capabilities to model and simulate cloud infrastructures and services. Its main
features and capabilities include:

• Simulation of Data Centers and Virtual Machines
It allows the simulation of various data centers, server virtualization, and customized
policies for resource allocation to virtual machines (VMs).

• Resource Modeling and Provisioning Policies
CloudSim facilitates the modeling of energy-aware computational resources, including
provisioning policies for CPU, RAM, and bandwidth.

• Network Simulation and Topologies
It integrates capabilities to simulate different network topologies and communication
latency and bandwidth, which is essential for analyzing applications that heavily rely
on data shuffling.

• Flexibility and Extensibility
It supports the dynamic addition or removal of simulation components, enabling users
to define and test custom policies for host allocation to VMs and resource allocation
to VMs.

• Event Management and Simulation Entities
CloudSim manages queues of future and deferred events, allowing for the pausing,
resuming, and creation of new entities during the simulation.

• Support for Experimentation and Evaluation
Through its structure and capabilities, CloudSim provides a controlled and repeatable
environment for testing applications and resource provisioning strategies, helping to
identify system bottlenecks, and testing different configurations for adaptive provi-
sioning techniques.

Limitations

Despite the extensive capabilities of CloudSim for simulating cloud computing environments,
there are some limitations and areas where the tool could be improved or expanded:

• Graphical User Interface (GUI)
CloudSim lacks a GUI to facilitate the configuration of simulations and the visualiza-
tion of results. While a GUI could make the tool more accessible to a wider range of
users, it is not particularly relevant for the use case.
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• Advanced Network Modeling
Although CloudSim supports the simulation of network topologies and latencies, its
network model is basic and may not be capable of simulating complex or specific
network behaviors, such as the precise simulation of network protocols or security
attacks.

• Support for Parallel Experiments
CloudSim’s capability to handle parallel experiments is limited, which can be a draw-
back for users who wish to run multiple simulations efficiently and concurrently.

• Results Analysis
It can be challenging to analyze simulation results due to the lack of integrated tools
for data analysis and visualization, or even the ability to export the results for further
analysis. This may require the development of these features or the use of external
tools for detailed analysis.

• Simulation of Resource Scaling
While CloudSim is highly versatile, there may be specific use cases or cloud application
features that are not directly supported or require significant extensions to be modeled
adequately. One of such cases, which has particular importance in the case study, is
cloud elasticity.

• Support for New Cloud Technologies
With the rapid evolution of cloud computing technologies, such as containers and
functions as a service (FaaS), CloudSim might need updates or extensions to effectively
model these technologies. Within these new technologies, we can find Cloud Elasticity.
By default, CloudSim does not have the capability to scale resources during simulation.

Despite these limitations, CloudSim remains a very powerful simulation tool for cloud
computing. It has areas of possible improvement and expansion for future versions of the
tool, some of which have already been addressed in other tools or even by developers who
saw the need to extend and enhance CloudSim’s capabilities.

Extensions
There are several simulation tools based on CloudSim, which aim to refine and extend its
functionalities. These simulators include CloudAnalyst and CloudSim Plus.

Use Cases
CloudSim has been used in several research papers. The paper [51] explores the use of
cloud technology to improve collaborative real-time media services through the Elastic Media
Distribution (EMD) project. It presents new resource provisioning algorithms that allow a
balance between service response time and cost for audio/video streams mixed with file-
based transfers. An extended version CloudSim is utilized to simulate real-time educational
collaborations, testing the performance of these algorithms under interactive conditions.

Another study [2], proposes a model for simulating variable resource allocation tailored
to cloud-based business processes, aimed at optimizing cost and efficiency. CloudSim is
extended to include a unified description model that allows for the simulation of various
business process variants. This integration enables detailed analysis of how different resource
configurations affect the performance metrics and cost efficiency of business processes.

The work found in [50] focuses on algorithms that enable scalable and elastic real-time
A/V collaborations suitable for requirements Service Level Agreements (SLA). CloudSim is
extended to not only generate A/V collaboration patterns but also to gather detailed statis-
tics on resource usage, network congestion, and delays. These added simulation capabilities
are pivotal in assessing the feasibility and effectiveness of the proposed resource provisioning
algorithms across real-time educational scenarios.
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2.4.3 CloudAnalyst
Introduction

CloudAnalyst [48] stands out as a simulator that adopts a graphical interface to facilitate
the evaluation of social networking tools, considering how the geographic location of users
and data centers impacts performance. This simulator is based on CloudSim, extending its
functionalities to provide a more comprehensive simulation environment. Among its notable
features, CloudAnalyst allows the configuration and management of virtual data centers on
an interactive map, which enables detailed observation of load balancing, monitoring of cloud
clusters, and analysis of real-time data flow. It also offers the ability to perform multiple
runs of the same experiment, facilitating the comparison and analysis of results, and the
capability to present the results visually through charts, improving the interpretation and
understanding of the data.

Functionalities

CloudAnalyst provides the same functionalities as CloudSim, but extends the latter by
adding new features. Firstly, it adds a Graphical Interface, which allows users to config-
ure experiments quickly and easily. Additionally, it introduces the capability to generate
graphical results of the experiments in the form of tables and charts, facilitating the analysis
and comparison of data. It also enables the ability to store input parameters and results
of experiments in XML files for repetition, ensuring identical outcomes in repeated execu-
tions. Moreover, it extends CloudSim by adding the capability to include information about
the geographic location of users and data centers, to consider these factors in the simula-
tion. Finally, it integrates policies for resource allocation and data center selection, including
strategies for sharing the load during peak demand periods.

Limitations

Being based on CloudSim, it shares several of the limitations already detailed; although, as
mentioned in the previous section, it resolves some of them.

Use Cases

Most use cases appear to focus on the study of different load-balancing methods. Within
these, we can find the following: The study [34] proposes a framework based on load-
balancing strategies inspired by nature, using CloudAnalyst to develop a load-balancing
algorithm that can adapt to changing workload patterns in real time. CloudAnalyst is used
to explore various load-balancing techniques to efficiently distribute tasks.

The work [18] presents a simulation-based evaluation of three load balancing algorithms:
Round Robin, Equally Spread, and Location-Aware, using the tool CloudAnalyst. It demon-
strates that Equally Spread surpasses the other two algorithms in terms of balancing effi-
ciency and fault tolerance.

2.4.4 iCanCloud
Introduction

iCanCloud simulator [27] is a flexible and scalable tool for simulating cloud infrastructures.
The goal of iCanCloud is to predict the trade-offs between cost and performance of appli-
cations running on specific hardware and to provide end-users with information about these
trade-offs.
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Functionalities
The simulator is characterized by offering a robust and scalable platform for the simulation of
cloud infrastructures, notable for its capacity to model both existing cloud architectures and
those not yet in existence; therefore, providing a versatile tool for experimentation in this
field. One of its most important functionalities is the inclusion of a global hypervisor that
supports extensive customization, allowing the integration of any cloud brokering policy,
which adds significant flexibility when simulating different resource management policies.
Moreover, iCanCloud accurately simulates the types of instances offered in specific cloud
infrastructures, such as Amazon EC2, facilitating simulations that approximate real-world
deployment scenarios.

Another important feature is its user-friendly graphical interface, which facilitates both
the setup and launch of complex simulations, from a single virtual machine to cloud com-
puting systems composed of thousands of machines. This, combined with the platform’s
extensibility, where new components can be added to expand the simulator’s functional-
ity, makes iCanCloud a powerful tool for research and development in the field of cloud
computing.

Limitations
The simulator does not provide the capability to scale resources during simulations; instead,
the framework must be extended to support this functionality. Another limitation is the
very limited number of use cases, which makes it a less attractive option.

Use cases
No relevant use cases were found that employ iCanCloud as a simulator tool.

2.4.5 CloudSim Plus
Introduction
CloudSim Plus [40] is a modern extension of CloudSim, also open source, designed to model
and simulate cloud computing infrastructures and services with new features and improve-
ments. It uses Java 8, offering a cleaner API and functionalities such as dynamic creation
of VMs and Cloudlets, VM scaling, and VM migration mechanisms. Its goal is to overcome
the limitations of CloudSim, providing more flexibility and efficiency in cloud environment
simulations.

Functionalities
CloudSim Plus enriches CloudSim by adding several new functionalities. One of the key
contributions of CloudSim Plus is its ability to simulate the dynamic creation of VMs and
dynamic arrival of Cloudlets, as well as the prioritization of Cloudlets, which allows for the
creation of more realistic and detailed simulations. This is particularly useful when exploring
resource management strategies, load balancing, and scaling policies in cloud computing
environments.

Another functionality it adds is the scaling of VMs, both vertically (changes in a VM’s
resource capacity) and horizontally (adding or removing VMs), which is crucial for the case
study. It also adds mechanisms and strategies for VM migration to optimize resources.
Additionally, it offers greater flexibility in simulation, allowing real-time adjustments and
the application of custom policies without the need to restart the simulation. These features
address the needs of more complex and realistic simulations of cloud environments. CloudSim
Plus also introduces a set of classes and interfaces that significantly simplify the extensibility
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of the framework. For example, brokers, VM allocation policies, and Cloudlet schedulers have
been redesigned to allow users to easily define their own policies and algorithms. Lastly, the
framework integrates integration tests and supports code coverage reports, which ensures a
more reliable codebase (although it still needs much improvement).

Limitations
As CloudSim Plus is based on CloudSim, it shares many of the same limitations. However,
it does add new functionalities, including the capability to model Cloud Elasticity. Addi-
tionally, for those use cases that are not covered by the default functionalities, it is simpler
to extend the simulator to include such capabilities.

Use Cases
The paper [42] develops a system named P-Cloud that leverages surplus computational
resources such as laptops, PCs, and servers to create a cost-effective cloud infrastructure.
This system allows resource owners to monetize idle resources while providing users with
more affordable cloud services. CloudSim Plus is crucial in implementing and evaluating
P-Cloud by simulating the customized cloud environment, managing resources dynamically,
and testing various pricing and user satisfaction policies.

Another study [33], addresses the complex problem of task scheduling in cloud envi-
ronments by introducing the Brain Drain Optimization (BRADO) technique to minimize
the makespan of tasks. CloudSim Plus is utilized to model and simulate the virtual re-
source scheduling, allowing for the comparison of BRADO’s performance against traditional
algorithms like Particle Swarm Optimization and Simulated Annealing, demonstrating its
effectiveness in optimizing task allocations.

The work [19] explores server allocation strategies for system deployment in edge comput-
ing, aiming to minimize average response times across geographical regions. It examines both
flat and hierarchical deployment models for edge clouds. CloudSim Plus provides a simula-
tion framework capable of modeling edge computing infrastructures, facilitating high-fidelity
simulations that validate theoretical findings and support strategic deployment decisions.

2.4.6 Selected Simulator
Among the simulators that were researched, the decision was made to evaluate two of them:
CloudSim and CloudSim Plus. CloudAnalyst was excluded as it did not seem to offer
significant advantages over CloudSim, since the functionalities it adds are not particularly
relevant to the case study. The decision not to choose iCanCloud was primarily justified
by its apparent lack of adoption within the academic and professional community. This
suggests that there might be less community support, which in turn implies a lesser degree
of robustness and a higher likelihood of encountering stability issues. Furthermore, the
scarcity of documented use cases or implementation examples makes it difficult to learn and
assess its suitability for specific use cases.

Among the two remaining options that were evaluated, the final choice was to use
CloudSim Plus over CloudSim. The reasons for this decision were as follows:

• Resource Scaling
CloudSim Plus inherently has the capability to dynamically modify resource capacity.
It supports both vertical and horizontal scaling, although the latter with considerable
limitations. This feature is crucial for the case study, so having this capability already
available is a considerable advantage.

• Robustness
A second factor influencing the decision was the simulator’s robustness, both in terms
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of its behavior and the results obtained. Several tests were conducted on both sim-
ulators, and it was observed in various situations that CloudSim’s behavior was not
as expected, and occasionally the results obtained were unreliable. For this reason,
despite CloudSim Plus also having its defects and various bugs, it was considered the
more robust and reliable option.

• Ease of Extension
Lastly, CloudSim Plus is better modeled and organized, which facilitates the under-
standing of its design and behavior. This enhancement, together with the incor-
poration of new classes and interfaces, significantly simplifies the adaptation of the
simulator’s behavior to meet the specific requirements of individual cases.
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Literature Review

This chapter reviews the current state of the art in reinforcement learning applications for
cloud elasticity, as well as the latest advancements in transfer learning techniques.

3.1 Reinforcement Learning
3.1.1 Introduction
In this section, various solutions based on reinforcement learning are explored to address the
problem of resource scaling in cloud environments. The solutions studied range from the
simplest models of reinforcement learning to more complex variants.

3.1.2 State of the Art
Within the studied solutions, there are various degrees of complexity. The simplest solutions
implement a basic version of Q-Learning.

An example of this is the study [15], which employs the Q-Learning algorithm in the
context of cloud applications requiring dynamic resource scaling to adapt to workload fluc-
tuations. As in several other studies, the Q-Learning algorithm is responsible for selecting
the scaling action.

Given the inherent complexity of the problem, which involves a continuous search space,
it is essential to utilize techniques such as tile coding to reduce the dimensionality of the
search space. Tile coding is a form of feature representation that involves partitioning the
input space into a set of overlapping tiles or grids. Each tile represents a specific region
of the input space and acts as a feature that can be active or inactive based on the input.
Alongside tile coding, function approximation is employed to estimate the reward function.
Instead of maintaining a reward value for every possible state-action pair, which is unviable
in large spaces, function approximation generalizes reward values from observed states to
unseen ones based on mathematical models.

Additionally, the use of Q-value initialization based on domain knowledge and Speedy
Q-Learning is proposed to accelerate convergence speed. The controller’s performance is
evaluated through experiments on the CloudSim platform, using metrics such as the total
cost incurred during a test period and the observed response time, considering the trade-off
between the cost of allocated resources and penalties for SLA violations.

A similar solution is presented in [16].
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Another instance where Q-Learning is applied in this context is [20]. This study has
two objectives: firstly, to determine the amount of resources needed to meet demand, and
secondly, to select where to execute tasks. Like many other works, it is implemented in the
context of web applications hosted on Infrastructure as a Service (IaaS) platforms, but no-
tably, this study evaluates the controller’s performance through real experiments conducted
on Amazon EC2 rather than simulators, using real web applications with variable workloads.
As a notable feature, in order to accelerate training, different servers publish a copy of the
Q-values, allowing all controllers to update their databases with the Q-values from the others.

Another study that adopts reinforcement learning is [36]. The paper addresses the ef-
ficient and dynamic management of scaling for microservices-based applications running in
cloud environments, such as Amazon EC2. Unlike other papers, the reinforcement learn-
ing algorithm does not determine the scaling action to be taken; instead, policies based on
dynamic thresholds are used, and the values of these thresholds are controlled with a re-
inforcement learning algorithm. Two types of reinforcement learning policies are used: a
model-based, called “MB Threshold”, and a model-free, called “QL Threshold”. To acceler-
ate the learning phase, the “MB Threshold” (model-based) policy utilizes an approach that
leverages (or estimates) knowledge about system dynamics to update the Q function. For
the “QL Threshold” (model-free) policy, no specific acceleration technique is applied, which
may result in a slower learning rate.

More complex alternatives include the use of deep learning-based algorithms. Deep
Learning has significantly impacted machine learning algorithms, including RL. Integrating
deep learning with reinforcement learning heightens the understanding of the environment
and addresses one of the major challenges faced by traditional Q-Learning: the handling of
high-dimensional spaces.

One such instance is DERP [6], which aims to manage resource elasticity in the cloud
automatically, optimizing dynamic resource allocation based on dynamic workload demands.

DERP proposes three variants which are based on Deep Q-Learning algorithms: one
using the traditional Deep Q-Learning, another using Fully Deep Q-Learning, and a third
employing Double Deep Q-Learning.

In the first variant, Deep Q-Learning, a neural network calculates the expected reward
of various actions for a given state, and using gradient descent and backpropagation, the
network is trained to adjust to the observed values in the environment. In the second
variant, Fully Deep Q-Learning, there are two neural networks with the same architecture.
The difference compared to the previous variant lies in the training process, where the main
network is copied to a secondary one, and the weights of the main network are frozen. This
main network, which remains static, is used to calculate the predictions and the loss function,
while the parameters of the secondary network are adjusted. Periodically, the updated
network is copied back to the non-updated one. This aids in stability during training. The
third implementation is based on the observation that networks tend to overestimate the
values of the Q-values, but there is reason to believe they do not do so uniformly across
all actions [46]. Two networks are used during training to address this, the primary neural
network and the target neural network. The primary one is used to determine the best
action, while the Q-value of that action is obtained from the target network. The weights of
the primary network are updated after each episode while the target network is updated by
copying the values from the primary network after a predefined number of steps.

Another interesting feature of this implementation is the use of an Experience Replay,
where previous experiences or transitions are stored in a buffer, and then deployed during
batch training.

In order to validate the performance of the DERP, the models are tested both in sim-
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ulations and in a real cluster environment using the Okeanos cloud service, and applied
to NoSQL database environments. To evaluate the performance, the results are compared
with more traditional RL approaches such as thresholds and decision trees to demonstrate
DERP’s effectiveness. Compared to the traditional Deep Q-Learning approach, both vari-
ants show noteworthy improvements in all stages of the training process.

The paper [17] presents a particular architecture called ADRL. While it implements DRL
to tackle the main problem, it employs other techniques to prevent some of the issues that
may arise when using DRL.

ADRL focuses on cloud computing environments for cloud-hosted applications, partic-
ularly in situations where it is crucial to manage resource scalability efficiently to adapt to
variable workloads and ensure the satisfaction of Quality of Service (QoS) agreements.

The authors argue that traditional RL algorithms often have a specific problem: the
agent will attempt to take some scaling action even when it is not necessary, which can lead
to loops of increasing and decreasing resource actions. A preliminary stage is used to counter
this problem. This stage involves determining whether the system is in an anomalous state,
that is, whether it is truly necessary to take action. If so, an RL agent is called upon to
select a scaling action.

The solution consists of two modules. This first module, which validates whether action
is necessary, has itself two components. The first component predicts the future state of the
system. To do so, it gathers the utilization metrics that form the state and makes a future
prediction of these metrics using a neural network. The second component takes these future
utilization predictions and uses an IForest algorithm to identify whether the system is in an
anomalous state and needs a scaling action to recover. If the first module deems that an
action is required, then the RL agent selects a scaling action in order to return the system
to a stable state.

The performance of the ADRL system is evaluated through simulations using CloudSim,
allowing for detailed modeling of the cloud environment and enabling comprehensive eval-
uations under varying loads and anomalous events. The evaluation includes comparisons
with benchmark methods and existing techniques to demonstrate the effectiveness of ADRL
compared to reinforcement learning approaches without anomaly awareness.

3.1.3 Resources to Scale
In any system, there are various resources that can be a limiting factor for the processing
speed of tasks. These resources might include CPU, RAM, I/O, and network bandwidth [10].
Among the researched literature, some algorithms are capable of scaling various resources,
while most focus on managing a single one. A common resource across all papers, and often
the only one scaled, is the CPU. This is typically the primary bottleneck in task processing
speed and, therefore, receives the most attention. However, the specific resource causing a
bottleneck can vary depending on the task and its modeling. In more complex scenarios,
this limiting factor may shift over time in response to changing demands, or it might even
involve a combination of multiple resources. Therefore, some studies scale not only the CPU
but also the memory, network bandwidth, and even disk capacity, allowing for the modeling
of more complex problems and further optimizing the use of the resources being deployed.

3.2 Transfer Learning
3.2.1 Introduction
This section studies a variety of transfer learning techniques, subsequently exploring solutions
for implementing transfer learning with reinforcement learning algorithms. Additionally, it
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mentions different metrics for measuring the performance of an algorithm after applying
transfer learning.

3.2.2 Transfer Learning Methods for Reinforcement Learning
The work found in [56] reviews various transfer learning methods that can be applied in the
context of reinforcement learning, particularly deep reinforcement learning. It also presents
different scenarios in which these methods are applicable.

An important subcategory of transfer learning is Domain Adaptation, which focuses on
scenarios where the source and target domains differ but share some underlying structure.
The goal of domain adaptation is to bridge the gap between these domains, often by aligning
their feature spaces or addressing discrepancies in their dynamics. This concept underpins
some of the methods discussed below, particularly those designed to handle variations in the
state space, action space, or reward space between domains.

Reward Shaping

The goal of reward shaping is to modify the reward obtained from the reward function
with an additional reward function derived from prior knowledge of the target domain, aim-
ing to influence the agent’s decision-making to maximize performance in the new domain,
or to optimize exploration and achieve faster convergence to the optimum. The new reward
function will be R′ = R + F , where F is a function that can be learned. One method to
obtain F is from the potential difference between two states:

F (s, a, s′) = γΦ(s′)− Φ(s)

The quality of a state is given by the value of Φ which contains the prior knowledge.

Learning from Demonstrations

As the name suggests, learning from demonstrations trains the agent using examples of
actions that it aims to imitate, which can come from an expert (possibly human) or a sub-
optimal policy.

Demonstrations are formatted as (s, a, s′, r), typically with the source and target domains
being the same.

There are two variants of the algorithm, online and offline. In the online variant, demon-
strations influence decision-making during training to enable more efficient exploration. In
the offline variant, the agent is initially trained using external demonstrations followed by
traditional training.

Specifically, for Q-Learning, two models are presented: The first one is called DQfD,
which uses two replay buffers. The first one is filled with data generated during exploration
while the other one with the demonstrations, which remains fixed. During training, data
from both buffers is sampled, ensuring that data from the demonstrations are used in a
certain proportion. The second model is LfDS. It creates a function to derive the potential
value of a state-action pair based on the highest similarity between a given pair and the
expert experiences. Using this function alters the reward function value, assigning higher
values to actions similar to those of the expert. This leads the agent to behave similarly to
the expert.

Learning from Demonstrations is especially valuable in scenarios where autonomous ex-
ploration is risky, costly, or inefficient.

Value Function Transfer
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The value function transfer technique in reinforcement learning focuses on transferring the
value function learned in a source task to enhance or accelerate learning in a target task.
The value function, which estimates how much “value” or expected return can be obtained
by following a specific policy from a given state, is crucial in reinforcement learning for
determining the quality of actions and states. In the context of transfer, the idea is that
if a source task is somehow similar to the target task, then the learned value function (or
insights on how to act in different states) can be transferred and adapted to aid in learning
the new task, potentially reducing the time and data needed to effectively learn the new
task. However, this transfer technique is not applicable to purely policy-based methods that
do not estimate a value function, as it relies on the direct transfer of value functions rather
than policies.

Policy Transfer

Policy transfer involves transferring knowledge from one or more expert policies from the
source task to the target task. There are several variants of this technique. One such variant
is policy distillation, a supervised learning technique where knowledge from one or more
teachers’ policies is ’distilled’ to a student agent. The goal is to minimize the difference
between the action distributions of the teacher(s) and the student. This involves using
trajectories from the teacher’s policy to minimize the probability distribution differences be-
tween both policies, referred to as “teacher distillation”. Conversely, “student distillation”
uses trajectories based on the student’s policy.

Another variant, Policy reuse, is specifically designed for scenarios with multiple expert
policies. It directly exploits these expert policies by learning a probability distribution to
identify which expert policy to use to maximize results in the target domain.

Inter Task Mapping

This method involves learning a mapping function from the Source task to the Target task.
Earlier approaches assumed mapping functions were predefined, but more recent work aims
to learn the mapping automatically. The goal is to learn mapping functions that translate
the state and actions from one domain to another, allowing for the reuse of learned policies.
To train this function, one paper suggests training both models in a common space to deduce
the mapping function.

Reusing Representations

This technique generates a universal policy from multiple policies trained for different tasks
within the same state domain. One particular study uses a progressive neural network struc-
ture, which is progressively trained for each distinct task. This network features a unique
structure with multiple columns, each representing a neural network dedicated to training a
specific task. The network starts with a single column for the first task, and as new tasks are
introduced, additional columns are added. During the training of a new task, the weights
of the neurons in previous columns are frozen, and the representations from these frozen
tasks are applied to the new column via lateral connections, aiding in the training of the
new task. However, this technique has the drawback of creating a large neural network that
grows proportionally with the number of original tasks.

Learning Disentangled Representations

The objective of disentangled representation methods is to learn feature state represen-
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tations that are independent of domain-specific features, thereby decoupling the specific
characteristics of the MDP from the reward distributions.

Two variants of the method are Successor Representation and Universal Function Ap-
proximation.

Successor Representation
This method aims to decouple state characteristics from rewards. It enables transfer learning
between multiple tasks, as long as they only differ in the reward function. Unlike traditional
Q-Learning, where the Q-value describes the state in relation to the reward function, succes-
sor representation describes states based on the occupancy measure of its successor states,
which is the unnormalized distribution of states or state-action pairs an agent encounters
while following a specific policy (π) in the MDP. In other words, it represents the likelihood
of reaching a particular state, given the current state and action, essentially decoupling the
dynamics of the environment from the rewards. Therefore, it decomposes the value function
of any policy into two independent components:

V π(s) =
∑
s′

ψ(s, s′)w(s′)

The first component, ψ(s, s′) describes a state s in terms of the occupancy measure of
its successor states and is agnostic to rewards, so the encoded knowledge can be reused in
the other tasks. The second component w(s′) is a function that maps states to rewards, and
it naturally depends on the reward.

Universal Function Approximation
As the previous method, this technique aims to decouple specific state characteristics in the
reward domain. Therefore, transfer can only occur when tasks differ solely by their rewards.

This technique uses Matrix Factorization to generate two embeddings, one for states and
one for goals. These embeddings are decoupled from each other. The construction of these
embeddings involves two steps: The first step is to create a matrix with states as rows and
goals as columns, and the value in a given position of the matrix is the reward for being
in that state for the corresponding goal. Low Rank Factorization is performed to find the
target embedding of the states, and the target embedding of the goals. In the second step,
regression is used to learn the embedding of both networks.

One advantage of UFA is that it is transferable for all tasks that differ only by their
goals.

Sim-to-Real Transfer

Sim-to-Real transfer refers to the process of transferring reinforced learning policies from
simulated environments to reality. This necessity comes due to limitations in collecting real-
world data, such as sample inefficiency and collection costs [54]. Simulated environments
provide a potentially infinite data source and mitigate safety or practicality concerns. How-
ever, simulators are not perfect and cannot simulate every detail, resulting in discrepancies
between simulated and real environments. These differences diminish the performance of
policies once they are transferred to real environments.

Several research efforts focus on bridging this Sim-to-Real gap to achieve more efficient
policy transfers, including learning with perturbations or domain adaptation. One tech-
nique focuses on introducing perturbations in simulated environments to make agents less
susceptible to differences between simulation and reality. Another technique involves using
data from the source domain to improve the performance of a model learned in a different
target domain, where data is less abundant. It attempts to unify the feature spaces of both
domains to facilitate the transfer of knowledge.
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3.2.3 Evaluation Metrics
There are various metrics for objectively evaluating the effectiveness of transfer learning.:

• Jumpstart Performance (JP)
This is the initial performance (outcomes) of the agent. Comparing the results with
and without knowledge transfer provides a measure of how successful the knowledge
transfer was.

• Asymptotic Performance (AP)
This is the final performance of the agent after re-training, with and without knowledge
transfer.

• Accumulated Rewards (AR)
The area under the learning curve of the agent with and without knowledge trans-
fer. This metric shows the agent’s performance during the initial phase of training
after transfer, evaluating how effective the transfer is and how long it maintains a
performance advantage.

• Transfer Ratio (TR)
The ratio between the asymptotic performance of the agent with TL and the agent
without TL.

• Time to Threshold (TT)
The learning time (iterations) required for the target agent to reach certain perfor-
mance thresholds, with and without knowledge transfer.

• Performance with Fixed Training Epochs (PE)
The performance achieved by the target agent after a specific number of training
iterations, with and without TL.

• Performance Sensitivity (PS)
The variation in results using different hyperparameter settings, with and without TL.

3.2.4 State of the Art
Although considerable research has been conducted on reinforcement learning algorithms to
control resource scaling, none have adopted transfer learning as a technique to accelerate
training. Therefore, this section will focus on papers that make use of various transfer tech-
niques on reinforcement learning models to accelerate training, but not necessarily for use
cases regarding resource scaling.

In the study [25], the authors address the optimization of Radio Access Network (RAN)
slicing for 5G. The research focuses on the application of transfer learning techniques within
the context of deep reinforcement learning. A notable aspect is the focus on meeting Service
Level Agreements (SLAs) by defining a reward function. The proposed approach involves
training a model on a source base station (BS), followed by transferring the learned param-
eters to a target base station. Traffic loads differ between the source and target stations,
naturally resulting in imperfect transfer. The authors emphasize that this approach is equally
applicable when initial training is conducted in a simulator, although caution is raised that
this might lead to suboptimal policies. Performance is evaluated with various loads and using
multiple DRL variants, but results are presented only when using A2C (Actor-Critic) and
PPO (Proximal Policy Optimization) algorithms, and in all scenarios, it achieves improved
performance.

In the article [24] the challenge of network slicing for IoT devices is addressed. With the
growth in the number of IoT devices and the emergence of new applications, it has become
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more challenging to comply with different Quality of Service (QoS) levels on the same phys-
ical network. The goal is to partition the physical network into multiple virtual networks,
each tailored to different business requirements, to improve QoS, energy efficiency, and re-
liability. To perform the transfer, initially, a central controller collects data from multiple
distributed gateways and constructs a replay buffer. With this data, the model is trained,
and once it converges, the trained models are sent to the gateways to be used as a starting
point. It is found that the use of transfer learning results in faster convergence, although it
starts from an equally unfavorable point compared to other algorithms without transfer.

The article [5] focuses on the detection of Economical Denial of Sustainability (EDoS)
attacks in virtual Content Delivery Network (vCDN) environments. These attacks represent
a significant threat in cloud-based network environments, where they can cause misuse of
resources and an increase in operational costs. To address this challenge, the study proposes
a framework that uses DRL with a two-stage neural network; one for feature extraction and
the other for forecasting.

The objective of the transfer learning process is to transfer knowledge from one vCDN
to another. For this, the weights of all layers from the feature extraction stage of the model
from one vCDN (source) are copied to another (target), while the weights of the forecasting
layer are reset. Subsequently, the target vCDN is retrained, freezing the weights of the
feature extraction stage and allowing only the modification of the forecasting stage weights.
For this retraining, a few data points from the target vCDN are used.

To evaluate the effectiveness of the proposed method, a comparison is made between
different approaches. The first approach copies the model trained on vCDN1 and applies
it to vCDN2, a second one trains a new model from scratch with the few available data of
vCDN2, and a third utilizes transfer and retraining as previously explained. The results
demonstrate that the third approach, which involves the use of transfer learning, proves to
be the most effective, achieving the best performance among the three approaches.

As previously mentioned, the transfer techniques used are relatively simple for cases sim-
ilar to the case study. To discover the use of more advanced techniques, it is necessary to look
at use cases that differ significantly from the case study. Nonetheless, some are discussed
here.

The first technique can be found in [13]. The primary objective of this work is to
present an algorithm, Deep Q-Learning from Demonstrations (DQfD), which is a Deep Q-
Learning algorithm that leverages small data sets of demonstrations to massively accelerate
the learning process. The particular case study focuses on Atari games, with demonstrations
obtained from human experts, but the algorithm is not limited to games and is also appli-
cable to other use cases including autonomous vehicles, recommendation systems, and other
scenarios where prior control data is available but generating new data through simulation
is difficult or impossible.

The training of DQfD is composed of two stages: an initial stage where training occurs
solely with demonstration data, and a second stage where training involves interaction with
the environment. The objective of the first stage is to ensure that the agent can mimic the
behavior of the expert, while satisfying the Bellman equation to achieve good performance
once training against the environment begins. For this purpose, four loss functions are used:

• 1-Step temporal difference

• N-Step temporal difference

• Supervised large margin classification loss

• L2 regularization loss on the network weights
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The objective of the first two losses, the 1-Step and N-Step temporal difference losses, is
to keep the Q-values updated and to satisfy the Bellman equation, while the supervised loss
is for classifying the expert’s actions. The regularization loss aims to prevent overfitting.

The supervised loss is critical for the effectiveness of pre-training. Given that the demon-
stration data only covers a narrow part of the state space and does not involve all possible
actions, many state-action pairs have never been explored and it is not possible to assign
them realistic values. If pre-training relied solely on the Q-Learning training function, which
updates Q-values based on the maximum value of the next state, it would inadvertently
propagate unrealistic values throughout the Q-function. This could result in distorted pre-
dictions, undermining the agent’s ability to generalize effectively during subsequent training
against the environment.

After this pre-training phase, the agent begins to interact with the environment, collect-
ing new data that is added to the replay buffer until it is full. It is important to note that the
demonstrations are never overwritten. During training, the network is updated with a mix
of self-generated data and the demonstration data. The technique uses a prioritized replay
mechanism to automatically control the proportion of demonstration data during learning,
allowing the agent to improve its policy based on the demonstrations and its own experience.
The same losses are used for training, with the exception of the supervised loss, which is not
typically used in RL.

To show the effectiveness of the technique, a comparison was made with a Prioritized
Dueling Double DQN algorithm, and DQfD demonstrated superior initial performance in
nearly all games during the first million steps and achieved target performance levels much
faster than PDD DQN. It was also shown that DQfD surpasses three related algorithms for
incorporating demonstration data into DQN.

The study [49] introduces an innovative approach to partial domain adaptation using
deep reinforcement learning. The key to this method is to select only those examples from
the source domain whose probability distribution is similar to that of the target domain.
The aim is to avoid “negative transfer”, which occurs when non-representative examples of
the source domain are used.

The results of the study are tested in the context of image classification. It is observed
that the inclusion of this algorithm consistently improves results compared to methods that
do not leverage it. The proposed approach proves particularly effective in filtering out source
domain examples that could induce negative learning, thereby optimizing the model’s adap-
tation to the target domain.

The objective of [7] is to obtain an algorithm that accelerates the learning phase of
reinforcement learning, which is one of its main limitations in many use cases. To achieve
this, the authors propose a technique that integrates expert demonstrations into the RL
process, using reward shaping to accelerate learning. This approach allows for the use of
human input without erroneously assuming the optimality of the demonstration, aiming to
significantly reduce the number of necessary demonstrations, increase robustness against the
suboptimality of the demonstrations, and achieve faster learning.

The use case explores how to integrate expert demonstrations to accelerate reinforcement
learning in tasks such as balancing a pole (a classic problem in reinforcement learning known
as “Cart Pole”) and navigating complex game environments like the Mario domain. These
scenarios represent problems in which RL alone would require a large number of interactions
to learn an effective policy due to sparse reward signals.

The proposed technique uses demonstrations from an expert to influence the RL agent’s
exploration process. Specifically, it suggests modifying the reward function with a function
based on the similarity between the actions taken by the agent and those demonstrated by
the expert, calculating this similarity using a Gaussian function. This new reward function
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encourages the exploration of state-action pairs similar to the demonstrations first, guiding
the agent’s learning. These state-action pairs from the demonstrations represent states with
higher potential, and therefore the outcome of this guided exploration is faster learning. It is
noteworthy that these modifications do not affect the Q-values and therefore the algorithm
will not be negatively impacted in the case of poor demonstrations.

Experiments demonstrate that the technique used can significantly improve learning ef-
ficiency compared to traditional RL and other techniques that integrate demonstrations. In
the “Cart Pole” problem, the proposed technique allowed the agent to learn effective policies
with far fewer demonstration samples. In the Mario domain, the technique proved to be
more efficient in using samples and more robust against suboptimal demonstrations, includ-
ing those provided by humans, which can exhibit great variability and potentially contain
errors.

The study [14] focuses on separating informative (specified) and non-informative (un-
specified) variation factors in data. The goal is to eliminate irrelevant factors that may
negatively impact learning while at the same time enabling the generation of new samples.

The proposed solution relies on the use of variational auto-encoders (VAEs) and cycle
consistency. A VAE comprises two components: an encoder and a decoder. In this case,
the encoder’s function is to partition the input into two components: one specified which is
specific to a given label, and unspecified with non-informative label data.

Enc(x) = (fz(x), fs(x)), with

fz(x) being the unspecified encoding andfs(x) being the specified encoding

The decoder then recombines these two components to regenerate the original input.
A fundamental aspect of the VAE’s functionality is Cycle Consistency. This specifies

that consecutive transformations should result in the identity function:

G(F (xi)) = x′i, xi ∼ x′i,

F (G(yi)) = y′i, yi ∼ y′i.
The training is semi-supervised and consists of two alternating phases: a forward cycle

and a reverse cycle. If only the forward cycle is utilized, a degenerate solution might arise
where specific factors are completely ignored, and all information stems from unspecified
factors. This issue is corrected by the use of the reverse cycle.

Forward cycle
Two images x1 and x2 with the same label are taken. Both images are processed through
the encoder, resulting in

Enc(x1) = (z1, s1), Enc(x2) = (z2, s2)

The input to the decoder is constructed by swapping the si components. Then

Dec(z1, s2) ≈ x1, Dec(z2, s1) ≈ x2

Given that s1 and s2 contain the label-specific data, their content should be the same;
hence, swapping should yield the same result.

Obs: the actual labels are never needed.

Reverse Cycle
For this second stage, a point zi is sampled with P (z) = N (0, I). Then, it is combined with
s1 and s2, with s1 = fs(x1), and similarly for x2. The decoder receives these combinations:

Dec(zi, s1) = x′′1 and Dec(zi, s2) = x′′2
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Then, z′′1 = fz(x
′′
1 ) and z

′′
2 = fz(x

′′
2 ) are obtained.

Since both z′′1 and z′′2 were generated using the same zi, they should be mapped close to
each other. This step leads to the learning of disentangled representations between Z and
S.

Obs: It is not necessary for s1 and s2 to have the same label.

Instead of using label-specific data for semi-supervised learning, the study utilizes domain-
specific data. During training, domain-specific information is not used; rather, information
that is independent of the domain is employed. This approach allows for a clearer and more
useful representation of the data, facilitating tasks such as classification or the generation of
new samples that are domain-relevant but independent of their specific factors.

The model was tested on three datasets: MNIST, 2D Sprites, and LineMod. The experi-
ments were divided into evaluating the quality of disentangled representations and the image
generation capabilities. The results show that classification accuracies on the specified latent
space were very high, indicating effective learning of specified factors, and accuracies on the
unspecified latent space were low, suggesting good disentanglement. The visual inspection
of the generated images demonstrated that the model effectively managed to keep specified
and unspecified factors separate, with minimal leakage of specified information into the un-
specified latent space. The work concludes that cycle-consistent VAE architecture prevented
degenerate solutions and was robust to variations in the dimensionality of latent spaces.

The work [52] employs Cycle-Consistent Variational Auto-Encoders (VAEs), similarly to
the previous study, although the objectives differ.

This study focuses on enhancing domain adaptation in reinforcement learning through a
Latent Unified State Representation (LUSR). The aim is to generate two representations from
a given instance of a specific domain: one containing domain-specific information and another
independent of the source domain. Subsequently, the domain-independent representations
are used to train the desired reinforcement learning model. Thus, the trained model will
be capable of operating across instances from any domain once the domain-independent
information has been extracted.

The algorithm is appropriate when the state space differs between domains, but the
actions, reward functions, and transition probabilities are similar.

The algorithm is tested in two different challenges: the first one is a 2D car racing
game (with variations in terrain color for different domains), and the second one is in the
context of autonomous driving using CARLA (with changes in daylight conditions). In both
scenarios, the algorithm demonstrates highly positive results, even surpassing models that
are specifically trained for a single domain.

This approach to domain adaptation in RL through Latent Unified State Representation
proves to be a powerful and versatile technique. By segregating domain-specific and gen-
eral characteristics and focusing RL training on the latter, effective adaptation to various
domains is achieved without compromising the effectiveness of learning. This method opens
new possibilities for RL applications in environments where differences in state spaces pose
significant challenges for transfer learning.
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Chapter 4

Design and Implementation

The purpose of this chapter is to describe the implemented solution and its design in detail,
outline its components, the interactions among them, and discuss and justify the decisions
made. Additionally, links to the implemented solution are provided.

4.1 Deep Reinforcement Learning Controller
This section provides a detailed description of the deep reinforcement learning controller
model, outlining its architecture and functionality while also justifying the decisions made
during its development.

4.1.1 Utilized Algorithm
From its inception, the approach selected was to employ a Reinforcement Learning algorithm,
specifically, Deep Q-Learning. The rationale for this decision is as follows:

• Model-Free: It is unnecessary to learn or model the environment, which is not only
inherently complex and dynamic but also non-deterministic, as the transition dynamics
depend on user behavior, which contains a random component. The neural network-
based model is capable of implicitly learning these transition dynamics and identifying
the actions that optimize rewards.

• Ability to Handle a Very Large State Space: One of the major challenges
observed during the research was managing the extensive size of the state space. The
complexity is not only due to the high number of input variables but also because these
variables are continuous. Initial approaches such as tile coding offer a rudimentary
approach to the problem, however, employing a neural network allows for a controller
with a superior ability to model the environment.

• Optimization of Long-Term Decision Making: Deep Q-Learning or Deep Q-
Networks do not only seek to maximize immediate rewards but also considers the
long-term value of its actions. This is crucial for cloud resource management, where
decisions not only have immediate impacts in terms of costs and performance but also
long-term consequences that can affect the stability and scalability of the system.

• Continuous Learning: Contrary to other algorithms, Q-Learning algorithms do not
follow the train-then-deploy paradigm; they are constantly learning. This presents
a significant advantage, as the dynamics of the environment may slowly evolve over
time, which could significantly impact performance from models developed with other
algorithms. However, with DQN, the model continually adapts to these changes.
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• Adaptability to Different Elasticity Policies: The DQN framework exhibits
adaptability to various elasticity policies, enhancing its applicability across diverse
operational scenarios within cloud environments.

N-Step Deep Q-Learning
In this research, a variant of Q-Learning known as N-Step Q-Learning was employed. In
traditional Q-Learning, the model learns through interactions with the environment. Given
a state of the environment, the algorithm must make a decision that, when applied, results
in a new state and a reward. This information is used to update the model.

Qnew(st, at)← Q(st, at) + α [rt+1 + γmaxaQ(st+1, a)−Q(st, at)]

The challenge arises from the fact that a scaling action has an almost imperceptible effect
immediately after its execution, but can have a significant impact in the long term. In the
case study, there are no traditional episodes, making it a continuing task with an infinite
horizon. In this scenario, standard Q-Learning tends to focus on short-term rewards, making
it difficult to capture long-term effects and thus limiting the model’s ability to accurately
evaluate the true impact of an action. It is in this context that N-Step Q-Learning proves
beneficial, as it does not solely rely on the immediate reward obtained upon taking an ac-
tion, but rather harnesses a sequence of future rewards to train the model. The equation for
updating the model in N-Step DQN is articulated as follows:

Qnew(st, at)← Q(st, at) + α
[∑N

k=1 γ
k−1rt+k + γN maxaQ(st+N , a)−Q(st, at)

]
This longer-term vision enables a better understanding of the relationship between an

action and its long-term consequences, thereby generating more accurate transition dynam-
ics aiding in the model training. Furthermore, more stable estimates and a reduction in
the variance of transitions are achieved. By averaging the results over multiple steps before
making an update, N-step Q-Learning can reduce the variance in policy updates compared
to the 1-step approach [43]. Specifically, N-step Q-Learning was used with N = 3. The
resulting equation is:

Qnew(st, at)← Q(st, at) + α
[
(rt+1 + γrt+2 + γ2rt+3 + γ3 maxaQ(st+3, a))−Q(st, at)

]

4.1.2 Replay Memory
A prevalent technique within these algorithms is the deployment of a Replay Buffer or
Replay Memory. A replay buffer maintains a historical record of past transitions (states,
actions, rewards and subsequent states). During training, a random set of transitions from
the buffer is sampled, and these transitions are used to update the model. The capacity of
the replay buffer is finite, storing a limited number of transitions. As new transitions are
inserted, older entries are removed to accommodate the most recent ones, thus maintaining
a First In, First Out (FIFO) configuration.

One advantage of this technique comes from the reuse of Past Experiences. By pre-
serving earlier transitions, the replay buffer enables the learning algorithm to reuse this
information multiple times to update the policy. This repeated utilization of samples signif-
icantly increases learning efficiency by extracting more value from each interaction with the
environment.

Another advantage is that it facilitates learning within dynamically evolving (non-stationary)
environments. In scenarios where environmental conditions may evolve rapidly and fre-
quently, the use of a replay buffer mitigates the risk of the learning system becoming outdated
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by allowing previous experiences, which may become relevant again under new conditions,
to continue influencing the agent’s policy.

Additionally, using a replay buffer ensures that the training process is not heavily influ-
enced by a sequence of atypical or infrequent experiences. This leads to more robust and
stable learning by averaging the effects of a broader range of possible situations.

4.1.3 Input variables for the Model
The model requires knowledge of the current state of the system to make the appropriate
scaling decisions. The selection of input variables was guided by a combination of domain
knowledge, insights from the literature, and iterative experimentation to ensure their rele-
vance and utility. With the aim of maximizing the information available to the model and
thus maximizing performance, the following attributes have been selected:

• CPU Utilization: This field contains the CPU utilization by the Virtual Machine.
It is essential to understand the system’s state and whether it is operating at capacity
or underutilized.

• Percent Assigned CPU: This represents the amount of CPU resources allocated
to the VM. Only these resources are used to process requests, and the resource cost
is derived from this value. A VM can be allocated up to the entirety of the host’s
resources. This parameter represents the fraction of the host’s total resources currently
allocated to the VM.

• Response Time: This represents the average response time observed over a given
period. This metric serves as the principal indicator for assessing the quality of the
user experience being provided.

• Waiting Requests: This field contains the count of requests that are queued for exe-
cution. It provides information about both the system’s state and the user experience.

• Ratio Requested Available CPU: This final parameter is a ratio calculated be-
tween the system’s processing capacity in its current configuration and the demand
for processing in a given time period. Positive values indicate that there is a surplus
of resources relative to the demand, whereas negative values indicate the opposite.

4.1.4 Scaling Actions
The possible actions to be performed by the agent are straightforward and directly map to
scaling actions. They include the following actions:

• Increase resources

• Maintain current resources

• Decrease resources

When modifying resource levels, the adjustment represents a proportion of the resources
currently allocated, around 10%. However, given that resource allocations are quantified
as integer values, discrepancies may occur where the actual scaling adjustment does not
precisely correspond to the predetermined percentage.

4.1.5 Illegal Actions
Illegal actions refer to decisions or movements that are not allowed, according to the rules or
constraints of the environment. Within the context of this study, there is an environmental
constraint, which refers to the inability to add more resources to a Virtual Machine when
it has already been allocated all the resources of the host. Designating this situation as an
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illegal action prevents the model from contemplating increments in resources under these
conditions, thereby facilitating and accelerating the learning process. From an implementa-
tion perspective, considering an action illegal involves masking the neural network output of
such action, ensuring it is not the most valuable choice and avoiding its selection.

4.1.6 Reward Function
A variety of reward functions were explored, and two of them were evaluated. Reward
Function A is a more innovative approach, while Reward Function B is more traditional.

The classical reward function, Reward Function B, comprises two distinct penalties: one
related to response time and another to resource allocation. For the former, an acceptable
response time threshold is defined, within which it is considered that a good user experience
is being provided. As long as the response time remains within this threshold, no penalty is
applied; however, if the threshold is exceeded, the penalty increases as the response time de-
viates further from it. The second penalty corresponds to the amount of resources allocated.
That is, the more resources are assigned, the higher the operational cost of these resources
and the lower the reward will be.

Therefore, the reward function is a multi-objective function with two specific objectives:
to minimize resources used and to maximize user experience.

Reward Function B = 3 ∗ RB Response Time
RB Resources

, with

RB Response T ime =

{
1 if Resp. T ime < Max Resp. T ime,

e
−
(

Resp. Time−Max Resp. Time
2∗Max Resp. Time

)
otherwise

RB Resources = Percent Assigned Resources
100

The more innovative reward function that was studied, Reward Function A, was ex-
tracted from the reviewed literature [17], and it adopts a different approach. Like the first
reward function, it assigns a score based on the response time. However, unlike the first, it
does not penalize the usage of resources directly; rather, it includes a utilization score. This
score involves defining a CPU utilization target, set at 80%, which the controller should
strive to get as closely as possible to minimize penalties. The purpose of this is to avoid low
utilization levels, thereby preventing the waste of resources, while at the same time providing
a sufficient margin to adapt to unexpected increases in demand.

Reward Function A = RA Response Time
RA Utilization

, with

RA Response T ime =

{
1 if Resp. T ime < Max Resp. T ime,

e
−
(

Resp. Time−Max Resp. Time
Max Resp. Time

)
otherwise

RA Utilization = |Target CPU Utilization− CPU Utilization|+ 1

4.1.7 Neural Network Architecture
The structure of the neural network used is simple and compact.

It consists of a fully connected network with three hidden layers. The dimensions of these
hidden layers are 16, 32, and 16 nodes, respectively. Between each layer, a ReLU activation
function is used to augment the modeling of more complex relationships between the input
and output variables and to accelerate convergence.
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The input variables to the network include previously defined metrics, with particular
focus on response time and the number of waiting requests in the queue, which are unbounded
and thus must be normalized beforehand.

For the network’s output, there are three neurons, each corresponding to a possible action
within the system. The selected action will be the one associated with the neuron displaying
the highest value, indicating the optimal decision according to the network’s evaluation.

4.1.8 DDQN
An alternative to the conventional DQN, known as Double Deep Q Networks (DDQN),
was explored. This model is designed to mitigate one of the fundamental issues that arise
with traditional DQN: the tendency to overestimate action values [6]. In traditional DQN
algorithms, the same network performs both the selection and evaluation of actions, which
can lead to an overestimation of action values. Such overestimation occurs because the
simultaneous maximization of action selection and evaluation tends to produce estimates
that are biased toward higher values. To counteract this bias, DDQN addresses this problem
by employing two distinct networks: one network is dedicated to selecting the best action
(the policy network), while the other is tasked with assessing the value of the selected action
(the target network). By decoupling these two processes, the risk of overestimations is
significantly reduced.

Ultimately, it was expected that using DDQN would yield better results than DQN.
Unfortunately, this was not observed in practice, and therefore, DDQN was discarded for
the final version.

4.1.9 Exploration vs Exploitation
A crucial aspect of reinforcement learning is managing the balance between exploration and
exploitation. Exploration involves selecting actions that may not be optimal in the short
term, with the goal of discovering new states or strategies that could lead to better rewards.
Exploitation, on the other hand, leverages the agent’s current knowledge to select actions
that maximize reward based on its learning so far.

Striking this balance is essential; excessive exploration may degrade performance due to
suboptimal actions, while insufficient exploration or excessive exploitation may prevent the
agent from discovering better strategies.

In the case study, the ϵ-greedy strategy was employed, where the agent explores randomly
with probability ϵ and exploits the best-known actions otherwise. The value of ϵ is gradually
reduced during training, starting with high exploration to encourage discovery and shifting
towards more exploitation as the model becomes more accurate. This controlled reduction
ensures that the model benefits from early broad exploration while focusing on optimal
actions later in training.

ϵ(episode) = ϵmin + (ϵmax − ϵmin) · e−α·episode , where:

ϵ(episode) : Exploration rate at a given episode

ϵmin : Minimum exploration rate

ϵmax : Maximum exploration rate

α : Exploration decay rate

episode : Current episode number
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4.1.10 Training
The model’s training is a continuous process. At each predefined Scaling Interval, the system
requests a new scaling action to the RL controller. The resultant system state, along with
the initial state, the executed action, and the associated reward, formulates a transition that
is subsequently transmitted to the model for storage in the Replay Buffer. In the case of
N-Step Q-Learning, this transition encompasses actions and states extending N-steps into
the future.

Once a sufficient number of new transitions accumulate in the Replay Buffer, the model
training is initiated. This phase involves the extraction of data batches, which are randomly
selected subsets of transitions from the Replay Buffer. These batches are utilized to refine the
estimated Q-values of potential actions stored implicitly within the neural network through
backpropagation. This process involves calculating the average loss per batch, which is
the discrepancy between the model’s initial predictions and the observed outcomes. This
calculated loss is then used to update the neural network’s weights accordingly and generate
more accurate predictions.

4.1.11 Last Layer Retraining
Literature review reveals that it is common to only retrain the last layer of the neural
network following the transfer. This approach is justified because the more general knowledge
is already well encapsulated within the model, and only minor adjustments are necessary
to fine-tune the model to accommodate the discrepancies between the source and target
domains. Therefore, in addition to standard training, there is a variant in which only the
last layer of the neural network is trained, potentially leading to a more expedited training
process.

4.2 Transfer Learning
This section provides a detailed description of the two transfer learning methodologies se-
lected for pre-training the model prior to deployment in the real environment. Sim-to-Real
and Learning from Demonstrations were identified as the methodologies best suited to the
requirements of this study.

4.2.1 Sim-to-Real
The objective of Sim-to-Real is to train the RL controller using a simulator designed to closely
mimic the real system’s environment. By pre-training the model in this simulator, it develops
a policy that ideally resembles the one required in the actual environment, eliminating the
poor initial performance phase typically associated with reinforcement learning.

The process involves conducting the standard RL training procedure previously de-
scribed, but with the RL controller interacting with a simulator rather than the actual
environment. Since the process is done in a simulated environment, it can be performed for
as long as it is necessary to properly train the model.

Once this pre-training phase is complete, the model is ready to be deployed directly in
the real environment.

Naturally, it is crucial for the simulator to accurately represent the dynamics of the real
environment, as significant discrepancies between the two can lead to a model that fails to
adapt effectively when transferred to the actual system.
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4.2.2 Learn from Demonstrations
Learning from demonstrations involves using demonstrations sourced from either an expert
or a pre-existing controller to pre-train the model. This approach embeds the model with
prior knowledge derived from the demonstrations and helps establish a foundational policy.

The training methodology employed to perform Learn from Demonstrations is based on
the approach outlined in [13].

Firstly, it is necessary to obtain the demonstrations, which were extracted from the logs
of a threshold-based controller. These demonstrations should have the same format as the
transition used for RL training. Subsequently, those demonstrations are loaded into the
replay buffer.

Although there are similarities with the conventional reinforcement learning training
process, the method for updating the model’s weights differs, using a supervised learning
approach. Firstly, batches of demonstrations or transitions are selected from the replay
buffer, which remains unchanged. However, the process diverges during the calculation of
the loss function. Instead of solely relying on the N-Step Q-Learning loss, two additional
loss metrics are incorporated:

• Supervised large margin Classification Loss

• L2 Regularization Loss

The supervised large margin classification loss, a supervised loss function, is intended
to encourage the model to replicate the actions observed in the demonstrations. It achieves
this by creating a positive margin between the Q-value of the demonstrated action and those
of the other possible actions. Essentially, it assigns a higher reward value to the action seen
in the demonstration, while assigning lower values to the other actions. This adjustment
is crucial, as the demonstrations provided exclusively contain optimal actions, without any
reward information from suboptimal actions. Without addressing this limitation, there is a
risk that the Q-values for less optimal actions could exceed those for the optimal actions,
since they are never set, which would compromise the model’s performance after transfer.

The second loss function, the L2 regularization loss, is intended to prevent the model
from overfitting to the relatively small number of demonstrations used during training. The
total loss is compounded by the three previously mentioned losses and is used to update the
neural network weights.

Another distinction is that this training process is repeated until the loss falls below a pre-
defined target. Once this target is achieved, the training concludes. This measure reinforces
the efforts to prevent the network from overfitting, which would diminish its performance
once tested in real conditions.

4.3 Definitions
In this section, definitions of core concepts are presented.

4.3.1 Requests or Cloudlets
In this study, a request represents an API call submitted to the system, and it is the ba-
sic processing unit. Each request inherently requires a certain amount of processing time,
memory, disk usage, and arrives at a specific point in time.

When simulating these requests in CloudSim Plus, they are modeled as cloudlets.
Cloudlets are designed to capture and simulate the characteristics of requests. They

include parameters such as the amount of processing required (measured as millions of in-
structions to be executed), memory usage during execution, disk space usage, and arrival
time.
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4.3.2 SLA
Service level agreements (SLAs) are predefined agreements between the cloud provider and
the client who will use the cloud platform to host their application. Of particular importance
for this case study is the response time, defined as a certain percentage of API calls not
exceeding a specific time threshold. For example, 99% of requests will not exceed 200ms
response time. There are additional SLAs covering aspects such as availability and fault
tolerance; however, these are not relevant for the analysis of resource management controllers
within the context of this study.

4.3.3 Workloads
A workload consists of a set of requests that need to be processed, each associated with an
arrival timestamp. Each workload spans a total duration of 24 hours, but the number of
requests varies between workloads. The difference between various workloads lies in the num-
ber of requests they contain and when these requests arrive. All workloads have stages with
a higher number of requests, representing higher demand, and stages with fewer requests,
representing lower demand. The rate of increase or decrease in the arrival rate of requests
is progressive, and the controller must be capable of adjusting the resource allocation at the
same pace as the change in cloudlet arrival rates.

There are two distinct types of workloads: synthetic and real. Synthetic workloads are
artificially generated to mimic expected real-life behavior. Real workloads are generated
from actual data from an e-commerce site, using logs from Kaggle, an online platform that
hosts public datasets for data science and machine learning. From these logs, which cover a
total duration of almost five days, five workloads were generated, one for each day.

4.3.4 Episodes
In traditional reinforcement learning, each episode has a specific goal. At the end of the
episode, a reward is received according to the performance of the agent, and this reward is
subsequently used for training. In this case study, the scenario is more complex since there
are no traditional episodes. This arises because of the continuous nature of the task at hand,
rather than finite task, which introduces several challenges.

Firstly, the reward system differs in that rewards are not aggregated post-episode but
are instead awarded after each action is performed. These immediate rewards focus on the
immediate effects of actions rather than their long-term impacts, necessitating an adaptation
of traditional training methods to better suit continuous tasks.

Despite this, in order to facilitate training and to better evaluate performance, an artifi-
cial variant of episodes is used. In these episodes, what is essentially a continuous process is
partitioned into several segments. Each episode covers a specific time period limited to 24
hours, during which a specific workload is executed, containing the arrival of requests within
that 24-hour period.

During the controller’s training, these segments are treated as distinct episodes to sim-
plify the learning process. However, from the controller’s perspective, it experiences a seam-
less, ongoing sequence of actions rather than discrete episodes. This approach allows for the
systematic training of the controller under conditions that mimic continuous operation while
still leveraging the structured framework of episodes for ease of analysis and performance
evaluation.

4.4 Design Decisions Taken
This section discusses several decisions and choices made during the design of the solution.
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4.4.1 Type of Scaling
The selected approach for scaling was vertical scaling, where the resources are adjusted
within a single virtual machine rather than increasing the number of virtual machines.

This decision was supported by two factors. Firstly, it was observed that studies and im-
plementations typically favor vertical scaling configurations, leading to the decision to adhere
to this common practice for consistency and comparability in our research. Furthermore,
the simulation tool utilized offers a more robust implementation of vertical scaling compared
to its horizontal counterpart, which remains underdeveloped and would require substantial
additional development to achieve a functioning implementation.

Should horizontal scaling be added to the current solution, a global controller would be
needed. Although this global controller could conceivably be based on deep reinforcement
learning, current literature suggests that simpler, frequently rule-based controllers are more
commonly employed for such applications.

4.4.2 Resources to Scale
In the implemented solution, a strategic decision was made to monitor and control a single
system resource. Specifically, the number of central processing unit (CPU) cores was chosen,
which is frequently identified as a primary bottleneck in application performance. To elim-
inate the impact of other potential system bottlenecks, such as RAM, sufficient resources
were provisioned to eliminate their interference with system performance.

The rationale for concentrating on a single resource was driven by several reasons: reduc-
ing the complexity of the implementation, facilitating smoother integration, simplifying the
training process, and extracting more precise insights into system behavior and performance
metrics. Future enhancements could include extending the model to concurrently manage
multiple resources, thus broadening the scope of the system’s adaptability and efficiency.

4.4.3 Evaluation Metrics and Performance Targets
To effectively evaluate the system’s performance, it is necessary to establish objective metrics
that accurately measure system performance. Service Level Agreements (SLAs) commonly
stipulate performance guarantees, such as processing 99% of requests within a specified
timeframe. Correspondingly, clear thresholds for acceptable performance must be delineated
on the system’s side, which are integral to configuring the reward function that guides the
controller’s operations.

Such values are defined in Section 4.6.2.

4.4.4 Differences between Simulation and Simulated Reality
The use case for which the solution was designed when utilizing Sim-to-Real, involves an ini-
tial phase where the controller is trained in a simulator, transferred to the real environment,
and finally retrained in reality. For several reasons, it was decided not to conduct the second
training phase in a real environment, but instead in a modified version of the simulator acting
as the real environment, called Simulated Reality. This decision was primarily motivated
by the substantial time and effort required to implement such an approach. First, extensive
research would be necessary to determine how to implement a solution in the real environ-
ment, including tools and libraries. Second, significant modifications to the controller would
be required to ensure its functionality and compatibility with real-world systems. Finally,
acquiring the appropriate infrastructure for testing would pose an additional challenge.

This modified version of the simulator is designed to approximate, to some extent, the
potential discrepancies the controller might encounter between simulated and real environ-
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ments. It ensures that the transfer is not flawless, mimicking the challenges of moving to a
real-world setting.

The differences between running in simulation and simulated reality are as follows:

• Workload: During the training phase in the simulation, synthetic workloads are
employed, which are synthetically generated based on specific heuristics. In contrast,
the workloads deployed in the simulated reality environment derive from real logs
obtained from an e-commerce website. These workloads exhibit different behaviors,
the real workloads display much greater fluctuations within brief intervals, with specific
peaks and drops, while synthetic logs are smoother.

• UpScaling Delay: A delay in resource scaling is implemented. When the reinforce-
ment learning controller controller determines that additional resources are needed,
these new resources are not immediately available. Rather, there is a notable delay
before their deployment, as would be the case in a real system. This delay was set to
1000 seconds, a substantial period.

• Monitoring Delay: The controller must take actions based on the current state of
the system. However, in practice, it is common that the system’s state is monitored
at intervals. Therefore, when a decision regarding scaling is needed, the exact state of
the system at that specific moment may not be available. Instead, the decision may
have to rely on data that reflects the system’s state at a previous time point.

While these adjustments are applicable within the simulator, there exist additional vari-
ations that cannot be implemented. The purpose of these artificial differences is to create
distinctions between the two environments, the simulator and the simulated reality, similarly
to the disparities between a simulator and an actual production system.

4.5 CloudSim Plus and Extensions
As previously mentioned, CloudSim Plus was chosen as the simulation tool. This section
provides a brief overview of the simulation process and describes several extensions made to
CloudSim Plus, which introduce necessary functionalities.

4.5.1 Simulation Process
To initiate a simulation, it is necessary to establish, at the very least, a data center archi-
tecture along with a corresponding workload for execution. The architecture of the data
center comprises a sequence of hosts (a minimum of one is required), each equipped with
specific resources. Subsequently, each host will operate at least one virtual machine, to which
designated resources from the host will be allocated.

Regarding the workload, it is composed of a series of cloudlets. These cloudlets represent
the fundamental processing units, requiring specified amounts of resources and computa-
tional effort. Furthermore, each cloudlet is assigned an arrival time, which is delineated in
units of simulation time and indicates the moment the cloudlet arrives to be executed.

Once the architecture and the workload are set, the simulation can be run, and the
results can be analyzed.

4.5.2 Added Functionalities
Although many of the essential functionalities are already implemented, it became apparent
that additional features were required. The implementation of these features was facilitated
by the inherent design of the tool, which is structured to be extensible. This design allows
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the integration of new functionalities without necessitating significant modifications to the
existing codebase.

The subsequent extensions were implemented.

Loading a workload from a file

The ability to load the workload to be simulated from a file was introduced, providing a
straightforward method to select which workload to execute by simply changing a parameter.

Logging

The ability to log performance metrics, including utilization and resource deployment through-
out the simulation, was incorporated. These metrics are instrumental for evaluating the
performance of the controller and are stored in files upon the completion of the simulation.

Capability to Connect to an External API

During the simulation, it is imperative to communicate with an external controller for a
variety of functions, including interfacing with the RL controller and further logging of
information.

Control of Scaling Actions by an External Controller

By default, CloudSim Plus permits scaling actions to be conducted exclusively by an internal
controller based on predefined thresholds. To align with the requirements, it was essential to
upgrade the tool to enable the execution of scaling decisions made by an external controller.

Decoupling the Scaling Interval from the Scheduling Interval

Initially, the simulator’s design links the scaling of resources and the scheduling of cloudlets,
maintaining a uniform interval between successive actions. This arrangement is impractical,
as the interval for scheduling (deciding the execution resource for a cloudlet) is typically very
brief (on the order of milliseconds), whereas the interval for scaling actions is considerably
longer, often spanning several minutes. Aiming for a more realistic approach that is reflective
of actual operational scenarios, it was decided to decouple these two intervals.

Enhanced Realism in CPU Scheduling (Resource Sharing Capability)

CloudSim Plus offers the functionality to specify the resource utilization for a cloudlet, such
as allocating 50% of a CPU core. This feature is intended to mimic scenarios where a
cloudlet does not continuously utilize the CPU, possibly awaiting I/O tasks. Under typical
circumstances, it would be possible for another task in the queue to utilize the resource
during this idle period. However, such functionality was not available. To address this, a
new scheduler was introduced, allowing two cloudlets, whose combined resource utilization
does not exceed 100%, to operate concurrently in the same core. Although this feature boosts
realism, it was ultimately not used due to its significant negative impact on performance.

Cloudlet Timeout and Cloudlet Dropout

When demand exceeds processing capacity, cloudlets start to accumulate in the waiting
queue. This situation can lead to two outcomes. On one hand, it may trigger a user-side
timeout, where the user ceases to wait for a response. On the other hand, the server’s
waiting buffer may become full, which will cause new cloudlets to be rejected. These two
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functionalities were incorporated into the simulator to make it more reflective of real-world
scenarios.

Dynamic Cloudlet Submission
While the simulator offers the possibility for a delay in arrival time, all cloudlets must be cre-
ated and submitted at the start of the simulation. When handling large workloads, consisting
of millions of cloudlets, this can become a bottleneck for performance. The capability for a
cloudlet to be submitted only at the appropriate time was added, minimizing the number of
cloudlets the simulator needs to manage at any given time.

More Accurate Resource Utilization Metrics
The resource utilization metrics reported by CloudSim Plus are instantaneous, therefore re-
flecting only the conditions at any given moment. Due to the dynamic nature of demand,
there may be specific peaks in demand, and the reported metrics may not provide an accu-
rate representation of ongoing conditions. Additionally, there have been observations where
metrics were collected at the exact moment one or more cloudlets were initiating or finishing
execution, resulting in unreliable utilization data in those instances.

To address this, a new utilization metric was implemented based on two components: the
available processing capacity over a period of time, and the processing performed during that
same period. This approach provides an average utilization value over a specified interval
that more accurately represents the system’s state.

Other System State Metrics
To assist the controller in making the most informed decisions, several additional metrics were
introduced. Among these metrics is a ratio that compares the system’s processing capacity
over a specified period with the processing demands required to execute the cloudlets that
arrived during that same period. This metric provides a clear indication of the relationship
between demand and the system’s processing capacity, offering further insights for effective
system management.

Downscaling when all Resources are Utilized
When a downscaling action is instructed, the simulator validates whether there are free
resources that can be released. If there are no free resources, then the scaling action is
rejected. While this approach appears logical, it can lead to unexpected outcomes from
the controller’s perspective, in which the chosen action has no effect. On the other hand,
rejection of the scaling action prevents the controller from properly exploring the action
space, potentially hindering its learning process. To address this issue, the capability to
release resources, even when they are momentarily in use, was implemented.

Monitoring Delay and Scaling Delay
In order to more accurately replicate real-world conditions within the simulator, two different
types of delays were implemented. The first one, named monitoring delay, is designed to
reflect the fact that the system state accessible to the controller might not be up to date.
The second type of delay, the scaling delay, refers to the duration required for the system to
update its resources following a scaling action, specifically when additional resources need
to be incorporated. During this period, the system enters a deadlock state, during which
no further actions are requested until the completion of the pending upscaling action. This
process commonly experiences a delay in real systems, and was considered crucial to simulate.
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Action Effect Delay and State history

When a scaling action is performed, its effects are not immediate but can be observed over
the long term. Therefore, it is not useful for the RL controller to retrieve the system state
immediately after the action is taken, as the effects of the action are not yet apparent. Thus,
a specified time interval has been defined to wait before retrieving the resulting state.

Additionally, a historical record of the system states was implemented, which is employed
for both the monitoring delay and the particular variant of Deep Reinforcement Learning
used.

4.5.3 Synchronization between Simulator and Controller
In a real-world environment, the controller would constantly monitor the system’s state
and execute the corresponding actions when it deems it necessary. However, to synchronize
the simulator with the controller, an inverse approach was adopted, where the simulator is
responsible for requesting scaling actions. This arrangement is due to the simulator’s inability
to receive external connections, rendering it impractical for the controller to coordinate both
systems. Therefore, it was decided that the simulator, at designated time intervals, would
communicate with the controller by sending the state of the system, and subsequently, the
controller would provide a scaling action to be executed.

Although this method of coordination does not replicate the real-world process, practi-
cally, there is no difference in results between the two methods.

4.6 Implementation Nuances
4.6.1 Simulation Times and Cloudlet Execution
As previously mentioned, a workload comprises a set of cloudlets whose arrival is distributed
over a 24-hour simulation period. In order to execute a workload, the simulator processes
these cloudlets by simulating the execution of tasks and allocating the necessary resources for
each cloudlet according to its specific characteristics. This implies that the more cloudlets
that need to be executed, the longer it takes to complete the simulation. This is particu-
larly evident when dealing with simulations involving millions of cloudlets, as would be the
case in real-world applications, where executing the simulation becomes exceedingly time-
consuming. To address this, a decision was made to create a smaller number of cloudlets
but with an increased processing time (beyond what would be reasonable in the scenario of
the case study), significantly reducing the time required to execute a simulation.

One approach to understanding this is that each cloudlet represents or consolidates 1000
requests or tasks. However, implementing this aggregation has certain implications.

Firstly, both the execution and response times appear “inflated” compared to the scaling
times. For example, the minimum processing time of a cloudlet (representing 1000 requests)
is 20 seconds, while a scaling decision is made every 200 seconds, creating the impression that
scaling decisions are made very frequently. However, this is not the case, as the variation in
the arrival rate of cloudlets over time remains consistent compared to the non-consolidated
approach. In other words, whether this aggregation is used or not, the percentage of variation
in the number of cloudlets received per unit of time throughout the simulation remains
consistent, thus justifying the maintenance of the same scaling interval.

Secondly, while the execution time of one cloudlet is equivalent to the execution time of
1000 requests, this does not hold true for response times. This discrepancy arises because
the processing time for a cloudlet is significantly longer than that for a single request, leading
to substantially longer waiting times if resources are occupied.
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Consequently, the controller’s behavior may not be exactly the same compared to scenar-
ios without aggregation, although the differences observed in preliminary tests were minor.
Despite these nuances, this behavior remains consistent across all case studies and algorithms
tested, thereby ensuring that the results are comparable between them.

4.6.2 Selected Configuration Parameters
To perform the simulations, several key parameters were established, all defined in terms of
“simulation time”. As noted earlier, each simulation spans 24 hours.

Two types of cloudlets with distinct processing requirements are simulated. The more
common “GET” cloudlet requires 20 seconds of processing time, while the far less frequent
“POST” cloudlet necessitates 200 seconds.

The scaling interval was set to 200 seconds, indicating the time between consecutive
scaling actions, provided no scaling delay is enabled.

When the scaling delay is activated, it introduces a 1000 seconds delay in provisioning
additional resources, a significant duration during which no further actions are taken by the
controller.

Additionally, the monitoring delay results in 50 seconds of lag in the system’s state
information, hindering the controller’s ability to make timely decisions based on the current
conditions.

Finally, the acceptable response time before incurring penalties was set to 200 seconds.
This value matches the minimum processing time required for a “POST” cloudlet, meaning
that if there are any previous cloudlets in the waiting queue, then the cloudlet will inevitably
exceed the predefined threshold.

4.7 Code
The code for the Deep Reinforcement Learning controller can be found in https://gitlab.

fing.edu.uy/santiago.serantes/drl-controller, and for the Cloud Sim Plus Simulator,
along with its extensions, the code can be found in https://gitlab.fing.edu.uy/santiago.

serantes/tesis-cloudsimplus-v2
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Chapter 5

Experiments and Evaluation

This chapter explains the methodology of the experiments conducted and outlines the var-
ious experiments designed to comprehensively analyze the controller’s performance and the
effectiveness of transfer learning. The goal is to demonstrate their applicability and signifi-
cance in addressing the challenges of cloud resource management. Furthermore, the chapter
discusses the performance metrics used to evaluate these results and provides insights into
their interpretation.

Additionally, a detailed study of the distinct hyperparameters is performed to understand
their impact on the controller’s behavior and overall performance.

5.1 Experimentation and Evaluation Framework
The project has two main objectives. The first is the development of a reinforcement learning
algorithm that surpasses traditional algorithms in managing resources within a data center.
The second objective is to study the application of transfer learning techniques to ensure that
the performance of this reinforcement learning (RL) controller is optimal from the outset.

The context in which the algorithm was designed involves replacing traditional resource
scaling policies or algorithms. In this scenario, it is crucial for the controller to demon-
strate satisfactory performance initially, as sub-optimal initial performance could compro-
mise the proper functioning of client applications, resulting in violations of the Service Level
Agreements. Consequently, this would incur losses for both the cloud service client and the
provider.

To evaluate these objectives within the defined context, a series of experiments were
designed and structured into distinct stages. These stages are designed to assess the perfor-
mance of the reinforcement learning algorithm and its ability to leverage transfer learning
techniques.

5.1.1 Training and Testing Stages
The training and testing process follows a series of distinct stages. The first is the Transfer
Learning Pre-training stage, where the model undergoes pre-training using transfer learning
techniques to establish a foundational model. This stage is further divided into two distinct
parts, each dedicated to a specific transfer learning technique. Upon completion of this first
stage, the second stage begins. The pre-trained model is deployed in the simulated reality
environment and its initial performance is evaluated. The following stage is the Training in
the Simulated Reality Environment phase, and consists of refining the pre-trained model.
To do this, the model is trained using the RL training process where the model interacts
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with the environment and adapts to the new conditions. In the last stage, the final model is
evaluated to assess its performance.

Transfer Learning Pre-training

To ensure that the Reinforcement Learning model demonstrates robust performance imme-
diately upon deployment, a preliminary training phase is essential. The purpose of this
stage is to embed the model with foundational knowledge, crucial for its initial effectiveness.
To achieve this, two specific transfer learning techniques are employed: Sim-to-Real and
Learning from Demonstrations. These techniques are integral in preparing the reinforce-
ment learning controller for real-world applications right from the start.

Sim-to-Real Transfer

This approach involves pre-training the model within a simulator, with the goal of prepar-
ing the model for deployment.

The greatest difficulty of Sim-to-Real lies within the simulation process. The simulation
must be sufficiently realistic such that the policy learned is applicable to the real-world
scenario. If this is not achieved, the knowledge intended for transfer will not be applicable,
leading to poor outcomes. While it is impossible for a simulation to capture every nuance
and aspect of reality, it is crucial that the simulation training closely resembles real-world
conditions to maximize the effectiveness of the transferred knowledge. However, developing
such a realistic simulator can be an exceedingly costly and time-consuming endeavor, making
it a significant factor to consider when evaluating Sim-to-Real transfer learning.

In the case study, this issue does not pose a problem since the simulator is utilized
in both scenarios. However, this situation does not accurately represent situations where
transfer to a real system is performed. To address this and approximate the conditions of
transferring to a real system as closely as possible, artificial modifications are introduced to
the simulator to generate a difference between the two environments. These modifications
include the addition of a Monitoring Delay and a Scaling Delay, creating a simulated reality
environment as previously discussed in Section 4.4.4. While these delays can be found in
real environments, they are not necessarily present in simulators such as CloudSim Plus.

The training in the simulator is conducted by iterating over a set of synthetic workloads,
each one with different characteristics, which differ from the workloads based on real data
used in the simulated reality environment. One such sample can be observed in Figure 5.1.

Figure 5.1: Synthetic Workload Sample
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Since the training is based on a simulation, it affords the opportunity to conduct as
many simulations as desired to achieve a satisfactory level of performance. However, it is
crucial that the learned knowledge does not overfit the simulator’s behavior as this could lead
to suboptimal knowledge transfer due to discrepancies between the domains. Nonetheless,
no such behavior was observed, even after prolonged training. Consequently, the training
was conducted over an extended simulation period of 200 episodes, equating to 200 days of
simulated time.

Performance is continuously monitored throughout this process to track the progression
of learning and its convergence.

Once the transfer is performed and the model is deployed in the real environment, re-
training becomes essential for the model to adapt to the new environment.

Learn from demonstrations

In this approach, the model learns from demonstrations obtained from another policy.
Therefore, an imperative step in implementing learning from demonstrations lies in the
existence of a source for these demonstrations. This source may originate from either an
expert or a pre-existing controller. In the scenario involving the pre-existing controller, the
demonstrations are not required to be optimal; nonetheless, the greater their quality, the
better the resulting performance will be.

The decision was made to extract demonstrations from an existing controller, which
operates based on thresholds. To acquire these demonstrations, a simulation based on the
simulated reality environment is executed, utilizing a conventional threshold-based algorithm
as the controlling mechanism. Throughout the simulation process, the actions, along with
the initial and subsequent states, are recorded. The inclusion of demonstrations from a
threshold-based controller is based on the assumption that they provide a viable basis for
training an RL controller, despite potential limitations in the optimality of their actions.

Three simulation runs were conducted in the simulated reality environment using the
predefined controller. During its execution, approximately 600 demonstrations were collected
that were used to train the model. Each demonstration is comprised of an initial state, an
action, and N-Step future states. Additionally, a reward is calculated using the same function
that the agent will employ, and training is conducted based on these demonstrations.

This methodology aims to illustrate a scenario in which a rudimentary cloud elasticity
controller, based on threshold values, is already operational within a real system. The
objective here is to replace this controller with a more powerful alternative. In such instances,
it is easy to acquire demonstrations that are suitable for the pre-training of a reinforcement
learning controller.

The main advantage of this technique is that it provides demonstrations from the real
system’s behavior, thereby eliminating the discrepancies between the two environments found
in Sim-to-Real. However, the disadvantage of this method is its inability to precisely replicate
the behavior of the original policy, which itself is not an optimal policy.

During the learning process, training metrics are continuously monitored, as they provide
critical information for evaluating the training progress.

Once the model has been pre-trained, it can be transferred into the real environment.

Following the transfer, it is imperative to retrain the model to further optimize the model
and its performance, ideally surpassing that of the original controller. During the fine-tuning
phase, new transitions will gradually replace the original demonstrations in the replay buffer.
This represents a deviation from the approach of utilizing an expert, where it is preferable to
maintain the original demonstrations in the replay buffer indefinitely to continue influencing
the model. This is based on the premise that the expert’s demonstrations are as optimal as
possible, and thus, it is crucial that this knowledge is not lost during the retraining process.
However, in this case study, the demonstrations do not come from an expert and do not
provide long-term value, making it unnecessary to retain them in the replay buffer during
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the retraining process.

Transfer Learning Performance Evaluation
Subsequent to the pre-training of the model using transfer techniques, this next stage focuses
on evaluating its performance and effectiveness within the simulated reality environment.
This evaluation involves the utilization of a workload generated from authentic data, in
addition to the incorporation of previously discussed scaling and monitoring delays. The
performance metrics obtained from this evaluation are indicative of the transfer’s efficacy
and determine the feasibility of deploying a DRL algorithm, especially given that the sub-
optimal initial performance is a critical challenge for reinforcement learning algorithms in
contexts where initial inefficiency is unacceptable.

Training in Simulated Reality Environment
During this stage, the focus is on retraining or fine-tuning the model in the simulated re-
ality environment to adapt it to the unique characteristics of this setting and maximize its
performance. This retraining phase follows the standard RL training process, much like the
Sim-to-Real pre-training phase. The simulation operates under real-world conditions, where
the model’s ongoing training aims to reconcile the discrepancies between knowledge acquired
in the pre-training phase and what it experiences in the new environment. Throughout this
phase, the model’s performance is continually monitored to evaluate its learning speed and
adaptability to environmental changes.

This stage comprises 100 episodes, corresponding to 100 days. While such an extended
period is not strictly required for this phase, it was selected to thoroughly assess the model’s
performance progression and asymptotic behavior.

The workloads employed during this retraining phase are derived from genuine oper-
ational loads, exhibiting distinct characteristics from those synthetically generated during
the initial training phase, typical of Simulation-to-Real transitions. In the Figure 5.2, a far
greater level of variation in the arrival rate of cloudlets can be observed compared to the
synthetic workloads.

Figure 5.2: Real Workload Sample

For Sim-to-Real transfer, after the transfer has been completed, it is not necessary to
reset the exploration rate for two reasons. Firstly, resetting the exploration rate increases
the likelihood of the system entering undesirable states as a higher number of random,
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and therefore suboptimal actions are taken. Furthermore, the model should already have
a well-formed notion of the potential value of different actions, obviating the need for a
comprehensive re-exploration of the action space.

Conversely, in the case of learning from demonstrations, a higher initial exploration rate
could prove beneficial. Firstly, it inherently starts at a high value due to the relatively brief
pre-training phase, which prevents a significant reduction in the exploration rate that occurs
with prolonged training. Additionally, this increased exploration enables the reinforcement
learning controller to more rapidly explore the outcomes of suboptimal actions, from which
no information was provided in the demonstrations. This strategy accelerates the training
process by enhancing the understanding of the action space and the expected rewards of less
effective actions.

Final Performance Evaluation
The final stage is dedicated to evaluating the model’s performance after completing the
main training phase in the simulated reality environment. This evaluation facilitates the
assessment of the RL controller’s final performance and enables a comparative analysis with
alternative solutions.

5.2 Performance Evaluation Design
5.2.1 Performance Evaluation During Training
Measuring performance throughout the training process presents significant challenges for
various reasons. On the one hand, each training episode utilizes distinct workloads, render-
ing the results obtained across different episodes incomparable. This is attributed to the
varying resource requirements necessary to meet demand, leading to greater costs, and the
fluctuations in demand which can augment the complexity of resource management from
one workload relative to another. Furthermore, during the early stages of training, high
exploration rates may lead to sub-optimal initial outcomes, which gradually improve as the
exploration rate decreases.

To address these issues, an alternative approach is used, which consists of periodically
pausing the training to conduct a test run on a predefined testing workload, leveraging
the knowledge acquired thus far. Evaluating overall performance during these testing runs
provides an assessment of the training progress. The metrics employed here are the same
as those utilized for the final performance evaluation, which are detailed in a subsequent
section.

5.2.2 Performance Evaluation of Transfer Learning
The performance of the model immediately post-transfer is crucial to validate the model’s
feasibility for real-world deployment. Following the transfer, the model is introduced to a new
environment featuring new transition dynamics and workloads, where the previously acquired
knowledge may not entirely align with the new domain. Nevertheless, it is imperative that
the model achieves a satisfactory performance level in this new context to prevent potential
usability issues for end-users.

To accurately measure the effectiveness of transfer learning, several metrics are employed:

• Jumpstart Performance: Measures the initial performance immediately following
the transfer.

• Time to Threshold: The number of episodes required to reach a pre-established
performance threshold.
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• Accumulated Rewards: The sum of rewards accumulated during the initial episodes
post-transfer.

• Performance with Fixed Predefined Epochs (10): Evaluates performance after
a set number of episodes.

• Asymptotic Performance: This is the best performance of the agent during and
after re-training.

5.2.3 Performance Evaluation of the RL Controller
To assess the controller’s final performance, multiple metrics are defined to measure various
aspects of its performance.

The initial set of metrics focuses on response time, which serves as a critical indicator
of the end-user experience. These include the average response time and percentage of
requests exceeding the specified time threshold.

While average response time itself is not part of the Service Level Agreements, it is in-
cluded to provide a better picture of the controller’s performance. On the other hand, the
percentage of requests exceeding the threshold is specified in the SLAs, where exceeding this
threshold incurs a penalty.

In addition to response time, the cost associated with resource utilization is evaluated.
This parameter is quantified by the average number of CPU cores allocated to the vir-
tual machine, with costs assumed to be proportional to the volume of resources employed.
The number of cores assigned to tasks represents the allocated resources, naturally incurring
a monetary cost.

Furthermore, a composite metric, called Score, integrates both the penalties for exceed-
ing the response time thresholds and the cost of resources utilized. This metric provides a
comprehensive view of the model’s performance compared to analyzing the individual met-
rics in isolation. The objective is to minimize both the resources allocated and the number of
requests exceeding the threshold, which are inherently in competition with each other. The
Score is generated at the end of the simulation and is distinct from the rewards obtained
from the reinforcement learning agent’s reward functions. It is calculated as follows:

Score = 1 + 10 − Percentage Response Time Over 200 − Percentage Assigned PEs
100

This composite score differs from the values of the reward functions as the latter penalizes
the margin by which response time thresholds are exceeded, while the former penalizes the
percentage of cloudlets exceeding these thresholds. This approach is adopted for two main
reasons. Firstly, it aligns with practices documented in the reviewed literature. Secondly,
using the percentage of cloudlets that exceed the threshold as input for the model would be
impractical; it tends to act as a binary variable because the response times of contiguously
processed cloudlets are very closely related, so if one cloudlet exceeds the threshold then the
subsequent cloudlets are very likely to do the same. Therefore, in the reward functions, the
margin by which thresholds are exceeded provides a clearer understanding of the system’s
current state, assisting the controller in making more informed decisions.

One final metric to analyze is the number of upscale and downscale actions taken
during the simulation. Although this is not a direct measure of the controller’s performance,
unlike the metrics previously mentioned, it does highlight the significance and relevance of
the actions executed. A large number of actions taken without the associated performance
improvement suggests that these actions may be unnecessary and would lead to increased
operational costs and potentially system instability. Additionally, this behavior may indicate
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an unstable controller that loops between states without converging to a stable state.

Overall, five distinct metrics are established to comprehensively evaluate the controller’s
effectiveness in managing cloud elasticity.

• Average response time

• Percentage of requests exceeding a specified time threshold

• Allocated Resources

• Score

• Number of Scaling Actions performed

5.2.4 Considerations
Run to Run Variability
The training of machine learning algorithms is typically non-deterministic. Several aspects
of the training can lead the model to converge to different outcomes. The case study is no
different.

This can be partially attributed to the exploration conducted by the reinforcement learn-
ing agent, where, during training, a random action is selected with a certain probability. This
random action has long-term effects, and due to the continuous nature of the state variables
and the large number of actions taken during training, it results in the agent’s trajectories
being different on each occasion.

Additionally, during training, random batches from the replay buffer are taken, meaning
that the samples used for adjusting the weights of the neural network also have a component
of randomness.

Furthermore, there is the non-deterministic component of the environment to take into
consideration, where the workload demand can change in unpredictable ways, leading to
different outcomes for the same action in the same state.

Another aspect contributing to this variability is that it is a multi-objective problem,
and similar final results can be achieved despite using different policies. For instance, one
policy might be more aggressive in resource allocation than another, but at the expense of
worse response times.

This results in no two training runs being identical, and the trained model obtained being
different in each execution, even though the same workloads are used for training and the
training period is the same. This variability implies that reliance on a particular execution
will not yield accurate results; rather, it is important to observe the behavior across a series
of executions and training runs to obtain a better picture of the real performance of the
model.

Testing Data
An important aspect to consider is that the results presented, including the training pro-
gression, are obtained from testing runs, selecting the model’s optimal actions, and utilizing
a constant workload to facilitate comparison of results over time. The rationale for select-
ing testing runs over training runs is that, during the training phase, the simulation cycles
through a variety of workloads, each one having a different maximum Score potential. This
variability renders it impossible to accurately assess the performance evolution.

However, testing runs exclusively apply the optimal policy, exploiting the acquired knowl-
edge while entirely omitting exploratory actions, which deviates from a real system’s dynam-
ics. Exploration is critical for the reinforcement learning agent to learn the optimal policy
by occasionally selecting suboptimal actions, which impacts overall performance. In order to
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investigate the implications of omitting exploratory actions, a specific test was conducted.
This test involves three consecutive simulations per episode, and a 100 episode duration.
Firstly, a standard training episode is performed. With the updated model, a second simula-
tion is executed utilizing the testing workload and disabling training while maintaining the
agent’s exploration. Finally, a third simulation is performed with the exploration disabled,
adhering strictly to the optimal policy. By comparing the second and third simulations,
an evaluation of the impact of reinforcement learning exploration on performance can be
obtained.
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Figure 5.3: RL Exploration Effects

The results, obtained after performing Learn from Demonstrations transfer learning,
show minimal deviation between the operational modes, as shown in Figure 5.3. Therefore,
testing runs are presented in the forthcoming results for the following reasons:

• More accurate performance measurement: Exploration introduces run-to-run variance,
complicating the evaluation of the policy’s performance.

• Execution time: The necessity to execute a third simulation for each episode substan-
tially increases the overall execution time.

Additional Observations during Training
An observation made during the training process is that in certain scenarios, particularly at
the beginning of training, the model may execute several incorrect actions. This can lead to
a state where cloudlets accumulate extensively in the waiting queue. In the most extreme
cases, it becomes exceedingly difficult for the controller to recover from this situation, as it
requires the selection of correct actions and a considerable period of time for it to return to
a stable state. To accelerate the speed of training, a decision was made to limit the number
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of cloudlets in the waiting queue, discarding them once a specific threshold is exceeded. The
rationale behind this decision is that the system will be in a state from which recovery is
simpler, thus affording the controller a greater opportunity to identify the correct sequence
of actions to recover and learn from them.

However, this approach has a potential drawback: while the correct actions to recover
the system are not identified, the system’s state may not be penalized as severely as it should
be. By dropping cloudlets, the average response time decreases, and the reward improves.
Therefore, it is crucial to find a threshold that strikes an appropriate balance between aiding
the controller in finding a solution to recover from a poor state and adequately penalizing
incorrect actions that fail to ameliorate the situation. The threshold was determined by
observing various simulations and the controller’s behavior in a variety of complex scenarios.
This process involved analyzing the queue length in cases where the controller successfully
recovered from adverse conditions and those where it failed to do so. A value was then
selected that lay between the values observed in those two scenarios.

5.3 Overview of Experiments
A series of experiments was conducted to evaluate the efficacy of the various algorithms and
techniques studied within the scope of this research.

5.3.1 Hyperparameter Testing
Firstly, a hyperparameter optimization study was conducted with the objective of identifying
parameters that maximize the performance of the algorithm. These hyperparameters include:

• Learning rate

• Discount rate

• Optimizer

• Size of replay memory

• Reward function

A grid search technique was employed to evaluate the best combination of parameter
values, and the performance was measured on a workload designated for validation.

5.3.2 Transfer Learning Training
A relevant part of transfer learning is the training process using the two distinct techniques.
A concise section explores the training evolution for specific samples using both techniques.

5.3.3 Transfer Learning Performance
A focal point of the study concerns the various transfer techniques that have been explored.
It is of vital importance that the DRL controller demonstrates robust performance from the
moment of its deployment.

The evaluation of different transfer techniques is intended to determine which method
is most effective for the specific case study. Reference points for this evaluation include
a controller without any prior training and a model based on threshold algorithms. The
transfer techniques assessed are:

• None

• Simulation to Reality (Sim-to-Real)

• Learning from Demonstrations
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5.3.4 Controller Performance
A fundamental aim was to ascertain the final performance of the implemented model by
comparing it against other established solutions addressing cloud resource scaling challenges,
as well as against different variants of deep reinforcement learning algorithms. It is crucial
to validate that the implemented model can enhance the performance of existing solutions,
especially given the augmented complexity inherent in a reinforcement learning algorithm.

The algorithms selected for this comparative analysis include:

• Threshold-based algorithm

• Deep Q-Networks (or Deep Q-Learning)

• N-Step Deep Q-Networks

The threshold algorithm, a commonly employed technique in practice, serves as a bench-
mark for evaluating the performance of the implemented algorithm. The threshold values
were based on the default values from CloudSim Plus and later tuned for better performance,
as no real-world references were found. These values were set at 55% utilization for the lower
threshold and 80% utilization for the upper threshold. Furthermore, the inclusion of tra-
ditional DQN allows the examination of the advantages of incorporating future states in
transitions with N-Step Q-Learning, showing the long-term implications of decision-making
actions.

All the performance metrics were obtained utilizing a testing workload previously unseen
by the reinforcement learning controllers.

5.3.5 Last Layer Training
A common practice noted in the literature during the retraining process is to exclusively up-
date the weights of the final layer of the neural network, while keeping the remaining weights
unchanged. Therefore, two distinct approaches for retraining are examined: a conventional
method, where all network weights are adjusted during retraining, and an alternative method,
where training is restricted to the last layer’s weights of the network.

5.4 Training Challenges Encountered
5.4.1 RL Controller Challenges
During the development of the controller, several challenges were encountered, two of which
proved particularly complex.

One such challenge was ensuring that the reinforcement learning controller learned the
correct actions for a given state. Initially, even when tested with extremely simple workloads,
the controller struggled to make optimal decisions. Identifying the cause of this behavior
took a considerable amount of time. The reason this occurred was due to an initial limitation
of the simulator, which did not allow resources to be scaled down if all resources were being
utilized; that is, the action of downscaling was not permitted under such circumstances.
This technical limitation initially appeared reasonable, since removing resources which are
actively being utilized might seem counter-intuitive. However, this assumption inadvertently
hindered the controller’s learning process, as it restricted the controller’s ability to explore
all available actions for certain states, resulting in incomplete information about expected
rewards. Consequently, the model was unable to fully comprehend the environment, impair-
ing its ability to make optimal decisions. Once this functionality was incorporated into the
simulator, there was a marked improvement in the controller’s performance, enabling it to
effectively execute its designated task.
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Similarly, a related issue was encountered when pre-training utilizing learn from demon-
strations. Initially, the training algorithm simply loaded the expert’s samples into the replay
memory buffer and used these transitions for training. Since the transitions used come from
an expert, they all involve optimal actions, providing no information about the environ-
ment’s behavior when performing suboptimal actions. To ensure that the selected actions
are correct, a supervised large margin classification loss is used, which ensures that actions
different from those selected by the expert receive a lower estimated reward. This method
is not without its difficulties, which are detailed later.

The second challenge encountered involves the inconsistency of trained models, particu-
larly when subjected to a new round of training. Specifically, a model that has been trained
for an extended period and achieved a certain policy and level of performance may ex-
hibit larger than expected variations in these aspects if subjected to a new training episode.
Several measures were implemented to address this issue. These included testing various
hyperparameters, such as the optimizer and learning rate, adjusting the input parameters
to ensure they provide representative data, and employing more robust algorithms like N-
Step Deep Q-Learning. While these strategies have mitigated the performance fluctuations
and resulted in more stable models, they have not fully resolved the issue, and the models
continue to exhibit a higher than desired degree of variance.

5.4.2 Transfer Learning Challenges
Both transfer techniques present practical difficulties.

In the case of Sim-to-Real, the challenge lies in developing a simulator that accurately
replicates the behavior of the real system. The greater the differences between simulation
and reality, the worse the outcomes when applying transfer learning. While this challenge
would apply in the proposed scenario, it does not apply to the specific solution implemented.
No additional challenges were encountered.

For the case of learning from demonstrations, the challenges are not as obvious. On the
one hand, it is necessary to obtain expert demonstrations. This is trivial in the proposed
use case, where an existing controller is being replaced. The challenge arises in training the
model with these demonstrations.

The training process is similar to traditional reinforcement learning training, but addi-
tional considerations must be taken into account to mimic the expert’s policy, including the
manual selection of a number of parameters. In training, it is necessary to consider not only
the Q-Learning loss function but also two additional losses: the supervised large margin
classification loss and the regularization loss.

For the first loss, a margin must be defined, which is used to generate a difference between
the expected Q-values of the action selected by the expert and the other actions. The correct
selection of this margin is crucial, as it must best represent the differences encountered in
the real environment. If a large margin is selected, it may help the model better imitate
the expert’s policy; however, once retraining begins, it may lead to poor results as the
expected Q-values implicitly stored in the model will differ significantly from those observed
in practice, leading to a retraining phase with suboptimal outcomes. This behavior can be
seen in Figures 5.4 and 5.5, where utilizing a larger margin provides better initial performance
but suffers once training is resumed. For the results evaluation, two models are created, one
with a larger margin and one with a smaller margin.

In cases where the difference in Q-values between actions is very small, as is the case
in this study, the selection of this margin value becomes even more complex. If very small
values are used, the effect of the supervised loss will be minimized and may be diluted by
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Figure 5.4: Retraining Learn from Demonstrations - Small Margin
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Figure 5.5: Retraining Learn from Demonstrations - Large Margin
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Q-Learning loss values from other transitions as well as by the regularization loss.
Regarding the regularization loss, it is necessary to define a value that prevents overfitting

to the demonstrations, which can be particularly problematic in this use case where the model
input consists of several parameters, but only one of them, the CPU utilization, is relevant
for imitating the policy of the original expert.

In addition to determining the large margin classification loss and regularization loss
values, another critical consideration is establishing the stopping condition for the training
process. The model must be trained sufficiently to converge but not excessively, in order to
avoid overfitting to the limited set of demonstrations. Selecting the optimal threshold value
is challenging, especially given the complex interactions between these factors.

In summary, the definition of all these parameters is a highly complex task that can
produce very different results depending on whether the parameters are selected correctly
or not. This complexity is further exacerbated by the difficulty in testing the pre-trained
model before deploying it in the actual environment. While it is possible to validate that
the actions taken by the model imitate those of the expert, it is not trivial to assess whether
the policy, once retraining begins, will be successful.

5.5 Hyper Parameter Testing
Several tests were conducted to determine which hyperparameters maximize the performance
of the controller. For this, a common validation workload was utilized for all experiments.

In the case of four of the hyperparameters, the Reward Function, Learning Rate, Dis-
count Rate, and Replay Memory Size, a predefined set of values was selected and tests were
conducted with all combinations of these four hyperparameter values, a method known as
grid search. To analyze the optimizer, the best values of the previously mentioned hyper-
parameters were used, iterating over possible reward functions and the potential optimizers
to identify those that yielded the best performance. The rationale for this approach was to
reduce the number of combinations to be evaluated, thus enabling the tests to be conducted
within a reasonable time frame.

Subsequently, for each combination of hyperparameters, multiple runs were conducted in
order to obtain a more comprehensive understanding of the actual effects of each hyperpa-
rameter, thereby minimizing the impact of the fluctuations observed in different executions.

Finally, for the analysis of the results, data from all tests were aggregated by the values
of each hyperparameter, yielding results for the execution that maximized the Score, as well
as for the median execution. The median rather than the average was chosen for analysis, as
certain parameter combinations could result in particularly poor outcomes that significantly
skew the average.

The results are presented in the Table 5.1, and analyzed in the following sections.

5.5.1 Study of the Reward Function
The behavior of the two previously mentioned reward functions is examined. One of these,
RF B, is more traditional, composed of both response time and the amount of resources
allocated. In contrast, RF A also considers response time but replaces the quantity of allo-
cated resources with a target value for resource utilization. This target indirectly penalizes
resource overprovisioning and maintains a reserve of unutilized resources, serving as a buffer
against sudden increases in demand. Setting a slightly lower target results in a more resilient
algorithm to sudden changes in demand as well as suboptimal decisions.

Among the two reward functions employed, the more innovative approach, RF A, gen-
erally achieves better performance. This is attributed to the CPU utilization margin it
provides. When evaluated with suboptimal hyperparameters that do not lead to an optimal
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model, it still manages to accommodate the load during sudden changes in demand. Mean-
while, the more traditional reward function often leaves little CPU margin, and in the event
of a poor decision or failure to anticipate demand changes, it quickly becomes overwhelmed.

While RF A performed better, it was of interest to conduct the subsequent experiments
with both reward functions, as it is considered important to assess the behavior of each one
under optimal conditions, compare different reinforcement learning models, and evaluate
each of their performances in transfer learning.

5.5.2 Study of Learning Rate
Three predefined learning rate values were evaluated:

• 0.001

• 0.003

• 0.01

No significant differences were observed among these three learning rate values, although
the value 0.003 yielded slightly better results. Therefore, this value is used for the remainder
of the experiments.

5.5.3 Study of Discount Rate
Again, three possible values for the discount rate were defined:

• 0.95

• 0.8

• 0.5

In this case, a noticeable difference was observed in the results obtained for the studied
values, where the lowest discount rate value produced notably worse results. The remaining
two values showed similar outcomes. Ultimately, the value of 0.95 was chosen as it obtained
slightly better results for median, average, and best runs, while also being the most consistent
one.

5.5.4 Study of Replay Memory Size
For the possible values of Replay Memory size, only two distinct values were extensively
evaluated: (1000, 5000). It can clearly be observed that the larger Replay Memory size
yields superior results across all metrics compared to the smaller one. Initially, further tests
using even larger values were conducted, and it was observed that further increasing the size
of the replay memory did not provide additional benefits.

5.5.5 Study of the Optimizer
Finally, four different optimizers were evaluated:

• Adam

• AdamW

• RMSprop

• ASGD

In this case, the best values of the previous hyperparameters were used, and tests were
conducted with these fixed values. RMSprop was selected as the best option because it
provides the best average performance and, additionally, shows the most consistency in
resource utilization.
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Table 5.1: Hyperparameter Testing Results

Reward Function

Result Reward Function Score Avg RT Avg CPU Cores

Median RF A 0.49 93.68 7.72
Best RF A 0.63 53.25 7.38
Median RF B 0.34 196.67 7.08
Best RF B 0.62 55.20 7.42

Replay Memory Size

Result RMS Score Avg RT Avg CPU Cores

Median 1000 0.42 251.41 7.71
Best 1000 0.62 43.04 7.67
Median 5000 0.48 22.48 9.88
Best 5000 0.63 53.25 7.38

Learning Rate

Result Learning Rate Score Avg RT Avg CPU Cores

Median 0.001 0.44 152.39 7.73
Best 0.001 0.62 49.21 7.36
Median 0.003 0.45 150.17 7.48
Best 0.003 0.63 53.25 7.38
Median 0.01 0.43 135.16 8.43
Best 0.01 0.62 55.20 7.42

Discount Rate

Result Discount Rate Score Avg RT Avg CPU Cores

Median 0.95 0.51 73.63 7.67
Best 0.95 0.63 53.25 7.38
Median 0.8 0.48 106.19 7.89
Best 0.8 0.62 55.20 7.42
Median 0.5 0.36 178.32 6.92
Best 0.5 0.57 34.67 8.26

Optimizer

Result Optimizer Score Avg RT Avg CPU Cores

Median ASGD 0.24 20.20 13.84
Best ASGD 0.46 21.95 10.29
Median Adam 0.44 97.98 7.80
Best Adam 0.61 38.18 7.59
Median AdamW 0.53 42.44 8.37
Best AdamW 0.61 37.16 7.79
Median RMSprop 0.54 55.04 7.76
Best RMSprop 0.61 34.71 7.88
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Chapter 6

Evaluation Results

In this section, the results obtained from executing the experiments described in the previous
section are shown and analyzed. A testing workload was employed for all the final results
analysis, as well as the testing runs performed between episodes to evaluate the performance
progression. Naturally, it differs from the workloads used to train the model and to validate
the hyperparameters.

The decision to use only one specific workload for validation and another for testing stems
from the fact that simulations with different workloads will yield different Score values, as a
workload with a higher average number of cloudlets per unit of time will require more cores
to satisfy demand, which incurs a higher cost and consequently, the Score will be lower.
Additionally, the limited availability of workloads generated from real logs restricted the
number of workloads that could be reserved for validation and testing.

6.1 Code
A Jupyter Notebook with the analysis presented below can be found in this notebook.

6.2 Transfer Learning Training
The training process for both transfer learning techniques is characterized by distinct evalu-
ation methods and performance trajectories, reflecting their unique approaches to learning.

For Sim-to-Real, the training evolution can be observed in Figure 6.1. The performance
shown in this figure is measured during testing runs between training runs. It can be ob-
served that it achieves a high-performance level within 20 episodes, and during the remaining
episodes, it fluctuates as new scenarios are explored and new policies learned, but ultimately
the performance ceiling remains largely unchanged.

For Learn from Demonstrations, it is not as simple to measure the performance. There-
fore, the training loss is used to evaluate the learning process. With this technique, the
learning evolution follows a typical training process, with large improvements in the early
stages and slowly converging to a baseline value. This can be observed in Figure 6.2.

It is worth mentioning that this graph can have different convergence speeds and baseline
values depending on the parameters selected for training, as previously discussed in Section
5.4.2.

https://gitlab.fing.edu.uy/santiago.serantes/drl-controller/-/blob/main/drl%20controller/analyze_results.ipynb?ref_type=heads
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Figure 6.1: Sim-to-Real Training
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6.3 Transfer Learning Performance
This section presents the performance evaluation of transfer learning. Once the models have
been pre-trained using both transfer learning techniques, they are evaluated in the simulated
reality environment. The models trained are based on the N-Step Deep Q-Learning variation
previously described.

6.3.1 Differences between Simulation and Simulated Reality
During the pre-training phase in the simulator, a simulated environment is used, which
then undergoes certain changes in order to obtain the simulated reality environment. These
differences include distinct workloads and the addition of two delays: one for resource scaling,
representing the time between issuing a command and resource availability, and another for
monitoring, where the controller relies on outdated system state information.

Table 6.1: Sim-to-Real - Transfer Effects - Average

Rew.
Fun.

Delays Avg
Score

Avg RT Avg CPU
Cores

RF A No Delays 0.78 ±
0.02

24.81 ± 2.07 5.17 ± 0.28

RF A Scaling Delay 0.75 ±
0.03

54.65 ±
22.72

4.80 ± 0.18

RF A Scaling & Monitoring
Delay

0.76 ±
0.03

49.87 ±
14.45

4.78 ± 0.18

RF B No Delays 0.75 ±
0.09

80.97 ±
50.56

5.18 ± 1.53

RF B Scaling Delay 0.43 ±
0.25

201.82 ±
143.85

4.91 ± 1.33

RF B Scaling & Monitoring
Delay

0.40 ±
0.25

230.29 ±
158.54

4.95 ± 1.34

Table 6.2: Learn from Demos. - Transfer Effects - Average

Rew.
Fun.

Delays Avg
Score

Avg RT Avg CPU
Cores

RF A No Delays 0.78 ±
0.02

31.14 ±
4.15

5.13 ± 0.25

RF A Scaling Delay 0.60 ±
0.04

126.24 ±
14.30

4.69 ± 0.06

RF A Scaling & Monitoring
Delay

0.62 ±
0.08

101.41 ±
47.17

4.82 ± 0.19

RF B No Delays 0.76 ±
0.03

34.28 ±
14.45

5.36 ± 0.56

RF B Scaling Delay 0.63 ±
0.11

88.65 ±
67.76

5.06 ± 0.65

RF B Scaling & Monitoring
Delay

0.60 ±
0.14

108.95 ±
90.60

5.10 ± 0.70
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In Table 6.1 and 6.2, the effects of these delays can be observed. These tables compare
the performance of the same models on the same workload but gradually introduce the pre-
viously discussed delays. Analyzing the results for Sim-to-Real, it becomes evident that the
scaling delay has a much larger impact than the monitoring delay. This can be observed
particularly with reward function B, which does not have any explicit buffer for CPU uti-
lization. The model trained with reward function A is better able to handle the delay in
response to its actions, managing to maintain performance.

In the case of Learn from Demonstrations, both reward functions are significantly im-
pacted by the introduction of the scaling delay. Additionally, they are impacted to a similar
extent, which is expected given the fact that they were trained to follow the same policy.

It may seem unexpected that the controller suffers so much with the addition of these de-
lays, considering that the demonstrations were derived from a controller based on thresholds
operating in the simulated reality environment with such delays already present. However,
the model is trained to mimic the threshold-based controller, which lacks the capability to
alter its behavior to account for the scaling delay. The monitoring delay seems to have little
effect.

It can be observed that in all scenarios the average number of resources used prior to
the introduction of the scaling delay is higher than after the introduction of said delay. This
is because it takes longer to add them, but not any longer to remove them. However, this
reduction in cost is negated by the increase in response time and the increase in penalties
for exceeding the predefined threshold.

6.3.2 Transfer Learning Results
The results obtained from transfer learning can be observed in Table 6.4 for the average
results and Table 6.3 for the best run. These results are based on the metrics previously
discussed in Section 5.2.2. As a reference point, the Score achieved by the thresholds-based
policy is 0.72.

Jumpstart Performance
The results obtained without any pre-training of the model are predictably poor. The per-
formance varies significantly depending on the random initialization of the neural network
weights. Two outcomes are commonly observed: either the actions taken by the agent pri-
marily involve increasing resources, leading to good response times but excessive resource
allocation, resulting in very high costs; or the predominant actions involve decreasing re-
sources, causing demand to far exceed availability, which renders the system unable to meet
the demand.

For the Sim-to-Real approach, promising results are observed, particularly with reward
function A. In this case, the initial results are even better than those achieved with the
threshold-based controller. For reward function B, while the results are not poor, they
are inferior to those of the threshold-based controller, and experience a notable decrease in
performance when the scaling delay is introduced.

The reason why the scaling delay affects the second reward function more significantly
is due to the fact that the first function has a specific target for CPU utilization of 80%.
This target implicitly creates a safety margin, allowing for residual resource capacity to meet
sudden increases in demand. When the scaling delay is introduced, the action of increasing
resources takes a certain period to complete, and if the system is already near its capacity
limit, it will not be able to satisfy the increased demand.

In the case of Learn from Demonstrations, the results are not as favorable as those
achieved with Sim-to-Real, although they are still satisfactory and present a marked im-
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provement over the variant with no transfer. In the best-case scenario, the performance is
comparable to that of the threshold-based controller, which is as good as could be expected,
given that it uses the threshold-based controller as the expert to imitate. On average, the
performance is slightly below what can be achieved with a threshold-based model. There is
little performance difference between the two reward functions, which follows the fact that
the policy from which the model was trained was the same for both reward functions.

Here, the difficulty of achieving good model training from the demonstrations becomes
apparent. Although it is possible to consistently obtain good results by selecting a bigger
value for the large margin classification loss, this would have negative effects on other aspects
of the transfer process.

Accumulated Rewards

Another crucial aspect to consider is the performance obtained in the first few episodes
following the transfer. For this purpose, the accumulated rewards metric is used, which
represents the sum of the rewards over the first five episodes. However, in this case, the sum
of the Score is used instead of the reward.

The importance of this metric lies in the fact that, once the transfer is performed,
retraining begins. During this process, the controller interacts with the new environment
and gathers new information about its behavior. The model’s expected reward values are
updated during this process, starting from the expected values calculated based on the
previous training phase and adjusting them with the new observed values. If these values
differ significantly, the system may encounter a situation where the values of some actions
have been updated while others have not, potentially leading to an unpredictable policy.
Therefore, it is crucial that the expected reward values remain as consistent as possible to
ensure a good performance level during the early stages of the retraining process.

In the case of Sim-to-Real, the same reward functions are used, with the only difference
being the environment dynamics.

In the case of Learn from Demonstrations, the situation is more complex. Initially, only
reward data for “optimal” actions was available, and none for “non-optimal” actions. A
synthetic gap is created between the rewards for desired and non-desired actions, which may
not align with the gap encountered when interacting with the new environment.

For the Sim-to-Real approach, the results are good, with only a slight decrease in average
performance over the following five episodes.

In the case of Learn from Demonstrations, the performance starts at a lower point.
However, depending on the execution, performance sometimes quickly recovers, while in
other cases, there is an initial decline before any improvement is observed. This variation
depends on the selected values for the margin and regularization, as previously shown in
Figures 5.5 and 5.4.

In the case of the model without pre-training, the average results are notably under-
whelming, although there are instances where it can quickly learn an effective policy and
achieve satisfactory performance levels. Nevertheless, this metric clearly highlights the chal-
lenges of deploying reinforcement learning solutions without pre-training in real-world envi-
ronments, as the initial performance is insufficient to meet practical demands.

Time to threshold

To define the performance threshold, a target value close to that achieved by the threshold-
based controller was selected 0.7, as the performance is considered satisfactory beyond this
point.

For the Sim-to-Real approach, the performance can reach the threshold from the very
first episode, and on average, it achieves a satisfactory level of performance within a few
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episodes. This implies that Sim-to-Real is a suitable transfer learning technique for the case
study.

In the case of Learn from Demonstrations, a satisfactory level of performance can also
be achieved from the first episode, although it generally takes slightly longer to raise the
performance up to the threshold level.

Performance after 10 Episodes
Both transfer learning techniques show significant improvement compared to no previous
training. In the case of Sim-to-Real, the performance obtained after only ten episodes nearly
matches the best performance attainable for both reward functions. Even on average, for
reward function A, the performance comfortably surpasses that of the threshold-based policy.

Learning from demonstrations also provides a notable performance boost, particularly in
the average results. For the best run, it produces a slightly lower result than no training for
reward function A, but a significantly higher score for reward function B. For the average
run, it produces markedly better results than with no previous training, but it lags behind
Sim-to-Real, and particularly struggles to achieve good results with reward function B.

Asymptotic Performance
After retraining, all models show improved performance compared to the results obtained
immediately after the transfer. Additionally, the different transfer learning techniques, in all
executions, produce almost identical results, leading to average results that are on par with
the results obtained in the best runs.

For the Sim-to-Real approach, the improvements observed with reward function A are
modest, partly because the initial performance was already strong. The improvements stem
from a reduction in penalties, despite a slight increase in resource usage. This minor en-
hancement is attributed to the previously mentioned fact that the reward function creates
a buffer, allowing the system to effectively handle changes in the new environment, even re-
ducing the average number of cores used without significant penalties for excessive response
times. In the case of reward function B, the improvement is much more pronounced, with a
significant reduction in response times without a notable increase in resource usage.

For Learn from Demonstrations, although the initial performance is slightly weaker, the
retraining process brings the performance up to similar levels, as expected.

For the model without any pre-training, although the initial performance is quite poor,
it eventually improves to reach comparable levels to that of the other transfer learning
methodologies.

Transfer Learning Results Summary
Overall, both techniques significantly enhance the controller’s performance upon deploy-
ment, demonstrating the potential to make reinforcement learning viable in practical sce-
narios. Among the two, Sim-to-Real exhibited particularly strong results, outperforming the
threshold-based controller from the outset.

While the results of Learning from Demonstrations were positive, they did not match the
performance levels achieved by Sim-to-Real. However, the training process for this technique,
particularly the selection of parameters such as the margin for the large-margin classification
loss, is not yet fully understood. Further research and investigation could provide a deeper
understanding of the process, enabling refinements that improve the technique itself and,
consequently, the controller’s performance.
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Table 6.3: Transfer Learning Performance Metrics - Best Results

Rew.
Fun.

Metric No
Transfer

Sim-to-
Real

Learn from
Demos.

RF A Jumpstart Performance
(Score)

0.21 0.79 0.69

RF A Accumulated Rewards
(Sum Score)

2.09 3.74 3.37

RF A Time to Threshold
(Episodes)

4 0 1

RF A Performance after 10
Episodes (Score)

0.77 0.77 0.74

RF A Asymptotic Performance
(Score)

0.79 0.79 0.79

RF B Jumpstart Performance
(Score)

0.47 0.71 0.73

RF B Accumulated Rewards
(Sum Score)

3.23 3.37 3.37

RF B Time to Threshold
(Episodes)

18 0 0

RF B Performance after 10
Episodes (Score)

0.21 0.78 0.60

RF B Asymptotic Performance
(Score)

0.80 0.80 0.80

Table 6.4: Transfer Learning Performance Metrics - Average Results

Rew.
Fun.

Metric No
Transfer

Sim-to-
Real

Learn from
Demos.

RF A Jumpstart Performance
(Score)

0.18 ±
0.05

0.76 ±
0.03

0.62 ± 0.08

RF A Accumulated Rewards
(Sum Score)

1.52 ±
0.50

3.51 ±
0.47

2.28 ± 1.01

RF A Time to Threshold
(Episodes)

20.67 ±
24.66

0.25 ±
0.71

6.50 ± 3.62

RF A Performance after 10
Episodes (Score)

0.36 ±
0.35

0.75 ±
0.01

0.65 ± 0.07

RF A Asymptotic Performance
(Score)

0.79 ±
0.00

0.79 ±
0.01

0.79 ± 0.00

RF B Jumpstart Performance
(Score)

0.32 ±
0.18

0.40 ±
0.25

0.60 ± 0.14

RF B Accumulated Rewards
(Sum Score)

1.65 ±
1.36

2.60 ±
0.49

2.76 ± 0.31

RF B Time to Threshold
(Episodes)

22.67 ±
4.51

2.62 ±
3.85

1.83 ± 2.23

RF B Performance after 10
Episodes (Score)

0.16 ±
0.04

0.61 ±
0.18

0.36 ± 0.20

RF B Asymptotic Performance
(Score)

0.79 ±
0.00

0.79 ±
0.00

0.80 ± 0.01
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6.4 Controller’s Final Results
This section presents a comparative analysis of different controller alternatives to assess
the performance of the implemented solution. Additionally, it examines the number of
actions taken by each controller, providing insights into their efficiency. Finally, the results
of retraining the neural network by updating only the weights of the last layer are evaluated
and compared to a full-network update approach.

Figure 6.3: Controller Performance Comparison - RF A

6.4.1 Controller Performance - Thresholds vs DQN vs N-Step DQN
In this section, a comparison between the three different controller implementations is pre-
sented. These include a threshold-based approach as a reference point and two RL-based
models: the first one using a standard Deep Q-Network and the second based on N-Step
DQN. For the machine learning-based algorithms, the best hyperparameters have been se-
lected.

Furthermore, two outcomes are presented: one that represents the best result achieved
and another that averages the results obtained across multiple executions.

The results are presented in Table 6.5, the metrics for which were previously discussed
in Section 5.2.3.

The different solutions provide different advantages and disadvantages. The advantages
offered by the solution based on Thresholds pertain to its interpretability, as it is simple to
validate the controller’s decisions by simply checking the system’s state. Moreover, it main-
tains consistency over time and across various situations, making it predictable. Although
the outcomes may not be the most optimal, this algorithm ensures satisfactory performance
in terms of response times in most scenarios without incurring excessively high resource
costs. Additionally, since no training is required, it delivers consistent performance, which
can be observed in Figure 6.3.

The results obtained for the Deep Q-Network (DQN) place it on par with the threshold-
based solution for average execution for Reward Function A, and below for Reward Function

70



6.4. Controller’s Final Results

B. Utilizing Reward Function A, which targets an 80% CPU utilization, yields more con-
sistent results compared to Reward Function B, due to its margin in CPU usage. Reward
Function B, lacking this margin, is more susceptible to incorrect decisions by the agent,
which is evident from a significant difference between average and best executions.

For the best results of DQN, it significantly surpasses the threshold-based implementa-
tion. It is noteworthy that in all runs, the DQN achieves values higher than the Threshold
solution at some point, but the model fails to maintain this performance level all throughout
the training process, exhibiting variations in performance.

The performance level achieved with N-Step Deep Q-Learning surpasses that achieved
by standard DQN. Although no significant improvements are observed in the best case,
differences are noticeable in the average results. For Reward Function B, the improvement is
particularly notable, highlighting the advantages of the N-Step approach. This variant more
effectively anticipates demand fluctuations, which is crucial given that Reward Function
B lacks the safety margin present in Reward Function A. As a result, it helps prevent
situations where demand cannot be met, as can be seen by the reduced response times and
the percentage of requests that exceed the predefined threshold. Additionally, the N-Step
model demonstrates greater consistency, with reduced performance fluctuations, making it
more reliable for practical applications.

Notably, in all executions of the N-Step model, the controller demonstrates the ability to
achieve performance levels that match or even surpass the presented “best” result at some
point during training. However, it fails to sustain this level of performance by the end of the
training process, when these measurements were extracted.

Based on these observations, it can be stated that, out of the two reinforcement learning-
based solutions, the N-Step model is more robust and capable of yielding better results in
less optimal or more complex situations due to a deeper understanding of the long-term
effects of actions.

Comparing the best execution of the N-Step Deep Q-Learning controller to that of the
threshold-based controller reveals a substantial improvement. While the Score reflects only
a 10% increase (0.72 vs. 0.79), this translates to a more significant 20% reduction in
CPU resource usage (5.99 vs. ∼4.9), while at the same time reducing the number of SLA
violations.

DRL Controller Results Summary
Overall, the reinforcement learning models, particularly N-Step Deep Q-Learning, show sig-
nificant promise. When achieving its best results, it can offer substantial advantages over
traditional methods.

However, stability remains a key limitation in the current implementation of Deep Q-
Network (DQN)-based models. Notable differences can be observed between contiguous
episodes, even after prolonged training periods, during which only minor changes would
typically be expected.

As a result, the average performance of DQN remains comparable to or slightly lower
than traditional methods, while N-Step DQN achieves slightly better results.

Single Simulation Comparison
While the previous results provide an overall comparison of the different algorithms, a more
detailed analysis of each controller’s performance in specific workload executions offers valu-
able insights. In particular, Figures 6.4, 6.5, and 6.6 illustrate the evolution of the Score,
Average Response Time, and Number of CPU Cores over the 24-hour simulation period,
alongside the corresponding demand for reference. To enhance clarity, the data has been
smoothed for better visualization. These figures compare the performance of the N-Step
DQN controller against the threshold-based controller.
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Table 6.5: Algorithms Comparison

Thresholds

Result Reward Function Score Avg RT % RT > 200 Avg CPU Cores

NA NA 0.72 24.74 0.98 5.99

Deep Q-Learning

Result Reward Function Score Avg RT % RT > 200 Avg CPU Cores

Average RF A 0.72 64.25 2.79 5.68
Best RF A 0.79 34.04 0.0 4.95
Average RF B 0.64 68.13 9.31 5.80
Best RF B 0.79 31.44 0.02 5.03

N-Step Deep Q-Learning

Result Reward Function Score Avg RT % RT > 200 Avg CPU Cores

Average RF A 0.74 34.74 2.15 5.40
Best RF A 0.79 40.58 0.70 4.89
Average RF B 0.73 40.98 2.94 5.37
Best RF B 0.79 38.40 0.0 4.91

Two key observations emerge from these results. First, the threshold-based controller
exhibits a noticeable drop in Score early in the simulation. This decline is associated with
a sharp increase in response time, which, although not visible in the plot due to smoothing,
exceeds the SLA-defined threshold of 200 seconds. The steep rise in response time results
from a sudden increase in demand, which the threshold-based model is unable to anticipate.
Second, the N-Step variant consistently allocates fewer resources, leading to slightly higher
average response times. However, since these response times remain within the predefined
penalty threshold, the overall Score remains consistently higher.
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Figure 6.4: Score - N-Step DQN vs Threshold
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Figure 6.5: Assigned Resources - N-Step DQN vs Threshold
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Figure 6.6: Avg Response Time - N-Step DQN vs Threshold
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6.4.2 Total Number of Actions Taken
Another key performance metric for comparing the different models is the number of scaling
actions taken by the controller. Given the interesting results obtained and their potential
implications, it is considered valuable to explore this metric in a dedicated section.

A high number of scaling actions is considered disadvantageous for several reasons.
Firstly, frequent scaling actions reduce the stability of the allocated resources, increasing
the uncertainty about the available resource pool for the cloud provider. This instability
may lead to an over-provisioning of the resource pool for concurrently running applications
to ensure that the total capacity is not exceeded. Additionally, during the provisioning pe-
riod of a new resource, that resource is reserved but cannot yet process incoming requests,
causing it to be effectively unutilized. Therefore, minimizing the number of actions is a
desirable goal.

Upon analyzing the number of scaling actions taken by each algorithm, significant run-
to-run variance was observed in the RL-based model. On average, the RL-based models
executed 70 scaling actions during the testing run, compared to 88 actions by the threshold-
based controller, representing a 20% reduction in scaling actions. However, in some instances,
the RL controller performed up to 125 scaling actions during the simulation, while on other
occasions it took as few as 14 actions.
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Figure 6.7: Correlation between Number of Actions and Performance

Given that a lower number of actions is desirable, an analysis was conducted to determine
whether the number of scaling actions impacts overall performance. Pearson’s correlation
statistical analysis revealed a correlation coefficient of 0.038 and a p-value of 0.755, indi-
cating little to no correlation between the number of actions taken by the controller and the
resulting performance. The high p-value suggests that this weak correlation is statistically
insignificant, meaning it is unlikely that there is a meaningful relationship between the two
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variables. These results can be clearly observed in Figure 6.7.
However, this statistical test may not fully capture the underlying relationships. In

simulations where the highest performance level is achieved, the number of scaling actions
typically exceeds 40. Additionally, there are some cases with a high number of scaling actions
but poor performance, which skews the results. These instances may correspond to scenarios
where the controller executes unnecessary actions or loops between scaling actions due to an
unstable policy, which in turn compromises performance.

In summary, the results suggest that the number of scaling actions does not have a
significant impact on the model’s performance, up to a certain extent. This opens up an
interesting avenue for future work: modifying the RL controller to minimize the number
of actions taken while maintaining high performance, thus further enhancing the benefits
already observed with deep reinforcement learning.

6.5 Last Layer Training Results
Another aspect of interest to evaluate is the difference between retraining all layers of the
network and retraining only the last layer after performing the transfer.

To investigate this, experiments were conducted where both approaches start from the
same pre-trained base model, followed by the fine-tuning phase. Specifically, the initial model
used was obtained after pre-training in the simulator.

Multiple runs were performed to gain a more accurate understanding of the real behavior
of both techniques. The metrics used for analysis are the same as those applied to transfer
learning, with a particular focus on Asymptotic Performance to validate that both methods
can achieve optimal results after retraining, as well as Accumulated Rewards and Time to
Threshold to assess the initial behavior once retraining begins.

Table 6.6: Comparison between Full Network and Last Layer Re-Training - Average

Rew.
Fun.

Metric Full Network
Training

Last Layer
Training

RF A Jumpstart Performance
(Score)

0.74 ± 0.0 0.74 ± 0.0

RF A Asymptotic Performance
(Score)

0.79 ± 0.01 0.77 ± 0.01

RF A Accumulated Rewards
(Sum Score)

3.74 ± 0.08 3.66 ± 0.09

RF A Time to Threshold
(Episodes)

0.0 ± 0.0 0.25 ± 0.50

RF B Jumpstart Performance
(Score)

0.71 ± 0.0 0.71 ± 0.0

RF B Asymptotic Performance
(Score)

0.80 ± 0.0 0.80 ± 0.0

RF B Accumulated Rewards
(Sum Score)

2.29 ± 0.37 1.90 ± 0.09

RF B Time to Threshold
(Episodes)

4.25 ± 0.50 13.0 ± 8.83

According to the results observed in Table 6.6, retraining only the last layer of the neural
network does not provide any advantages over a full network retraining. In particular, the
initial phase of retraining not only fails to show improvements compared to full network
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retraining, but instead, a slight performance regression is observed, with a longer training
time required to achieve equally good results. Regarding the final performance achieved by
the model, both techniques yield similar results, though a slight improvement is noticeable
with full retraining. Therefore, in the case study, fully updating the network weights during
the retraining phase yielded better results.
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Chapter 7

Conclusions

This thesis set out to achieve two main goals: firstly, to develop a deep reinforcement learning
(DRL)-based controller that dynamically manages cloud resources in response to fluctuating
demands while outperforming existing solutions; and secondly, to study the use of transfer
learning techniques in this context, assessing their potential to improve the controller’s initial
performance and reduce the training time required to learn effective strategies.

To establish a testing environment, a variety of simulators were analyzed, culminating
in the selection of CloudSim Plus due to its extensibility and robustness. This simulator
allowed the development of the necessary customizations to accurately emulate realistic cloud
environments, enabling the evaluation of the DRL controller under different configurations.

Further enhancements were made in order to introduce a “real mode”, the simulated
reality environment, featuring scaling and monitoring delays, as well as the incorporation
of workloads reflective of real-world scenarios. These adjustments aim to mimic, to some
extent, the potential discrepancies one might encounter when transitioning from a purely
simulated environment to actual cloud dynamics, thus providing a differentiated yet still
simulated platform that better reflects real-world conditions.

Reinforcement learning is a frequently employed technique for cloud elasticity. The
integration of deep reinforcement learning, which leverages deep neural networks, provides
a more effective approach to managing high-dimensional state spaces while simultaneously
improving the controller’s ability to model complex scenarios.

While RL has been applied to cloud elasticity, existing research recognizes initial perfor-
mance limitations and employs various strategies to accelerate training. Nonetheless, these
methods do not fully overcome the challenge. In contrast, transfer learning allows the RL
controller to start from a significantly strengthened position, leveraging prior knowledge to
bypass the initial learning curve in traditional setups.

The investigation included several transfer learning techniques, with a particular focus on
Sim-to-Real transfer and Learning from Demonstrations. Sim-to-Real transfer was selected
for its ability to pre-train the RL controller in a simulated environment that closely resembles
real-world conditions. This process embeds the controller with a baseline policy that provides
a strong starting point in the target environment. Learn from Demonstrations was chosen
for its ability to effectively train the RL controller to imitate the policy demonstrated by
an expert. In this instance, demonstrations from a threshold-based controller were used to
provide the RL agent with a solid starting policy.

These strategies maximize the RL controller’s initial performance; therefore, reducing
the extensive training period typically required and ensuring that the controller can manage
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dynamic workloads efficiently right from the outset.

The findings revealed that the RL controller significantly outperformed traditional threshold-
based strategies, particularly in optimizing resource utilization while simultaneously main-
taining satisfactory levels of performance. The controller exhibited a robust capacity to
adapt to dynamic workloads, boosting both system performance and cost efficiency.

The initial performance of the controller, enhanced by transfer learning, demonstrates
that both transfer techniques can significantly optimize the controller’s efficacy from the
outset. The Sim-to-Real technique showed superior performance, although it requires a real-
istic simulator to be effective. On the other hand, Learning from Demonstrations, while less
performant and more challenging to configure, benefits from only requiring demonstrations
from an existing controller to get started. Overall, the results confirm the effectiveness of us-
ing a reinforcement learning model to develop an efficient controller for cloud elasticity, with
transfer learning proving to be a crucial strategy for achieving robust initial performance.

In summary, this thesis corroborates the potential of reinforcement learning to optimize
cloud elasticity. The successful integration of RL with transfer learning techniques to improve
initial performance validates the effectiveness of this approach and highlights its promise for
future applications in cloud computing.

7.1 Future Research
This thesis establishes a foundation for several promising avenues of future research.

One key area involves enhancing the stability of the controller. Exploring techniques
such as reducing the learning rate during training, with one particular method being reduce
learning rate on plateau, where the rate is lowered when performance plateaus, or implement-
ing permanent transitions in the replay memory could significantly improve stability. These
adjustments aim to create a more reliable and consistent performance during the controller’s
operation.

Additionally, a promising direction for future research involves minimizing the number
of scaling actions while maintaining high performance. Given the significant variability in
the number of actions taken with minimal impact on performance, refining the controller to
reduce unnecessary actions could further amplify the benefits already observed with RL. This
could involve exploring advanced exploration strategies or adjusting the reward structure
to better align with this objective. Moreover, reducing the number of actions may also
contribute to improving the stability of the controller.

Another area that could be further explored is the improvement of the deep reinforce-
ment learning controller’s performance. One of the most compelling upgrades would be the
integration of a predictive parameter for future demand, calculated using time series analysis.
This addition would likely improve the controller’s ability to preemptively scale resources in
anticipation of demand fluctuations, further optimizing resource allocation.

A valuable avenue for future research lies in the further investigation, exploration, and
testing of the Learning from Demonstrations technique. By examining the selection and
impact of various configurable parameters, valuable insights could emerge, potentially leading
to more effective policies for their selection. These improvements could, in turn, lead to more
effective transfer learning, refining the technique and improving its overall applicability and
performance in dynamic resource management.

One final direction for future work involves testing the developed controller and transfer
learning techniques in a real-world environment. While this thesis relies on a simulator for
all tests, including for Sim-to-Real transfer learning, transitioning to a real-world setting
would provide valuable data on the controller’s performance and the effectiveness of transfer
learning under real operational conditions. This could help identify challenges not detected
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in the simulations and help further refine the controller’s robustness and applicability for
dynamic cloud resource management in real-time scenarios.

These proposed research directions not only build upon the work presented in this thesis
but also aim to advance the practical implementation of these technologies, bringing them
closer to real-world applicability.
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